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Abstract. Although predicting sudden rapid changes of renewable
energy outputs is useful for maintaining the stability of power grids
with many renewable energy resources, the prediction is difficult so
far. Here we list causes for the uncertainty for our prediction, quantify
them, and forecast whether such sudden rapid changes are likely to
happen or not by integrating their quantifications with a method of
machine learning. We test the proposed forecast using a toy model and
real datasets of solar irradiance and wind speed.

1 Introduction

Introducing more renewable energy resources into power grids is a global trend. How-
ever, because renewable energy resources fluctuate spatio-temporally [1], we need to
take some countermeasures. If we can forecast sudden rapid changes for renewable
energy outputs, the impact of the fluctuations might be mitigated [1]. Although we
have proposed several methods of time series prediction for such a purpose [2–7],
there is not a good forecasting method for the rapid changes, which we call ramps,
as far as we are aware of. There are two types of ramps: ramp-up and ramp-down. In
the ramp-up, one experiences rapid increases, while in the ramp-down, one confronts
with rapid decreases.
Here we propose to combine time series prediction [7] with various credibility

measures including the measures in the existing literature [8–11] as well as a new
measure proposed here for forecasting ramps by using random forest [12], a method of
machine learning. Each credibility measure used here has one-to-one correspondence
with a cause of uncertainty for the prediction, and thus is a quantification of the
uncertainty. As far as we have investigated, there is no paper that tries to produce
ramp prediction based on various credibility measures quantifying various causes of
uncertainty that remains after we have produced prediction.

a e-mail: yoshito@sat.t.u-tokyo.ac.jp

http://www.epj.org/
http://dx.doi.org/10.1140/epjst/e2015-50090-2


514 The European Physical Journal Special Topics

2 Barycentric coordinates as an example of time series prediction

We start this paper by introducing our recent model for time series prediction.
Mees [13] proposed in 1991 to model a short time series by barycentric coordinates in
a reconstructed state space. He used triangulation to obtain barycentric coordinates.
His modeling performance was excellent because the free-running simulation based
on only a time series of length 50 clearly reproduced the rough shape of the attrac-
tor for the Hénon map. His modeling method, however, had restrictions because of
the triangulation, which can be obtained for 2- or 3-dimensional space easily but is
difficult to construct when the dimension of the state space becomes higher.
Our recent relaxation [7] has made barycentric coordinates for high-dimensional

space accessible. Instead of triangulation, we used linear programming [14] to obtain
barycentric coordinates. In our recent paper [7], we showed that the free-running pre-
dictions for the Rössler and Lorenz’63 models constructed by using 10 dimensional
delay coordinates matched with the actual values very well up to 20 steps ahead,
while the attractors for the free-running predictions looked quite similar to those for
the original dynamics. In the case of the violins sounds, the prediction by barycen-
tric coordinates agreed well with the actual value up to 1000 steps ahead, and even
acoustically the prediction sounds similar to the original violin’s time series (compare
the supplementary Sound Files 1 and 2 of Ref. [7]).
Mathematically, suppose that a time series s (t) (t = 1, 2, . . .) is given successively.

We reconstruct the underlying dynamics by d-dimensional delay coordinates [15,16]
denoted by vt whose jth element is vt,j = s (t− d+ j) for t = d, d + 1, . . . , T and
j = 1, 2, . . . , d. Therefore, time points up to time T are used for building a database,
and T − d+1 is the number of vectors in the database. Suppose that we may predict
up to P steps ahead. Let t be the current time. For the current point vt for t > T +P ,
we find, by using the Euclidean distance, K nearest neighbors whose set of time
indices is denoted by It. Then, we try to approximate vt by a linear combination of
{vi|i ∈ It} using the coefficients {λi|i ∈ It} as follows:

vt ≈
∑

i∈It
λivi, (1)

where we have constraints of
∑
i∈It λi = 1 and 0 ≤ λi ≤ 1 for i ∈ It. Formally, we

obtain {λi|i ∈ It} by solving the following minimization problem [7]:
min ε
{λi|i∈It} (2)

subject to

ε ≥ 0,
−ε ≤ vt,j −

∑
i∈It λivi,j ≤ ε for j = 1, 2, . . . , d,∑

i∈It λi = 1, and

0 ≤ λi ≤ 1 for i ∈ It.
Then, we predict the p steps ahead ŝ(t+ p) of the observed value by

ŝ(t+ p) =
∑

i∈It
λis(i+ p). (3)

More formally, one-step prediction can be written as

f̂(�v) =
∑

i∈It
λi�vi+1. (4)
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This function f̂ can be related to the function of original dynamics f in the following
way [7]:

f̂(�v) = f̂(�v) + f ′(�v)
(∑

i∈It
λi�vi − �v

)
+O(δ2), (5)

where δ shows the size of the convex hull spanned by neighboring points {�vi|i ∈ It}.

3 Causes of uncertainties and their quantifications

There are mainly five causes that the above time series prediction is uncertain. The
first cause is that there are only few similar events in the past [11]. The second
cause is that the space spanned by neighbors {vi|i ∈ It} does not behave well and
they are not linearly independent. The third cause is that the underlying system has
sensitive dependence on initial conditions [17] and is unstable. The fourth cause is
that the underlying system is influenced by stochastic noise. The fifth cause is that
the underlying system is about to change qualitatively [9,10]. The first two are related
to the properties of the time series prediction introduced above, while the other three
come from the properties for the underlying dynamics. By taking into account the
formula of Eq. (5) and the dynamical noise η the vector for the next step can be
written as

f(�v) = f̂(�v) + f ′(�v)(�v −
∑

i∈It
λi�vi) +O(δ

2) + η. (6)

The first, the second, the third, the fourth, and the fifth causes of uncertainty are

related to
(
�v −∑i∈It λi�vi) , O(δ2), f ′(�v), η and f̂(�v) of Eq. (6). Thus, considering

these five causes of uncertainty are sufficient.
There is at least a method for quantifying the uncertainty due to each of these

five causes. For the first cause, which is the rareness of the current state, we can
quantify the distance of the current state to the data manifold spanned by points in
the database. Alternatively, the similar quantity is obtained by Eq. (2) at each time
we predict. Thus, we use the value of Eq. (2) in this study.
For the second cause, we quantify the determinant of the Gram matrix (Eq. (7))

for neighbors {vi|i ∈ It} as follows: Letting It = {i1, i2, . . . , ik} we use
det (V ′V ) , (7)

where
V = (vi2 − vi1 , vi3 − vi1 , . . . , vik − vi1) (8)

and V ′ shows the transpose of V . When the neighbors span space which is close to a
linearly dependent one, Eq. (7) becomes close to 0, while the value of Eq. (7) becomes
larger when the neighbors are separated with large distances and their approximation
of the current point is rough. Therefore, the value for Eq. (7) should be some medium
moderate value, whose range might depend on a system.
As for the third cause for the uncertainty of prediction, the sensitive dependence

on initial conditions [11], we used the local expansion rate among the time evolutions
of neighbors. To quantify the local expansion rate, we define the following quantities
mp of Eq. (9) for each p = 1, 2, . . . , P :
lp,i = max

j
{vi+p,j} −min

j
{vi+p,j} for p = 1, 2, . . . ., P and i ∈ It, and

mp = max
i∈It
lp,i

l0,i
. (9)

This quantity mp is expected to be larger when the underlying dynamics is locally
unstable around the current point and the sensitive dependence on initial conditions
is strong there.
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To quantify the fourth cause of uncertainty, which is the stochasticity for the
underlying system, we instead use a quantity of measuring the determinism for the
underlying system [8]. For each p ∈ {1, 2, . . . , P}, we evaluate vi+p − vi for i ∈ It
Then, we obtain the mean translation for each p by

v̄p =
1

K

∑
i∈It
{vi+p − vi}.

We used

w̄p =
1

K

∑
i∈It
‖v̄p − {vi+p − vi}‖2

‖v̄p‖2 (10)

for all p ∈ {1, 2, . . . , P} as quantities for evaluating the uncertainty due to the sto-
chasticity because the quantities are expected to become larger when the stochastic
influence is strong compared with the deterministic one for the underlying dynamics.
For the fifth cause of uncertainty, or the qualitative change that the underlying

dynamics is experiencing, we used the dynamical network marker [9,10]. For calcu-
lating the dynamical network marker given a scalar time series, first we embed a time
series to obtain {va|a = t− u, t− u+ 1, . . . , t− 1}. Then we draw, using the short-
term series of {va|a = t− u, t− u+ 1, . . . , t− 1}, a recurrence plot such that 20% of
points are plotted excluding the central diagonal line, namely,

Rt (a, b) =

{
1, if ‖va − vb‖ ≤ δt,
0, otherwise,

where we choose δt so that
2

u(u−1)
∑t−2
a=t−u

∑t−1
b=r+1Rt (a, b) ≈ 0.2. We used the value

δt as a value for quantifying whether the qualitative change is approaching or not
because δt tends to become larger if the qualitative change is closer [10] due to the
large fluctuation of the original observed values {s (a) |t− u− d+ 1, . . . , t− 1}.

4 Integrating quantified uncertainties

We combine the original time series, the time series prediction discussed in Sect. 2,
its predicted prediction error, and the five above quantifications of uncertainty by
random forest [12], a method of machine learning. The random forest is a method of
ensemble forecast by building multiple trees simultaneously and dividing conditions
to improve the forecast. We used the program of TreeBagger in Matlab 2013a for
predicting whether or not ramp-up and/or ramp-down is likely to happen in the
future. For this sake, we divided the time series into three: The first third was used
for the database for the time series prediction by barycentric coordinates. The second
third was used to generate the empirical results of whether or not ramp-ups and ramp-
downs happened as labels for inputs for the random forest. We also used the second
part to construct an estimator of the prediction error by learning the relationship
between all the inputs and the prediction errors produced by the time series prediction
by barycentric coordinates using also the random forest. Then, we used the last third
part of the dataset to test the prediction of ramps.
In the following section, we compare the proposed method with a benchmark,

which is to use time series prediction up to 72 steps ahead and apply criteria of ramps
discussed later for the part between 37 and 72 steps ahead. We call this method as
Method (a). For the proposed method, we prepare two variations: In Method (b), we
use time series prediction by barycentric coordinates up to 36 steps ahead to predict
ramps between 37 and 72 steps ahead. In Method (c), we use time series prediction
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by barycentric coordinates up to 72 steps ahead for predicting ramps between 37 and
72 steps ahead.
To evaluate the ramp prediction, we use various indexes for evaluating a confu-

sion matrix [18]. Let TP, TN, FP, and FN are the numbers of true positives, true
negatives, false positives, and false negatives, respectively. Then, the sensitivity is
defined as TP/(FN+TP). The specificity is defined by TN/(FP+TN). The preci-
sion is defined by TP/(FP+TP). The F-measure is defined by 2 × (sensitivity) ×
(precision) / ((sensitivity) + (precision)). The sensitivity and the specificity show
how certain positives and negatives are predicted correctly, while the precision shows
how accurate the prediction for positives agrees with the true outcome of positives.
The F-measure is a combined measure for the sensitivity and precision. In addition to
these indexes, we used the odds ratio [10] for evaluating the confusion matrix, which
is defined by TP × TN/(FP × FN). We obtain its 95% confidence interval using a
statistical package R. All these indexes tend to have larger values when the prediction
is better.

5 Examples

We evaluated the proposed method using three examples. The first example is that of
Lorenz’96 II model [19,20]. The Lorenz’96 II model contains two types of variables:
the first type corresponds to the upper layer of the atmosphere xi(i = 1, 2, . . . , I);
the second type corresponds to the layer close to the surface of the earth yi,j(i =
1, 2, . . . , I and j = 1, 2, . . . , J). The differential equations of the Lorenz’96 II model
can be written as follows:

ẋi = −xi−2xi−1 + xi−1xi+1 − xi + F − hxc
b

∑J

j=1
yi,j ,

ẏi,j = bcyi,j+1(yi,j−1 − yi,j+2)− cyi,j + hyc
b
xi,

xi = xi+I ,

yi,j+J = yi+1,j .

We used b = 10, c = 10, F = 8, I = 40, J = 5, hx = 1, and hy = 1. After we
threw away the transient, we generated a time series of length 6× 24× (365× 3 + 1)
by observing y1,1 very 0.01 unit time so that we can simulate a dataset of 3 years
measured every 10 minutes. We defined an event as ramp-up if y1,1 (t+ 0.01z) > 0 and
y1,1 (t+ 0.01z + 0.01) − y1,1 (t+ 0.01z) ≥ 0.2 for z = 1, 2, . . . , or 36 and an event as
ramp-down if y1,1 (t+ 0.01z) > 0 and y1,1 (t+ 0.01z + 0.01)− y1,1 (t+ 0.01z) ≤ −0.2
for z = 1, 2, . . . , or 36. We set d = 36. We forecasted whether ramp-up or ramp-down
is likely to happen 36 steps later.
The results are shown in Fig. 1 and Tables 1–6. A summary for the tables is shown

in Table 19. For all the evaluated methods, the sensitivity was low and the specificity
was high. In the benchmark prediction of Method (a), the precision was lower (Tables
1, 4, and 19). This result means that in the benchmark ramp prediction, even if ramp
prediction was issued, a ramp did not tend to happen actually. On the other hand,
we had higher precision for Methods (b) and (c), which implies that these predictions
were more worth to take into account (Tables 2, 3, 5, 6, and 19). Thus, the lower
bound for the 95% confidence interval of the odds ratio was higher for Methods (b)
and (c) than Method (a), and was higher than 1, the chance level.
The second example is the solar irradiance at Wakkanai, Japan. The dataset was

provided from the Japan Meteorological Agency. The dataset has a measurement of
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Fig. 1. Example on ramp prediction on the Lorenz’96II model. The blue solid line shows the
original time series. Panels (a), (b), and (c) correspond to Method (a) (benchmark), Method
(b) (proposed), and Method (c) (proposed), respectively (see details in the main text). In
each panel, the large red upper headed triangles correspond to times when ramp-ups were
predicted for the next 36 steps, and the large blue down headed triangles correspond to
times when ramp-downs were predicted for the next 36 steps. True ramp-ups and ramp-
downs are shown in small magenta upper headed triangles and cyan small down headed
triangles, respectively.

Table 1. The results for predicting ramp-down for the Lorenz’96 II model using Method (a).

Actual
Predicted No ramp-down Ramp-down Total
No ramp-down 43469 7995 51464
Ramp-down 878 255 1133
Total 44347 8250 52597

Table 2. The results for predicting ramp-down for the Lorenz’96 II model using Method (b).

Actual
Predicted No ramp-down Ramp-down Total
No ramp-down 44059 8049 49108
Ramp-down 288 201 489
Total 44347 8250 52597
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Table 3. The results for predicting ramp-down for the Lorenz’96 II model using Method (c).

Actual
Predicted No ramp-down Ramp-down Total
No ramp-down 44114 8104 52218
Ramp-down 233 146 378
Total 44347 8250 52597

Table 4. The results for predicting ramp-up for the Lorenz’96 II model using Method (a).

Actual
Predicted No ramp-up Ramp-up Total
No ramp-up 50025 2442 52467
Ramp-up 122 8 130
Total 50147 2450 52597

Table 5. The results for predicting ramp-up for the Lorenz’96 II model using Method (b).

Actual
Predicted No ramp-up Ramp-up Total
No ramp-up 50129 2444 52573
Ramp-up 18 6 24
Total 50147 2450 52597

Table 6. The results for predicting ramp-up for the Lorenz’96 II model using Method (c).

Actual
Predicted No ramp-up Ramp-up Total
No ramp-up 50132 2441 52573
Ramp-up 15 9 24
Total 50147 2450 52597

every 10 minutes between years 2010 and 2012. We defined an event as ramp-up if the
output was greater than or equal to 120% of that for the same time of the previous
day and the rate of changes per hour was more than or equal to 50% for any 10
minutes within the next 6 hours. We defined an event as ramp-down if the output
was smaller than or equal to 80% of that for the same time of the previous day and
the change rate per hour was greater than or equal to 50% for any 10 minutes within
the next 6 hours. We set d = 180 to cover the time period more than 1 day. We
predicted whether ramp-up or ramp-down happens 6 hours later (in the time period
between 6 and 12 hours (37 and 72 steps) ahead).
The results are shown in Fig. 2 and Tables 7–12, and 19. The specificity was high

for all the ramp predictions, while the sensitivity was higher for Methods (b) and
(c) than Method (a), the benchmark prediction. The precision was also higher for
Methods (b) and (c) than Method (a). This tendency can be seen typically observed
in Fig. 2, where Method (a) issued ramp-up prediction even at very early mornings.
Overall, F-measures for Methods (b) and (c) were higher and the lower bound for the
95% confidence interval of the odds ratio tended to be higher for Methods (b) and
(c) than Method (a).
The third example is the mean wind speed over 155 points over Japan. The dataset

was also provided by the Japan Meteorological Agency. We used the mean wind speed
at every 10 minutes between years 2010 and 2012. We defined an event as ramp-up
if the mean wind speed increased by more than or equal to 5% within 10 minutes in
any time for the next 6 hours, and an event as ramp-down if the mean wind speed
decreased by greater than or equal to 5% within 10 minutes in any time for the next
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Fig. 2. Example of ramp prediction for the solar irradiance at Wakkanai, Japan. Panels (a),
(b), and (c) correspond to Method (a) (benchmark), Method (b) (proposed), and Method
(c) (proposed), respectively. In each panel, the large red upper headed triangles show times
when ramp-ups were predicted for the next 6 hours, and the small green down headed
triangles show times when ramp-downs were predicted for the next 6 hours. True ramp-ups
and ramp-downs are shown in small magenta upper headed triangles and small cyan down
headed triangles, respectively.

Table 7. The results for predicting ramp-down for the solar irradiance at Wakkanai, Japan
using Method (a).

Actual
Predicted No ramp-down Ramp-down Total
No ramp-down 43230 4957 48187
Ramp-down 3406 1004 4410
Total 46636 5961 52597

6 hours. We set d = 36. We predicted ramp-up and ramp-down that might happen 6
hours later (in the time period between 6 and 12 hours ahead).
The results are shown in Fig. 3 and Tables 13–19. The specificity was high for all

ramp predictions, while the sensitivity was higher for ramp-ups for Methods (b) and
(c). For ramp-downs, the sensitivity was also higher for Methods (b) and (c) than
Method (a), but the differences were smaller than for ramp-ups. The precision for
Methods (b) and (c) were between 40 and 50%, while the precision varied for Method
(a). The F-measures for Methods (b) and (c) were higher and the lower bounds for
the 95% confidence intervals of the odds ratios were higher for Methods (b) and (c)
than Method (a).
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Table 8. The results for predicting ramp-down for the solar irradiance at Wakkanai, Japan
using Method (b).

Actual
Predicted No ramp-down Ramp-down Total
No ramp-down 45421 4249 49670
Ramp-down 1215 1712 2927
Total 46636 5961 52597

Table 9. The results for predicting ramp-down for the solar irradiance at Wakkanai, Japan
using Method (c).

Actual
Predicted No ramp-down Ramp-down Total
No ramp-down 45319 4133 49452
Ramp-down 1317 1828 3145
Total 46636 5961 52597

Table 10. The results for predicting ramp-up for the solar irradiance at Wakkanai, Japan
using Method(a).

Actual
Predicted No ramp-up Ramp-up Total
No ramp-up 30557 3154 33711
Ramp-up 17101 1785 18886
Total 47658 4939 52597

Table 11. The results for predicting ramp-up for the solar irradiance at Wakkanai, Japan
using Method (b).

Actual
Predicted No ramp-up Ramp-up Total
No ramp-up 46507 3081 49588
Ramp-up 1151 1858 3009
Total 47658 4939 52597

Table 12. The results for predicting ramp-up for the solar irradiance at Wakkanai, Japan
using Method (c).

Actual
Predicted No ramp-up Ramp-up Total
No ramp-up 46469 3031 49500
Ramp-up 1189 1908 3097
Total 47658 4939 52597

6 Discussions

We have proposed a method for forecasting sudden changes, which we call ramps,
given a scalar time series generated from a system. The method integrated the time
series prediction with its five credibility measures to produce two labels showing
whether or not ramp-up and/or ramp-down is likely to happen in the near future.
We learned that in some limited cases, the proposed method could yield a forecast
showing whether or not such ramps are likely to occur.
In most of our results, the specificity is high, while the sensitivity is low (see

Table 19). It seems that there is a trade-off between the specificity and the sensitivity.
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Fig. 3. Example of ramp prediction for the mean wind speed over Japan. See the caption
of Fig. 2 to interpret the results.

Table 13. The results for predicting ramp-down for the mean wind speed over Japan using
Method (a).

Actual
Predicted No ramp-down Ramp-down Total
No ramp-down 46926 5653 52579
Ramp-down 7 11 18
Total 46933 5664 52597

Table 14. The results for predicting ramp-down for the mean wind speed over Japan using
Method (b).

Actual
Predicted No ramp-down Ramp-down Total
No ramp-down 46637 5423 52060
Ramp-down 296 214 537
Total 46933 5664 52597

Therefore, exploring this trade-off and finding a practically meaningful method is our
remaining research topic.
Overall, the proposed Methods (b) and (c) tended to show the better performances

than the benchmark of Method (a). Thus, the knowledge gained in this paper may
improve the current practice of ramp prediction for the energy sector. There was the
asymmetry for the prediction performances between ramp-downs and ramp-ups for
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Table 15. The results for predicting ramp-down for the mean wind speed over Japan using
Method (c).

Actual
Predicted No ramp-down Ramp-down Total
No ramp-down 46617 5436 52053
Ramp-down 316 228 544
Total 46933 5664 52597

Table 16. The results for predicting ramp-up for the mean wind speed over Japan using
Method (a).

Actual
Predicted No ramp-up Ramp-up Total
No ramp-up 45647 6863 52510
Ramp-up 62 25 87
Total 45709 6888 52597

Table 17. The results for predicting ramp-up for the mean wind speed over Japan using
Method (b).

Actual
Predicted No ramp-up Ramp-up Total
No ramp-up 44508 5831 50339
Ramp-up 1201 1057 2258
Total 45709 6888 52597

Table 18. The results for predicting ramp-up for the mean wind speed over Japan using
Method (c).

Actual
Predicted No ramp-up Ramp-up Total
No ramp-up 44524 5877 50401
Ramp-up 1185 1011 2196
Total 45709 6888 52597

wind speeds, i.e., ramp-ups were relatively easier to forecast than ramp-downs. This
tendency agrees with the results in [21]. There was no big difference observed in the
performances between Methods (b) and (c).
The definitions of ramps are so far ad hoc in this paper. Because we want to

use the proposed prediction for forecasting ramps in practice for renewable energy
resources, the ramps should be defined from the viewpoints of system administers for
power grids.
In this paper, we used the dataset for a year to construct a database, and the

dataset for the next year to construct predictors for ramps, and the dataset for another
year to evaluate the predictors. Therefore, we have to check whether we can improve
our predictions when datasets for constructing the database and predictors become
larger. We will check this point when we obtain longer datasets.
As the next stage, we should produce more quantitative forecasts in a way that

a ramp may happen between 6 and 12 hours ahead with the probability of g%. For
this sake, we probably need to deeply understand the mechanisms on when a ramp
related to renewable energy is likely to happen in the sense of weather conditions.
If multivariate observations are provided, we may be able to improve the prediction

performance for ramps because we can use more quantities related to dynamical
network markers [9,10]. This topic will be explored in our future research.
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Table 19. Summary of results shown in Tables 1-18 in terms of sensitivity, specificity,
precision, and F-measure. Method (a) corresponds to only using prediction by barycentric
coordinates up to 72 steps ahead, method (b) corresponds to using prediction by barycentric
coordinates up to 36 steps head and 5 credibility measures, and method (c) corresponds to
using prediction by barycentric coordinates up to 72 steps ahead and 5 credibility measures.
The sensitivity is 1-(the false negative rate) and the specificity is 1-(the false positive rate).
The bold numbers show the highest numbers in predicting the same datasets.

Data Method Sensitivity Specificity Precision F-measure 95%CI for
odds ratio

Lorenz’96 Ramp-down (a) 0.0309 0.9802 0.2251 0.0544 [1.37 1.82]
(b) 0.0244 0.9935 0.4110 0.0460 [3.17 4.60]
(c) 0.0177 0.9947 0.3852 0.0338 [2.75 4.22]
Ramp-up (a) 0.0033 0.9976 0.0615 0.0062 [0.57 2.74]
(b) 0.0024 0.9996 0.2500 0.0049 [2.22 17.99]
(c) 0.0037 0.9997 0.3750 0.0073 [4.75 30.08]

Solar Ramp- 0.1684 0.9270 0.2277 0.1936 [2.38 2.78]
irradiance down (a)

(b) 0.2872 0.9739 0.5849 0.3852 [13.90 16.33]
(c) 0.3067 0.9718 0.5812 0.4015 [14.07 16.46]
Ramp-up (a) 0.3614 0.6412 0.0945 0.1498 [0.95 1.08]
(b) 0.3762 0.9758 0.6175 0.4675 [22.43 26.47]
(c) 0.3863 0.9751 0.6161 0.4749 [22.67 26.71]

Wind Ramp- 0.0019 0.9999 0.6111 0.0039 [4.61 39.71]
speed down (a)

(b) 0.0425 0.9937 0.4488 0.0777 [5.87 8.35]
(c) 0.0403 0.9933 0.4191 0.0735 [5.18 7.38]
Ramp-up (a) 0.0036 0.9986 0.2874 0.0072 [1.61 4.33]
(b) 0.1535 0.9737 0.4681 0.2311 [6.16 7.34]
(c) 0.1468 0.9741 0.4604 0.2226 [2.78 7.49]

We appreciate the Japan Meteorological Agency for providing the datasets of solar irra-
diance and wind speeds used in this study. This manuscript is partially based on results
obtained from a project commissioned by the New Energy and Industrial Technology Devel-
opment Organization (NEDO). This research is also partially supported by Core Research
for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
(JST).
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