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Abstract. Geometric mechanics techniques based on Lie brackets provide
high-level characterizations of the motion capabilities of locomoting systems.
In particular, they relate the net displacement they experience over cyclic gaits
to area integrals of their constraints; plotting these constraints thus provides a
visual “landscape” that intuitively captures all available solutions of the sys-
tem’s dynamic equations. Recently, we have found that choices of system co-
ordinates heavily influence the effectiveness of these approaches. This property
appears at first to run counter to the principle that differential geometric struc-
tures should be coordinate-invariant.

In this paper, we provide a tutorial overview of the Lie bracket techniques,
then examine how the coordinate-independent nonholonomy of these systems
has a coordinate-dependent separation into nonconservative and noncommuta-
tive components that respectively capture how the system constraints vary over
the shape and position components of the configuration space. Nonconservative
constraint variations can be integrated geometrically via Stokes’ theorem, but
noncommutative effects can only be approximated by similar means; therefore
choices of coordinates in which the nonholonomy is primarily nonconservative
improve the accuracy of the geometric techniques.

1 Introduction

The study of locomotion is an active field in robotics and biology. Understanding how
changes in system shape interact with environmental constraints allows robot designers to
produce systems that move through the world with agility and efficiency. In biology, under-
standing the links between shape and body motions provides baseline data on the potential
capability of an organism, against which its observed behavior can be compared.

Geometric mechanics offers powerful tools for studying locomotion [1–8] that both sim-
plify system models and provide deep links between physical motion and fundamental math-
ematical structures. These methods exploit mathematical symmetry in systems’ equations of
motion and highlight relationships between changes in the internal shape of a system and its
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external position in the world. A key feature of these approaches is their basis in differen-
tial geometry, making use of techniques such as Lie bracket averaging, which approximate
the net displacement over cyclic changes in shape with area integrals of the curvature of the
system constraints. These approximations then aid the search for a system’s most useful or
effective cycles, which collectively describe the locomotion capabilities of the system and
can be used as a library for planning longer-range motions.

The approximation error in Lie bracket averaging scales with the magnitude of the shape
changes executed during a gait. Historically, this error scaling has restricted Lie bracket
analysis to relatively small motions, which often do not include the most efficacious gaits
available to the systems. In our recent work [9–11], however, we demonstrated that–contrary
to the expectation that differential geometric expressions should be coordinate-invariant–
the rate at which the error scales with gait amplitude is significantly affected by the choice
of body frame used to parameterize the system. Based on this observation, we developed
a method for optimizing the choice of coordinates, in which advantageous body frame se-
lections are found by taking generalized Hodge-Helmholtz decompositions of the system
constraints to yield the minimum-perturbation coordinates for the system, analogous to the
Coulomb gauge in electromagnetic systems.

We initially developed this coordinate optimization in a robotics context, using simpli-
fied vector-calculus terminology and making explicit use of the planar nature of the example
systems in our derivation. Given this genesis, questions naturally arise regarding rigorous
mathematical justification for our results and the possibility of extending them to systems
with different configuration spaces. In this paper, we address these questions by formulating
our approach in a truly differential geometric framework, thus better relating it to key results
in the field [1,8] and allowing a deeper examination of the underlying principles. In particular,
we investigate how the nonholonomy,1 or path-dependence, encoded by the constraint cur-
vature has a coordinate-dependent separation into two parts: a nonconservative component
that captures changes in the constraints across different system shapes, and can be integrated
exactly in the averaging techniques; and a noncommutative component that captures how the
order in which a system translates and rotates affects its net motion, and can only be approx-
imated when averaging the Lie bracket.

Using this separation, we demonstrate that our optimal choice of coordinates is that for
which the nonholonomy is minimally noncommutative, and thus maximally nonconservative.
Additionally, considering the noncommutative effects (which we elided for simplicity in our
previous work) allows us to characterize the efficacy of coordinate optimization for a given
system and bound the error of our geometric tools. To facilitate comparison between these re-
sults and our prior formulation, we have selected the same set of example systems as in [11],
shown in Fig. 1; as discussed in Sect. 3.2, these systems serve as both canonical examples in
the geometric mechanics literature and exhibit special features that highlight aspects of our
coordinate optimization.

2 Context and prior work

A defining feature of the geometric mechanics approach to locomotion is its rigorous math-
ematical distinction between the shape of a locomoting system and its position (including
orientation) in the world. Formally, this separation is embodied in a differential geometric
structure called a fiber bundle, in which the shape and position of the system are respectively

1 Note that by nonholonomy we mean the degree to which the constraints on the system are non-
holonomic (i.e., how different they are from a set of constraints that could be integrated to provide
a lower-dimensional configuration space for the system), and therefore how much the integral along
a path depends on the whole path and not just the endpoints. This is not an antonym for the term
“holonomy”, which refers to the result of integrating along a specific path.
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Fig. 1. The three example systems and their constraints.

referred to as elements of the base and fiber spaces. Combinations of shape and position
velocities that accommodate constraints on the system (such as conservation of momentum,
or interaction with a surrounding fluid) are encoded in connections on the fiber bundle.

In this paradigm, two assumptions about system behavior are often used to frame the
analysis. First, that the system’s shape is fully controlled (i.e. the shape can be regarded as an
input), thus letting the connection induce a Jacobian from control inputs to the resulting
position velocity, modulo any second-order momentum effects. Second, that when expressed
in body coordinates the system constraints are invariant with respect to the position; intu-
itively, this leads to the concept that a shape change that pulls the system “forward” will
always do so, regardless of how the system is located and oriented.

Much of the geometric locomotion framework can be traced to Shapere and Wilczek’s
seminal papers “The Geometry of Self Propulsion at Low Reynolds Number”and “Gauge
Mechanics Of Deformable Bodies” [1,12]. The former paper considered the locomotion of
circular and spherical objects immersed in highly viscous fluids, such as is the case for bac-
teria and other micro-organisms, while the latter considered the rotation of isolated bodies
under the conservation of net angular momentum. The authors of those papers drew their
terminology from gauge theory, and clearly articulated the ideas of using a fiber bundle to
represent the swimmer configuration and of using a local form of the connection to map in-
put shape velocities into position velocities. Interestingly, Shapere and Wilczek also posed a
question that, to the best of our knowledge, remained open until our investigation: What is
the best choice of position and orientation coordinates (in their terminology, choice of gauge)
to use when modeling these systems? [1].

Following Shapere and Wilczek’s investigations, geometric locomotion research
focused more on the rigid body, momentum conservation approach in [12] than on the
low Reynolds number formulation in [1]. Drawing on the mechanical symmetry work of
Marsden et al. [13–15], researchers such as Krishnaprasad, Tsakiris, Kelly, Ostrowski,
Burdick, Bloch, and Lewis [2–7] developed the reconstruction equation, which generalized
the results of [1,12] to apply to systems with first-order nonholonomic constraints, such as
ice skates or passive wheels. Among other benefits, this generalization included a momentum
term capturing how much the system is coasting. This allows the study of systems which fall
between the completely constrained low Reynolds number systems of [1], and those com-
pletely unconstrained except by momentum conservation, as in [12].

This reconstruction equation has been used in a variety of locomotion contexts. Ostrowski
et al. [4,16] combined the reconstruction equation with Lie bracket theory to generate sinu-
soidal gaits which translate and rotate a variety of snake-like systems. Bullo and Lynch used
the reconstruction equation to decouple the kinematic and dynamic elements of the locomo-
tion of kinodynamic systems and thus to design kinematic gaits [17]. Shammas et al. mod-
ified the momentum term in the reconstruction equation into a scaled momentum, enabling
motion planning techniques that guarantee at least the direction of that momentum [18].
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To aid in visualizing the reconstruction equation, we developed the connection vector
field [19]. Although most of the geometric locomotion literature uses a subset of the spe-
cial Euclidean group SE(3) to represent system position and orientation, Krishnaprasad and
Tsakiris have also investigated using alternative group structures for the position space [2].

More recently, the geometric locomotion focus has returned to swimming systems, in-
cluding Kelly’s formulation of the reconstruction equation for swimming systems at various
Reynolds numbers [20], and the respectively high and low Reynolds numbers studies of Melli
et al. [8] and Avron and Raz [21]. Other geometric studies of swimming incorporate bio-
mimetic elements along with mathematical formulations, such as McIsaac and Ostrowski’s
work on anguilliform (eel-like) robots [22] and Morgansen et al.’s work on fish [23].

It is not generally possible to integrate the reconstruction equation in closed form, raising
difficulties for the inverse problem of finding shape changes that produce desired transla-
tions. In special cases, however, Stokes’ theorem (as a special case of the Baker-Hausdorff-
Campbell theorem) can be used to find the net motion resulting from gaits [3]. Mukherjee [24]
used this principle to analyze the motion of rolling disks, and Walsh and Sastry [25,26] ap-
plied it to the case of an isolated three-link robot. Shammas et al. [27,28] combined this
approach with the reconstruction equation to define height functions on the shape space of
their three-link robots that allowed the design of gaits resulting in specified rotations. A sim-
ilar technique was used by Melli et al. [8] and later by Avron and Raz [21] to generate gaits
for swimming robots.

The approaches in [8,21,28] all shared the limitation that for general macroscopic (non-
infinitesimal) gaits, the height functions could only be used to determine the net rotations
over gaits; the noncommutativity of translations and rotations precludes the existence of an
(inherently unordered) area integral to determine net translation. Melli et al. and Avron and
Raz were able to extend the techniques to finding good approximation of the net translations
induced by a limited set of macroscopic (but still small magnitude) gaits by using a higher-
order definition of the height functions.

In [9], we observed that much of the limitation to small gaits was not inherent to the
system, but instead depended on how the system was parameterized, with certain choices
of coordinates greatly reducing the system noncommutativity. Building on this result, we
presented in [10,11] a systematic optimization procedure for making this choice, which we
extended in [29] to the swimming systems considered in [8,21]. These results were presented
to the robotics community in a vector-calculus framework, and in this paper we generalize
them into differential-geometric terms.

More recently, we have turned our attention to using the geometric paradigm to analyze
real-world systems whose dynamics are approximated by a local connection (rather than
being an exact match). In [30], we demonstrated that the geometric tools can provide useful
insight about systems whose dynamics are analytically intractable, but the output of which
can be fit to our geometric template. In that paper, which grew out of investigations of the
burrowing behavior of the sandfish lizard, we considered the motion of a three-link robot im-
mersed in a bed of small plastic spheres. Taking the gradient of this velocity relationship at
each shape yielded a numerically-generated connection equivalent to that in the formal geo-
metric model, from which we could calculate constraint curvature for the system and then
proceed with the analysis.

3 Geometric mechanics

Geometric mechanics applies differential-geometric structures to problems in classical
mechanics. In locomotion analysis, using Lie groups to represent the position and orienta-
tion of a system generates rigorously-defined body frames for the systems that simplify their
representation. The relationship between changes in system shape and position is captured
by differential forms; when combined with Lie brackets and Stokes’ theorem these forms



Dynamics of Animal Systems 3145

provide information about the net displacements produced by cyclic changes in shape. This
section relates physical aspects of locomotion to the geometric structures; we have provided
a more general description of the structures themselves in the appendices.

3.1 Position, shape, and velocity

When analyzing a multi-body locomoting system, it is convenient to separate its configura-
tion space Q into a position space G and a shape space B, such that the position g ∈ G
locates the system in the world and the shape r ∈ B gives the relative arrangements of its
bodies. We can then consider how changes in shape induce changes in position. Typically, G
is chosen to have a Lie group structure with the properties described in Sect. A.2. A natural
choice of G for describing position and orientation is SE(3), the special Euclidean group of
three-dimensional translations and rotations, or one of its subgroups, such as SE(2) for planar
motion or the special orthogonal group SO(3) for spatial rotations. In differential geometric
terms, this separation assigns a trivial, principal fiber bundle structure2 Q = G × B to the
system’s configuration space, with G the fiber space and B the base space. Note that as well
as denoting the system position, g also identifies a body frame rigidly attached to the sys-
tem, and the transform associated with that coordinate frame: if a second object has position
h ∈ G with respect to the body frame, then its position with respect to the world is gh.

3.1.1 Position and shape

In this paper, we focus on systems that translate and rotate in the plane, and thus have a
G = SE(2) position space. Positions in this space are canonically parameterized as
g = (x, y, θ), representing a position and orientation. The group action on SE(2) treats these
positions as relative displacements, encoded as the multiplication of matrices of the form

g =

⎡
⎢⎣
cos θ − sin θ x

sin θ cos θ y

0 0 1

⎤
⎥⎦ . (1)

More details on such homogeneous representations can be found in [31].
The shape of a system specifies the relative positions of the points or particles that com-

pose it. For a multi-body system made up of rigid elements, the space of shapes may be taken
as the set of joint angles or extensions, interpreted as a subset of Rn bounded according to
the joint limits. In some cases, such as when the joint is the axle of a wheel with no limits, the
corresponding component of the shape space may be taken as a circle S rather than a subset
of R.

3.1.2 Velocity

The time derivative of the system position, i.e., its world velocity, ġ, is the translational and
rotational velocity of its body frame with respect to a fixed inertial frame, and can be ex-
pressed in coordinates as (ẋ, ẏ, θ̇) as illustrated in Fig. 2(a). World velocities at different po-
sitions that represent the same system body velocity or spatial velocity are related by SE(2)’s
lifted actions (see Sect. A.2). The lifted actions can be combined into adjoint actions that
convert between body and spatial representations of the velocity.

2 See Sect. A.5.
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Fig. 2. Three representations of the velocity of a robot. The robot, represented by the triangle, is trans-
lating up and to the right while spinning counterclockwise. In (a), the world velocity, ġ, is measured
with respect to the global frame. The body velocity, ξ, in (b) is the velocity represented in the robot’s
instantaneous local coordinate frame. The body velocity is actually calculated by transporting the body
back to the origin frame, as in (c), but by symmetry this is equivalent to bringing the world frame to
the system. The spatial velocity in (d) is the velocity of the abstract rigid body to which the system is
attached, measured at the origin.

Body velocity

The body velocity ξ in Fig. 2(b) is the position velocity expressed in the instantaneous body
frame, i.e., its forward, lateral and turning velocities, and is calculated as

ξ =

⎡
⎣
ξx

ξy

ξθ

⎤
⎦ =

⎡
⎣
cos θ sin θ 0
− sin θ cos θ 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
TgLg−1

ġ, (2)

where θ is the system’s orientation and TgLg−1 is calculated as described in Sect. A.3. Strictly
speaking, (2) calculates the equivalent velocity to ġ at the group identity (origin selected
for the position space) under left group actions, as shown in Fig. 2(c). General principles of
coordinate invariance and group symmetry, however, mean that we can select any frame as the
origin and that moving the body frame to the origin is equivalent to moving the origin to the
body frame, making these two representations equivalent. Body velocities can be converted
back into the world frame by inverting the lifted action from (2) as TeLg = (TgLg−1)−1,

ġ =

⎡
⎣
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
TeLg

ξ. (3)

Spatial velocity

Frames with the same spatial velocity ξs are moving as if rigidly attached to each other, and
the spatial velocity is itself the velocity of the rigidly attached point that is currently over the
origin. The spatial velocity of a system moving with given ġ at position g is calculated as
the right-equivalent velocity at the origin of the space, and as depicted in Fig. 2(d) is equal
to ġ plus a “cross-product” term that multiplies the rotational velocity by the translational
displacement from the origin. This velocity, calculated as

ξs =

⎡
⎣
1 0 y
0 1 −x
0 0 1

⎤
⎦

︸ ︷︷ ︸
TgRg−1

ġ, (4)
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Table 1. Interpretations of elements of TeG, as used in this paper.

Symbol Meaning First Introduced

ξ Body velocity Sect. 3.1
z Exponential coordinates Sect. 3.1
ζ Body velocity integral Sect. 4.2.1

ζ̄ Corrected body velocity integral Sect. 4.2.2

is seldom directly of interest as a physical quantity, but serves as a useful abstract representa-
tion of the system’s motion–if an object’s spatial velocity is known, then the world velocity
of any frame attached to the body can be calculated as

ġ =

⎡
⎣
1 0 −y
0 1 x
0 0 1

⎤
⎦

︸ ︷︷ ︸
TeRg

ξs. (5)

Velocities and Lie algebras

Because the body velocity ξ is an element of TeG, it is also an element of the Lie algebra3 g,
producing physical interpretations for both the exponential map and the Lie bracket: In SE(2)
(for which the Lie algebra is denoted se(2)), the exponential map g = exp (z) of a vector
z ∈ se(2) finds the net displacement of a system starting at the origin and moving with body
velocity ξ = z for one unit of time, and takes the form

(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

(zx, zy), for zθ = 0

1

zθ

[
sin zθ cos zθ − 1
1− cos zθ sin zθ

][
zx

zy

]
, for zθ �= 0

θ = zθ.

(6)

The elements of z are the exponential coordinates of the position g. Note that both the body
velocity and exponential coordinates are elements of the tangent space of G at the body
frame, but have different physical interpretations–the body velocity encodes the rate at which
the configuration is changing, and the exponential coordinates identify a configuration away
from the origin. In the following discussion, we will maintain the orthographic distinction be-
tween these quantities, summarized in Table 1, adding two more interpretations in Sect. 4.2.

The Lie bracket4 of two vectors a, b ∈ se(2) finds the net effect of making sequential,
infinitesimal moves in the a, b,−a,−b directions and is calculated as

⎡
⎢⎣

⎛
⎜⎝
ax

ay

aθ

⎞
⎟⎠ ,

⎛
⎝
bx

by

bθ

⎞
⎠
⎤
⎥⎦ =

⎛
⎜⎝
bθay − aθby
aθbx − bθax

0

⎞
⎟⎠ , (7)

where the multiplications by aθ and bθ originate in a linearization (i.e., small angle approx-
imation) of TeLg around θ = 0. The x and y components of the se(2) Lie bracket capture
the “parallel parking” effect in which oscillating translation and rotation motions produce net
translation in an orthogonal direction. The 0 value for the θ row of the Lie bracket product
reflects that SO(2) is an abelian (commutative) subgroup of the semi-direct group SE(2) [8],
so that oscillations in θ are always self-canceling, even in the presence of intermediate trans-
lations.

3 See Sect. A.2.
4 See Sect. C.4.
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3.1.3 Reconstruction equation

Many locomoting systems’ equations of motion are dictated by linear constraints defined
in their body frame (i.e., which are symmetric with respect to left group actions). If there
are as many of these constraints as there are dimensions in the position space, they define
a principal connection (Sect. C.3) A on the configuration space. The geometric mechanics
community [3,4,7,28,32] has exploited this connection structure with the development of the
kinematic reconstruction equation, which makes use of the local form A of the connection
to relate the body velocity of the system, ξ, to its shape velocity, ṙ, as

ξ = −A(r)ṙ, (8)

in which the local connection acts similarly to the Jacobian relating the end-effector velocity
of a robotic arm to the configuration and velocity of its joints.

For these systems, the local connection is most easily calculated by identifying a set of
constraints on the system’s motion under which allowable combinations of body and shape
velocity satisfy an equation of the form

⎡
⎣
0
0
0

⎤
⎦ = ω(α)

[
ξ
α̇

]
, (9)

where ω is a 3 × 5 matrix. Once these constraints are identified and encoded in ω, they can
be separated into two sub-blocks as

⎡
⎣
0
0
0

⎤
⎦ = [ω3×31 ω3×n2

] [ξ
α̇

]
, (10)

(where n is the number of shape variables) and then recombined as

ω1ξ = −ω2α̇ (11)

and
ξ = −ω−11 ω2α̇. (12)

Finally, settingA = ω−11 ω2 puts (12) into the form of (8).

3.2 Example systems

The geometric mechanics literature includes a wide variety of models for multi-body lo-
comoting systems that provide concrete examples of the reconstruction equation and local
connection. Of these systems, those that best illustrate the distinction between nonconserva-
tive and noncommutative effects have kinematic reconstruction equations of the form of (8).
This category includes several broad classes of systems, including the purely mechanical
and purely kinematic systems described in [4,28] and swimming systems at low and high
Reynolds number [8,20,21,29].

Here, as in [11], we take the three systems in Fig. 1 as example models: the kine-
matic snake [27,28], the floating snake or planar space robot [3,27,28], and the common
differential-drive car. The snake-like systems illustrate two fundamental physical regimes
(nonholonomically and inertially constrained, respectively) and are simple enough to be
tractable, but complex enough to pose interesting motion planning problems. Additionally, as
we discuss in [29,30,33], they bear strong resemblance to the low and high Reynolds num-
ber swimming systems, making our system selection representative of a broad spectrum of
kinematic systems. The differential-drive car is a simpler example of a nonholonomically-
constrained system that highlights the principles under investigation.
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Differential-drive car

The coordinates for the differential-drive car are g = (x, y, θ) ∈ SE(2) for the chassis, and
r = (α1, α2) ∈ S × S for the wheel rotations. The reconstruction equation for this system
is based on the no-slip and no-slide assumptions for the contact points of its wheels with the
ground, which provide three independent constraints relating the body velocity of the vehicle
to the angular velocities of the wheels [3]. These constraints can be encoded in the form of (9)
as ⎡

⎣
0

0

0

⎤
⎦ =

⎡
⎢⎣
ξx1

ξx2

ξy2

⎤
⎥⎦ =

⎡
⎣
1 0 −w −R 0

1 0 w 0 −R
0 1 0 0 0

⎤
⎦

︸ ︷︷ ︸
ω(α)

[
ξ
α̇

]
, (13)

In which R and w are respectively the wheel radius and body half-width of the car. Normal-
ized for wheel radius and body width, the reconstruction equation for the differential-drive
car can then be found as

ξ = −
⎡
⎣
−1 −1
0 0

1 −1

⎤
⎦
[
α̇1

α̇2

]
. (14)

by applying (10)–(12). This equation matches an intuitive understanding of how a
differential-drive vehicle works: when the wheels are turned together, the vehicle moves for-
ward; when they are turned oppositely, the vehicle rotates; and no combination of inputs can
move the system laterally.

Floating snake

For the floating snake, we take the position g = (x, y, θ) ∈ SE(2) as the position of the
center of mass and the orientation of the middle link and the shape r = (α1, α2) ∈ R2
as the interlink joint angles. If the system starts at rest, conservation of linear momentum
dictates that the linear and angular momentum remain zero, so the system’s velocity vectors
are subject to the constraint

⎡
⎣
0

0

0

⎤
⎦ =

⎡
⎣
Jx

Jy

Jθ

⎤
⎦ = ω(α)

[
ξ

α̇

]
, (15)

where the system kinematics provide the terms in ω.
The first two rows of the local connection (corresponding to translation) are zero. The

third row of the local connection identifies rotational velocities that preserve a net angular
momentum of zero in response to specified joint velocities [28]. Taking the rows together,
the reconstruction equation for a floating snake with equal link lengths and inertias is

ξ = − 1
F

⎡
⎢⎣
0 0

0 0

a31 a32

⎤
⎥⎦
[
α̇1
α̇2

]
, (16a)

where

a31 = 5 + 3 cos (α2) + cos (α1 − α2) (16b)

a32 = 5 + 3 cos (α1) + cos (α1 − α2) (16c)

F = 19 + 6(cos (α1) + cos (α2)) + 2 cos (α1 − α2). (16d)

The constants in these expressions derive from the kinematics of the links and their positions
in the center of mass frame [25,34].
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Kinematic snake

The position and orientation of the kinematic snake are similar to those of the floating snake,
with g = (x, y, θ) ∈ SE(2) and r = (α1, α2) ∈ R2, except that here we take the position
as that of the middle link, rather than the center of mass. Each link has a no-slide constraint,
such as that imposed by a passive wheelset or ice skate, that acts as to prevent lateral motion
while freely allowing longitudinal and rotational motion. These constraints can be encoded
as ⎡

⎣
0

0

0

⎤
⎦ =

⎡
⎢⎣
ξy1

ξy2

ξy3

⎤
⎥⎦ = ω(α)

[
ξ

α̇

]
, (17)

where as with the floating snake, ω is constructed from the system kinematics. Normalized
for unit body-length, these constraints can then be reworked into

ξ = − 1
F

⎡
⎣
(1 + cos (α2))/6 (1 + cos (α1))/6

0 0

sin (α2) sin (α1)

⎤
⎦
[
α̇1

α̇2

]
, (18)

where F = sin (α1)− sin (α2) + sin (α1 − α2).
The kinematic snake’s singular configurations are those for which the no-slide constraints

allow the system to move as a rigid body; these singularities correspond to configurations in
which the constraint distribution contains a vector field aligned with the fiber direction, and
so no longer acts as a connection (Sect. C.3). On the kinematic snake, singularities occur
when α1 = α2, such that the normals to the passive wheels meet at a single point, or when
α1 or α2 is equal to π, such that the two constraints are collocated.

3.3 Shape changes, gaits, and image-families

When discussing motion plans for locomoting systems, it is useful to have a vocabulary
describing operations in their shape spaces. In this paper, we use the following definitions:

Definition 1 (Shape change). A shape change ψ is a trajectory in the shape space B of the
system over an interval [0, T ], i.e., the set of all shape changes is

Ψ = {ψ ∈ C1 | ψ : [0, T ]→ B} (19)

where ψ(0), ψ(T ) ∈ B are respectively the start and end shapes.

Definition 2 (Gait). A gait φ is a cyclic shape change, i.e., the set of all gaits is

Φ = {φ ∈ Ψ | φ(0) = φ(T )}. (20)

Note that a gait has a defined starting shape φ(0) and pacing; two gaits whose images in B
are the same closed curve, but that have different start points, are distinct.5

Definition 3 (Image-family). The image-family φ̄ of a gait φ is the set of all gaits which
share its image (i.e., trace out the same closed curve) in B,

φ̄ = {ϕ ∈ Φ | Im(ϕ) = Im(φ)}. (21)

The image-family includes all continuous time-reparameterizations and changes in starting
point to a gait.

5 Gaits that follow the same curve at different rates are also distinct, but the kinematic nature of our
systems allows us to drop this distinction from the analysis.
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4 Integrating the local connection

For a given shape change ψ, the resulting displacement can be calculated by passing the
shape ψ(t) and shape velocity ψ̇(t) at each time into the reconstruction Eq. (8) to find ξ(t),
the body velocity as a function of time, and then integrating ġ = TeLgξ as a differential
equation to find the net displacement. In coordinates, this displacement can be calculated via
standard methods for ordinary differential equations,

g(T ) =

∫ T
0

TeLg(t)ξ(t) dt =

∫ T
0

−TeLg(t)A(r(t))ṙ(t) dt. (22)

Finding a shape change that produces a desired net displacement or identifying the most
effective gaits available to a system is considerably more difficult, as the recursive time in-
tegral in (22) is inherently resistant to inversion. In limited cases, it is possible to specify a
desired position trajectory g(t) and (pseudo)invert the local connection to find a correspond-
ing control trajectory ṙ(t) = −A−1(r(t))ξ(t), but joint limits and constraint singularities
often prevent such techniques from succeeding over extended trajectories.

Gait-based approaches provide an attractive solution to the path planning and identifi-
cation problems posed by these concerns. Rather than specifying a long-range path through
position space and dictating that the system rigidly follow this path, a motion planner can de-
sign cyclic gaits with a range of short-term net displacements and then choose among them
to build a motion plan that “on average” follows a specified path. This raises the question,
then, of how to identify useful gaits. The geometric mechanics community has investigated
principled answers to this question through averaging techniques [1–8,23], which are related
to the Lie bracket. Here, we briefly review averaging methods, while drawing connections
between them that have not previously been made explicit.

4.1 Lie brackets and the local connection

A gait with very small amplitude in the shape space can be considered as a infinitesimal
oscillation of the shape, and the net motion resulting from such an input can be found by
the use of Lie brackets (see Sect. C.4). For a specified input shape velocity ṙ, a system at
configuration q = (r, g) has position velocity ġ = −TeLgA(r)ṙ. Moving with this velocity
can be interpreted as flowing along the vector fieldX(q) defined over the configuration space
as the combination of this shape velocity and the position velocity it induces,

X(q) =

(
ṙ

−TeLgA(r)ṙ
)
. (23)

If we define two unit-magnitude input shape velocities as ṙ1 = [1 0]T and ṙ2 = [0 1]T , then
the Lie bracket [(

ṙ1
−TeLgA(r)ṙ1

)
,

(
ṙ2

−TeLgA(r)ṙ2
)]∣∣∣∣

q0

, (24)

gives the average velocity vector achieved by infinitesimally flowing along the vector fields
defined by ṙ1, ṙ2, −ṙ1, and −ṙ2 in order, i.e., infinitesimally oscillating the shape around an
initial configuration q0.6

The structure of the configuration space gives the Lie bracket in (24) a natural second
representation (as derived in Sect. D),

(
0

TeLg0

(
−dA(r0) +

[
TeLg−10 g

A1(r0), TeLg−10 g
A2(r0)

])
)

(25)

6 Although we use coordinates here, the results hold for any selection of independent ṙ1 and ṙ2
vectors and so we do not incur any loss of generality.
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where Ai is the ith column of A and dA is its exterior derivative with respect to ṙ1 and ṙ2.
Note that in the Lie bracket in (24), A varies with r, but that in the Lie bracket term in (25),
it is held to its value at r0. In subsequent discussion, we will refer to this latter form as the
local Lie bracket. The top half of (25) is null, as a cyclic motion in B by definition causes
no net change in those coordinates. In the bottom half, the exterior derivative and local Lie
bracket terms respectively represent how the system dynamics change with the shape and
with motion through the position space, in a blockwise application of (C.4) to (24)

We can simplify the rather ungainly expressions in (24) and (25) by drawing on the Lie
group structure of the position space: First, we focus our attention only on the position-space
component in the lower half of the equation. Second, we set the origin of the space at the
current location and orientation of the system (i.e., taking g0 = e), such that (24) gives
the averaged velocity in the body frame of the system, thereby eliminating the TeLg0 term.
Finally, we note that as A1 and A2 are both elements of TeG, they are elements of g, and
we can use the special definition for a Lie bracket of Lie algebra elements in (C.5) to make
the lifted actions inside the Lie bracket implicit, as described in §C.4. These three changes
reduce the lower halves of (24) and (25) to

[
A(r)ṙ1, A(r)ṙ2

]∣∣∣
r0
=
(−dA+

[
A1,A2

])
(r0) (26)

= DA(r0), (27)

in which the right-hand expression is the local curvature of the connection at r0 [8]. An
expanded treatment of this derivation is given in the Appendix.

The local curvature DA is the projection (Sect. C.3) of the curvature, or covariant ex-
terior derivative (Sect. B.6), of the full connection one-form A into the space of allowable
velocities. The −dA component measures the intrinsic change in the connection across the
shape space; the [A1,A2] component corresponds to the Christoffel symbols that capture
the extrinsic changes in the connection as the space of allowable velocities rotates with the
system body frame.

4.2 The body velocity integral (BVI) and the corrected body velocity integral
(cBVI)

For larger-amplitude (i.e., non-infinitesimal) gaits, Radford and Burdick [35] have shown
that the exponential coordinates z(φ) for the net displacement over a gait, φ(T ), can be
approximated as

z(φ) =

∫∫

φa

−dA+ [A1,A2] dr1 dr2 + higher-order terms, (28)

where φa is the oriented region of the shape space B enclosed by φ, and the two integrands
sum to the right-hand side of (26). The expression in (28) is of an especially useful form,
as the first two terms are both area integrals over the region of the shape space enclosed
by the gait and the integrands can be obtained directly from the local connection. Plotting
either the first integrand [10,28] or the sum of the two integrands [8,21], provides a visual
representation of the displacements that different gaits produce, based on the values of the
integrands in areas the gaits enclose.

This notion plays a key role in the results of this paper, but before we examine it in more
depth, we make an aside to supply some insight as to the form of (28). In previous works, this
equation has only been presented as resulting from the direct application of calculus to the
Magnus expansion for a Lie group [36], but examining the components individually provides
strong intuition as to their provenance and links them directly to the nonconservativity and
noncommutativity of the system dynamics.
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Fig. 3. (a) An example gait image-family for the kinematic snake, overlaid on the system’s connection
vector fields and curvature functions. The exterior derivative measures the nonconservativity of the
local connection over the shape space, while the local Lie bracket measures its noncommutativity. Note
x component of dA is positive definite, the y component of [A1,A2] is sign-definite in each half of
the shape space with a significant non-zero value, and that the θ component of dA has symmetric
positive and negative regions in the area enclosed by the gaits. (b) BVI, cBVI, and displacements for
the kinematic snake gaits in the image-family depicted in Fig. 3(a). (c) The intermediate motions of
the system over the two gaits from the image-family whose displacements form the endpoints of the
arc in (b).

To ground this discussion, we refer to the example kinematic snake gaits overlayed on
the connection vector fields and their derivatives in Fig. 3(a). As discussed in [10,11], the
counterclockwise circular path through the shape space in Fig. 3(a) corresponds to an image-
family of gaits (one gait per starting point on the curve), for which the resulting locus of
displacements is the arc in Fig. 3(b), with zero net rotation over any of the gaits. Note that for
zero net rotation (i.e. zθ = 0), the exponential map in (6) is an identity map, and that for this
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example, the zx and zy components of the exponential coordinates thus correspond directly
to the x and y components of the displacement.

4.2.1 Body velocity integral

Previously, we have shown [9–11] that the first term of the integral in (28) forms the body
velocity integral (BVI), ζ, of the system over φ. The BVI describes the net “forward minus
backward” motion of the system over the gait in each body direction,

ζ(T ) =

∫ T
0

ξ(t) dt = −
∫

φ

A(r) dr = −
∫∫

φa

dA dr1 dr2, (29)

where the last equality is given by Stokes’ theorem. The BVI can equivalently be interpreted
as a quantity for which ζ(T )/T is the time-averaged body velocity experienced by the system
over the gait φ, making exp ζ(T ) a first-order approximation of g(T ), and ζ(T ) thus a first-
order approximation of the exponential coordinates z(T ) of the net displacement over the
gait.

All the gaits in an image-family enclose identical regions of the shape space, and thus
have the same BVI. By plotting the exterior derivative of the local connection, as in the
second column of Fig. 3(a), we gain a visual representation of this integral. For the example
image-family, the gaits enclose:

1. A positive region of the x exterior derivative function (which is positive-definite outside
of the singularity);

2. A zero region of the lateral function (which is zero everywhere); and
3. Equal positive and negative regions of the rotational function (which is antisymmetric

around the α1 = −α2 line).

These (+, 0, 0) values exponentiate to the point on the x axis in Fig. 3(b), with an orientation
of exp ζθ = ζθ = 0.

The value of the BVI is entirely determined by the change in the local connection over
the enclosed region of the shape space, as measured by the exterior derivative. As the exte-
rior derivative measures how non-closed (Sect. B) the rows of the local connection are, or,
equivalently via the dual formulation, how nonconservative the connection vector fields are,
we take the BVI as the nonconservative contribution to the displacement over the gait in our
subsequent discussion.

4.2.2 Corrected body velocity integral

In abelian position spaces, exponentiating the average body velocity is sufficient to find the
net displacement [8], and z = ζ. Because of the semi-direct product rules discussed in
Sect. A.4, this principle holds for the θ component of SE(2) [8], and gaits can easily be
selected for the net orientation change they produce by locating them in sign-definite or sign-
balanced regions [28]. The group SE(2) as a whole, however, is non-abelian, and the net
displacement depends on the order in which the system moves forward, turns, and moves
backward during the gait. Figure 3(b) illustrates the effect of this property on the example
gaits, in that the BVI does not capture any of the lateral motion experienced by the system
as a result of the intermediate turning motion apparent in Fig. 3(c). Including the second in-
tegral term in (28) (the local Lie bracket) incorporates some of the ordering information to
correct for this deficiency. Specifically, it corresponds to the cyclic ordering of the translation
and rotation motions in the gait, and thus encodes the average effects of turning on gaits in a
given image-family.
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In the example image-family, this cyclic ordering ensures that at least one of two con-
ditions holds: either clockwise rotation precedes positive longitudinal (forward) translation,
or counterclockwise rotation precedes negative longitudinal (backward) translation. Each of
these conditions results in the system accruing a −y displacement in a manner similar to
parallel parking, the magnitude of which is approximated by the second integral in (28). The
integrand of this expression is plotted in the third column of Fig. 3(a). Note that the x and
θ components of the local Lie bracket term (calculated according to (7)) are zero; x because
Ay = 0, and θ as an inherent property of SE(2) systems.

In contrast to the BVI, the local Lie bracket is entirely determined by the noncommuta-
tivity of the columns ofA (which are vectors in the position space) at each point in the shape
space, and is unaffected by any variation in the local connection. We therefore will refer to
the area integral of the local Lie bracket as the primary noncommutative contribution to the
displacement over a gait.

The sum of the exterior derivative and local lie bracket integrals features heavily in the
averaging locomotion literature, most notably in [8,21], which developed motion planning
techniques based on plots of the combined integrands similar to those in the fourth column of
Fig. 3(a). This quantity, however, has yet to be explicitly named except as an approximation
to the exponential coordinates of the net displacement [8]. In accordance with the physical
intuition outlined above, we now identify it as the corrected body velocity integral (cBVI) ζ̄.
As with the original BVI, as an area integral over the enclosed area, the cBVI is the same for
all gaits in an image family.

4.2.3 Higher-order terms

The cBVI accounts for the two most significant terms in (28). To close out our discussion of
the physical interpretation of this equation, we now turn to the higher-order terms that
cause the displacements over the gaits in an image-family to form a distributed locus, rather
than being at a single point. These higher-order terms capture the linearization error inher-
ent in expanding the local Lie bracket to non-infinitesimal values and come from two main
sources. First, each gait in the image-family starts at a different point in the cycle, so the spe-
cific order in which the system translates and turns is unique to each gait. Even though the
cyclic order is the same for all the gaits, this change of start point can have a significant effect
on the resulting displacement, such as that illustrated in Fig. 3(c) for two gaits chosen from
the example image-family. Here, φ1 moves the system forward at zero angle and backward
with positive θ, while φ2 moves the system backward at zero angle and forward with negative
θ. As noted previously, both these patterns result in a net −y displacement, but because the
system moves further during the forward section of the gait than the backward section, φ2
moves the system further in the −y direction. The remaining gaits in the image family fall
between the two selected motions, and fill in the arced displacement locus in Fig. 3(b).

Second, the magnitude of displacement for the gaits (which, for zero net rotation is the
same across all gaits in the family [11]) can vary significantly from that of the cBVI. Both
this error and the spread of the displacement locus can be viewed as linearization error in
the Lie bracket, originating in small angle approximations for body-frame rotation during a
gait. The spread error (orthogonal to the direction of motion) grows more quickly than the
magnitude error (parallel to the direction of motion), much in the same way that a pendulum
exhibits more side-to-side movement than vertical motion while swinging at small to moder-
ate amplitudes.

As with the local Lie bracket, the higher-order terms arise as a consequence of the non-
commutativity of the position space. The changes in the local connection across the shape
space do influence these terms, but they only appear for non-abelian position spaces, and so
we refer to them as the secondary noncommutative contribution to the displacement. While
this contribution is not directly calculable from the local Lie bracket, the bracket (as a mea-
sure of noncommutativity) does provide an indication of its magnitude.
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5 Minimum perturbation coordinates

Recently, we have shown that the span of the displacement locus and its distance from the
cBVI (i.e. the magnitudes of the local Lie bracket and the higher-order terms) both depend
strongly on the choice of coordinates used to describe the system [9], and that it is possible
to optimize this choice of coordinates to minimize these two quantities [10,11], making the
cBVI an accurate predictor of the displacement over non-infinitesimal gaits and removing
the dependence on initial phase within the gait. In those works, we attributed the benefit of
working in the new coordinates to having found a body frame for the system that rotated very
little during locomotion, with the result that integrating velocities in the body frame or world
frame was effectively equivalent. Using our notions of nonconservative and noncommutative
contributions to locomotion, we can now extend this physical intuition into a differential
geometric formulation, placing a firm theoretical foundation beneath these prior results.

5.1 Coordinate definition

The optimal coordinates identified in [10,11] are minimum-perturbation coordinates, in that
they are the choice of body frame whose position and orientation moves the least in response
to changes in the system shape, as measured by the norm of the local connection (in its role
as the Jacobian from inputs to outputs). This choice of coordinates has two effects: First, it
allows us to isolate the “true” motion of the system as a whole. Second, by reducing motion
in the θ direction, we minimize the influence of the noncommutative terms in the equations
of motion.

The motion of the body frame in response to shape changes is encoded in the local con-
nection. At a given configuration, the natural norms for measuring this motion are the magni-
tudes of the velocity vectors produced in the translational and rotational subspaces of SE(2)
by the local connection,7

‖A(r)‖2xy =
∑
i

(
(Axi (r))

2 + (Ayi (r))
2
)

(30a)

‖A(r)‖2θ =
∑
i

(
(Aθi (r))

2
)
. (30b)

Integrating8 these norms over a region of interest in the shape space, B ⊂ B, as

Dj =

∫

B
‖A‖2j dB, (31)

finds the average scale of motion produced by changing shape within this region, allowing di-
rect comparison between the local connections corresponding to different coordinate systems.
Using the squared norms, rather than the norms themselves, gives the metric an energy-like
aspect and means that a coordinate choice scores better (lower) if it spreads the magnitude of
the local connection evenly over the region of interest, rather than concentrating it in a given
region.

7 For simplicity of notation, we assume here that unit infinitesimal changes in the shape variables
are comparable inputs at different shapes. If a different metric (such as the energy dissipation metric
in [37]) is preferable, it can be incorporated into these norms without loss of generality.

8 If a metric is chosen for the norms in (30), it should also be incorporated into this integration; some
applications may additionally suggest the incorporation of a second metric to weight the importance of
different configurations, such as the arctangent scaling we discuss in [11] that de-emphasizes regions
near kinematic singularities.
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Fig. 4. An original, known-valid body frame, and a new frame
displaced by that frame by β.

As described in [10,11], the minimum perturbation coordinates correspond to the solution
of a modified Hodge-Helmholtz decomposition (Sect. B.5) of the local connection calculated
in an initial, arbitrary choice of coordinates. This decomposition is predicated on the prop-
erty that any new set of position coordinates defines a new body frame with a relative position
β ∈ SE(2) with respect to the original body frame, as illustrated in Fig. 4. Combined with
the constitutive requirement that for any valid set of generalized coordinates, β is solely a
function of the shape r [10,11], this leads to a general formulation for the local connection
in new coordinates,

−Anew(r) = Tβ(r)Lβ(r)−1
(− TeRβ(r)A(r) + dβ(r)

)
, (32)

where Tβ(r)Rβ(r)−1 finds the motion of the new body frame induced by the motion of the
original body frame, dβ(r) adds its motion relative to the original frame, and Tβ(r)Lβ(r)−1
changes the coordinates of these velocities from the original to new frames. As neither
TβLβ−1 (whose structure follows that in (2)) nor Tβ(r)Rβ(r)−1 (from (5)) affects the θ row
of the local connection, the integrated norm for that row in the new coordinates is

Dθ =

∫

B
‖−Aθ + dβθ‖2 dB. (33)

The structure of equation (33) parallels that of (B.5), leading to our fundamental result
in [10,11]: The orientation component of the minimum perturbation coordinates is that for
which dβθ is the curl-free component of −Aθ. Applying the Hodge-Helmholtz decomposi-
tion to this one-form thus produces the coordinate transform that optimally minimizes rota-
tion of the new body frame, leaving −Aθnew as its divergence-free component.

Finding the optimal xy coordinates that minimize translation is somewhat complicated by
the cross-product term contributed by the right lifted action, but is essentially similar in prin-
ciple. Expanding the right lifted action in (32),9 the integrated norm of the local connection
becomes

Dxy =

∫∫

B
‖−Ax + dβx + βyAθ‖2 + ‖−Ay + dβy − βxAθ‖2 dB, (34)

for which βx and βy must be solved simultaneously, and in which Ax and Ay are in the
original coordinates. We present a finite-element approach to solving both this decomposition
and the standard Hodge-Helmholtz decomposition in [11].

For serial-chain systems, such as the kinematic and floating snake examples here, the
optimal coordinates are roughly the position of the center of mass and the mean orientation
of the links, with shape-dependent weightings of different links to account for nonlinearities

9 Left lifted actions on SE(2) rotate vectors without changing their magnitude, so the left action
in (32) can be ignored when constructing the magnitude expression in (34).
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Fig. 5. Configuration of a three-link system with θ=0 in the original and minimum perturbation
coordinates.

(a) Example gait overlaid
on the original −Aθ for
the floating snake.

(b) Example gait overlaid
on the optimized −Aθ for
the floating snake.
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(c) Time history of the original
and optimized orientations dur-
ing the example gait.

Fig. 6. Optimizing the definition of θ for the floating snake strips out the gradient component fromAθ ,
leaving only the portion that actively contributes to net rotation over a gait. For the example gait, this
means that the optimized orientation changes monotonically towards its final value, without the large
“wind up” and “power stroke” seen in the original orientation.

in the system constraints. Figure 5 compares the zero-orientation configuration for both the
original (middle-link) coordinates and the optimized coordinates in a representative sampling
of shapes.

5.2 Integrating in minimum-perturbation coordinates

Changing body frames naturally does not alter the physical motion of a system, but it does
change how this motion is represented. We have just seen (in Sect. 5.1) how this affects in-
finitesimal motion via the transformation of the local connection. More directly relevant to
locomotion analysis is how the representation of the integrated motion is modified.

As we note above, the first effect of the new coordinates is to more closely track the bulk
motion of the system, with the new coordinates discarding extraneous motion that is canceled
out over full gait cycles. A good example of this principle is the rotation of the three-link float-
ing snake over the reorientation gait in Fig. 6, where the change in coordinates subtracts out
the overall (+α1,−α2) trend of −Aθ, leaving only the two true circulations [11]. Removing
the conservative component means that only the net contribution of the shape change to the
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Fig. 7. Connection vector fields, curvature functions, BVI, cBVI, and displacements for the kinematic
snake gaits in the image-family depicted in Fig. 3(a), as calculated in the minimum perturbation co-
ordinates. (a) The exterior derivative measures the nonconservativity of the local connection over the
shape space, while the local Lie bracket measures its noncommutativity. (b) The BVI and cBVI are
now much closer and the displacement locus has effectively collapsed to a point collocated with ζ.
(c) The intermediate motions the system over the two gaits from the image-family whose displace-
ments form the endpoints of the arc in (b). The gaits now have almost-identical endpoints, and the
change to a center-of-mass-like reference position has straightened the trajectories and removed the
sharp cusps.

displacement is counted, clearly showing that the system monotonically approaches its final
orientation. In the original coordinates, this trend is masked by the much larger oscillation of
the middle link. The second, and more significant, effect of the new coordinates is that min-
imizing Aθ–and thus the θ terms in (7)–also minimizes the noncommutative terms in (28).
This phenomenon is illustrated for the three-link kinematic snake in Fig. 7(a), in which the
change to minimum-perturbation coordinates has effectively nullified Aθ in the second and
fourth quadrants. In these regions, [A1,A2]

y has been reduced by two orders of magnitude



3160 The European Physical Journal Special Topics

Fig. 8. The example gaits from Figs. 3(c) and 7(c), plotted with the orientation θ in the third dimension.

from its values in the original coordinates, while [A1,A2]
x remains an insignificant fraction

of dA. The net effect of these two properties is that away from the kinematic singularities at
α1 = α2, the local curvature ofA is approximately equal to its exterior derivative,

−dA+ [A1,A2] ≈ −dA, (35)

and thus that the BVI and cBVI are approximately equal for gaits in these regions, as shown
in Fig. 7(b). This equivalence was implicitly present in our earlier work, where we used the
BVI rather than the cBVI, but the observations above give it a more solid foundation.

The higher-order terms in (28) have, like the local Lie bracket, noncommutative origins
(and partly derive from the error accompanying the linearization inherent in the Lie bracket);
they are thus also minimized by the change in coordinates, and go to zero more quickly than
the local Lie bracket. As such, the exponential coordinates of the net displacement over a gait
approach its (c)BVI,

z(φ) ≈
(∫∫

φa

−dA dr1 dr2 +

∫∫

φa

[A1,A2] dr1 dr2

)
≈
∫∫

φa

−dA dr1 dr2. (36)

Critically, the disappearance in (36) of the higher-order terms means that the net displacement
is (approximately) only a function of the area enclosed by the gait and no longer depends on
the starting point. The net displacement is thus shared across all gaits in an image-family, as
illustrated in Fig. 7(c) for the same pair of gaits as in Fig. 3(c), and the displacement locus
for the image family effectively collapses into a point, as shown in Fig. 7(b).

5.3 The geometry of noncommutativity

Earlier, we provided a computational interpretation of the effect of working in minimum per-
turbation coordinates–that reducing the position velocity of the system, and in particular the
rotational velocity, removes the noncommutative contributions to (28) by sending the local
Lie bracket in (7) to zero. An alternative, geometric interpretation gives additional insight
into this process and reconciles our results with the accepted notion that displacement should
only coincide with the area integral of dA in abelian position spaces [8].

In Figs. 3(c) and 7(c), we plotted only the x and y trajectories of the system over the
sample gaits, and noted the differences in smoothness and endpoint convergence between the
two coordinate representations. If we include the θ components of these trajectories, as in
Fig. 8, a third difference appears: under the original coordinates, the system makes signif-
icant excursions through the SO(2) component of the position space, but in the optimized
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Fig. 9. The south-pointing chariot’s pointer counter-rotates the main body by an angle βp = −θ, such
that it maintains a constant angle with respect to the global coordinates.

coordinates it remains within a small neighborhood of the R2 plane in which it starts. As R2

is an abelian space, the system can be approximated as commutative.
Formally, the restriction to R2 corresponds to how the optimized coordinates affect the

position elements of the system’s constraint distribution (§C.2). At each configuration, the
distributions for our locomoting systems span TrB (the shape space’s tangent space), plus
a two-dimensional subspace of TgG (the position space’s tangent space). The position com-
ponent DG of the distribution is given by the columns of the local connection and takes the
form

TgLg−1DG(g, r) =
(
A1(r),A2(r)

) ∈ TeG× TeG, (37)

i.e., is independent of the position when expressed in the body frame and is defined by the
columns of the local connection. Selecting our coordinates to minimize the θ row of A thus
aligns the constraint distribution closely with the R2 subspace, giving the system no oppor-
tunity to incur noncommutative effects by moving in the SO(2) subspace; minimizing the x
and y rows keeps the error generated by these excursions to a minimum.

This geometric argument can also be interpreted in terms of the relationship between
the Lie bracket in (26) and the Christoffel symbols in the curvature of the connection, as dis-
cussed in Sect. 4.1. The Christoffel symbols correspond to the rotation of the horizontal space
as the body frame rotates in response to shape changes; under a change of coordinates that
minimizes body rotations, the information they contain is shifted into the exterior derivative.

5.4 The South-pointing chariot

The ability of the minimum-perturbation coordinates for the kinematic snake to almost elim-
inate Aθ and thus almost align the constraint distribution with R2 raises the question as to
whether it is ever possible to completely induce these effects. Returning to (33) suggests an
answer to this question: if−Aθ for a system is closed (i.e., conservative), then it can be com-
pletely nullified through a change of orientation βθ for which dβθ = Aθ.

In [11], we observed thatAθ for the differential-drive car is constant (and therefore con-
servative) and calculated the change of coordinates that eliminates the θ row of the local
connection. The new body frame we found coincides with the pointer on a south-pointing
chariot [38]. This system is a two-wheeled vehicle topped by a horizontally-rotating pointer,
synchronized to the wheels by a gear train. When the gear ratios are set correctly, (encoding
the change of orientation function βθ = α1 − α2), the pointer exactly counter-rotates the
body of the cart, thus maintaining its orientation with respect to the world as shown in Fig. 9.
Chinese legend holds that such a device was used as a compass for coordinating military
maneuvers prior to the discovery of magnetic needles, though dead-reckoning error would
make this impractical and it is more likely that that the historical examples discovered were
mechanical or mathematical curiosities [38].
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Differential-drive car

South-pointing chariot

−DA =
[
A1,A2

]

x y

−DA = −dA

Fig. 10. The constraint curvature DA for the differential-drive car, shown for both the original co-
ordinates (top row) and south-pointing chariot coordinates (bottom row), and broken into x and y
components (left and right). In the original coordinates, the constraint curvature appears as a constant
local Lie bracket whose only non-zero component is [A1,A2]

y = −2. In the south-pointing chariot
coordinates,DA is equal to a shape-varying exterior derivative function that is non-zero in both x and
y components, but has a constant magnitude equal to the magnitude of the Lie bracket from the original
representation, ‖dAxy‖ = 2.

Considering the differential-drive vehicle in the south-pointing chariot frame highlights
some interesting properties of the system. First, it emphasizes the existence of a holonomic
constraint between the system orientation and the wheel angles: for any given initial combi-
nation of θ, α1, and α2, the orientation is a function of the wheel angles. Mathematically, this
divides the five-dimensional configuration space of the vehicle into a set of non-intersecting
four-dimensional subspaces (known as foliations), each corresponding to a different orien-
tation when α1 = α2 = 0. In the standard coordinates with the body frame locked to the
vehicle chassis, these foliations are hard to visualize, but in the south-pointing chariot coor-
dinates, each foliation corresponds to the full shape space combined with a single R2 slice of
the SE(2) position space.

A second effect of working in the south-pointing chariot coordinates is that they em-
phasize the benefit of encoding the system nonholonomy as nonconservativity rather than
as noncommutativity. In the original coordinates, the exterior derivative of the constraints is
zero and the constraint curvature reduces to the local Lie bracket, −DA = [A1,A2], while
in the new coordinates the local Lie bracket is zero and the constraint curvature is equal to
the exterior derivative, DA = dA. These two representations are plotted in Fig. 10. The
magnitude of the constraint curvature is constant and equal across the two parameterizations
with ‖DAxy‖ = 2, confirming that the curvature at each point is a fundamental property
of the constraints, rather than of the parameterization. The area integrals of these two rep-
resentations are, however, markedly different. The lack of variation of DA in the original
coordinates means that its area integral always grows monotonically with the enclosed area,
whereas separately integrating the x and y components of dA incorporates the effects of
placing a gait in different regions of the shape space. Fundamentally, this reflects that the
local Lie bracket is a linearization of the system’s nonholonomy with respect to the position
space, while the exterior derivative is an exact representation of the nonholonomy with re-
spect to the shape space. Choosing coordinates that force the nonholonomy into the exterior
derivative thus provides a more exact representation of the system dynamics.
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6 Conclusions

Separating nonholonomic effects into their nonconservative and noncommutative compo-
nents highlights the role of coordinate choice in geometric analysis of locomoting systems.
The nonholonomy is characterized by the curvature of the constraints, DA. As befits a
differential-geometric construct, this curvature is independent of the coordinates in which
it is expressed, but its components dA, representing the nonconservativity of the constraints
over the shape space, and [A1,A2], representing their noncommutativity with respect to the
position space, are strongly coordinate-dependent. Choosing coordinates that keep the sys-
tem in a relatively commutative region of the position space concentrates the curvature in the
conservative component; as nonconservative effects can be added linearly, this allows for the
generalization of differential-geometric results to macroscopic motions in a manner unavail-
able when the nonholonomy is heavily noncommutative.

More broadly, the coordinate optimization illustrates limits on the differential geometric
notion of coordinate invariance. Conventional wisdom in this field holds that the parame-
terization selected for a system will at most affect the convenience and tractability of its
equations of motion, and that the results of calculations in one parameterization can be trans-
ferred to another by a simple change of coordinates. In contrast, we have examined two ways
in which the coordinates play a more significant role. First, the accuracy of approximations,
such as the truncated series in (28) can be coordinate-dependent, even when the exact compu-
tations are coordinate-invariant. Second, good coordinate choices can reveal symmetries or
near symmetries in the system dynamics that are not apparent in arbitrary parameterizations,
such as the collapse of the systems’ gait displacement loci.

Looking ahead, we aim to extend both the fundamental theory at hand and its applica-
tions. As a first step towards both of these goals, we have begun combining the constraint cur-
vatures described here with distance metrics on the shape space to evaluate gait efficiencies
as well as displacements [37]. We are also considering the the nature of optimal coordinates
for three-dimensional translation and rotation, and for systems in new physical regimes, such
as the sand-swimmer in [30].

With specific regards to three-dimensional translation and rotation, the general formulas
we have provided here apply to fiber bundles built on Lie groups, and so transfer directly to
systems on SE(3). Most importantly for the extension of our results, these formulas include
approximately integrating the reconstruction equation by taking an area integral of DA as
in (28) and the fundamentally bilinear relationship between the norm of the connection and
the Lie bracket which means that finding a minimum-perturbation body frame drives the
system towards commutativity. To fully bring these results into three-dimensional motion,
we chiefly need to introduce an appropriate objective function of the form in (34) for three-
dimensional rotation, which we have derived for small angles in [39] and believe we can
build on further.

Appendices: Concepts in differential geometry

The discussion in Sects. 4–5 rests on a body of differential geometry and geometric mechan-
ics. In addition to the works cited in Sect. 2, several textbooks [7,40] provide an extensive
overview of this subject. As an aid to the reader, we have collected a brief survey of the as-
pects of this material that bear most strongly on our results. This survey emphasizes general
intuition over formal presentation; in particular we assume that the mathematical structures
are defined over smooth, orientable spaces.
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A Spaces and groups

The dynamics of our systems are heavily influenced by the structures of their configuration
spaces, which take the form of manifolds and have group structure. Key notions for describ-
ing these spaces are Lie groups, semi-direct product groups, and fiber bundles:

A.1 Manifolds and tangent spaces

Manifolds are differentiable, locally Euclidean spaces that may have more complicated global
structure. For example, a circle is locally like a line, but connects back to itself. Each point
q in a manifold Q has an associated tangent space, TqQ, which contains vectors originating
at q, such as configuration velocities q̇. Continuing with the circle analogy, the velocity of
a point moving around a circle is a vector originating at the current configuration and lying
tangent to the circle; the set of all such vectors forms a line tangent to the circle. A manifold’s
tangent bundle TQ is the collection of its tangent spaces, and a vector field is the assignment
of a q̇ vector to each TqQ in TQ (or a subset of it corresponding to a region of Q).

A.2 Lie groups

A Lie group G is a manifold with group structure–i.e., in which each point has a dual inter-
pretation as a transformation that applies to other points in the manifold. For example, the
positive real numbers form a one-dimensional manifold, and multiplying any two numbers
from this set produces a number that is also within the manifold. In standard notation, the
group product of the two elements, g, h ∈ G is hg ∈ G and represents g transformed by h; if
the group operation is noncommutative (e.g., matrix multiplication), this operation is specifi-
cally the left group action Lh(g), and the right transformation of g by h isRh(g) = gh.10 The
identity element of the group, e ∈ G, leaves the element it acts on unchanged, eg = g = ge,
and corresponds to the origin of the manifold.

As group actions, elements h ∈ G also define left and right lifted actions, TgLh =
∂(hg)/∂g and TgRh = ∂(gh)/∂g, which map vectors in TgG to their equivalent vectors
(encoding the same infinitesimal group action) in ThgG or TghG. For example, in the mul-
tiplicative group of real numbers the lifted actions scale velocities by the same factor as the
group action, TgLh = TgRh = h; velocities on this group are therefore group-equivalent if
they encode the same proportional rate of change in the system’s configuration.

Two lifted actions that play a particularly important part of our analysis are TgLg−1 ,
which maps vectors into TeG, the tangent space at the identity/origin, and TeLg =
(TgLg−1)

−1, which maps elements of TeG into TgG. The tangent space at the identity ele-
ment, TeG, has a privileged role in Lie group analysis, and corresponds to g, the Lie algebra
of the group. In this paper, we use elements of the Lie algebra in two ways. First, mapping
vectors from different tangent spaces into a common space (TeG) allows them to be added
and subtracted as a well-defined operation. Second, vectors z ∈ g can be mapped to elements
of G via the exponential map [7], which flows the system with velocity TeLgz for one unit
of time.

A.3 Lifted actions on SE(2)

In Sect. 3.1.2, we make use of lifted actions on SE(2) to relate world, body, and spatial veloc-
ities. As an aid to the reader, we here include the specific calculations for their expressions:

10 Note that hg and gh are also respectively the right and left actions of g on h.
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Using the notation that group elements g, h ∈ G have coordinate expressions g =
(x, y, θ) and h = (u, v, β), they compose as

hg = Lh(g) =

⎛
⎝
x cosβ − y sinβ + u
x sinβ + y cosβ + v

θ + β

⎞
⎠ (A.1)

and

gh = Rh(g) =

⎛
⎝
x+ u cos θ − v sin θ
y + u sin θ + v cos θ

θ + β

⎞
⎠ . (A.2)

The lifted actions are the Jacobians of these functions, found by taking the derivatives of the
expressions in (A.1) and (A.2) with respect to the coordinates of g,

TgLh =
∂(hg)

∂g
(A.3)

=

⎡
⎢⎣
∂(x cosβ−y sinβ+u)

∂x
∂(x cos β−y sin β+u)

∂y
∂(x cosβ−y sinβ+u)

∂θ
∂(x sin β+y cos β+v)

∂x
∂(x sinβ+y cos β+v)

∂y
∂(x sinβ+y cos β+v)

∂θ
∂(θ+β)
∂x

∂(θ+β)
∂y

∂(θ+β)
∂θ

⎤
⎥⎦ (A.4)

=

⎡
⎣
cosβ − sinβ 0
sinβ cosβ 0
0 0 1

⎤
⎦ (A.5)

and

TgRh =
∂(gh)

∂g
(A.6)

=

⎡
⎢⎣
∂(x+u cos θ−v sin θ)

∂x
∂(x+u cos θ−v sin θ)

∂y
∂(x+u cos θ−v sin θ)

∂θ
∂(y+u sin θ+v cos θ)

∂x
∂(y+u sin θ+v cos θ)

∂y
∂(y+u sin θ+v cos θ)

∂θ
∂(θ+β)
∂x

∂(θ+β)
∂y

∂(θ+β)
∂θ

⎤
⎥⎦ (A.7)

=

⎡
⎣
1 0 −(u sin θ + v cos θ)
0 1 u cos θ − v sin θ
0 0 1

⎤
⎦ . (A.8)

The specific forms used in Sect. 3.1.2 can then be found by evaluating (A.5) and (A.8) for
the appropriate values of g and h.

A.4 Direct and semi-direct product groups

Groups can be combined to form larger groups. Often, the combination of two groups A and
B into a new group C is taken to mean the creation of a direct product group C = A × B.
This means that in the new group operation, components that started in A or B only affect
other components that started as elements of the same group, i.e., c1c2 = (a1a2, b1b2). Direct
products preserve properties such as being abelian (commutative)–ifA orB has this property,
then so does the corresponding section of C.

In a semi-direct product group [8], D = A�B, elements of A act not only on each
other, but also on elements of B. For example, the rotation/translation group that appears in
our kinematics discussion in Sect. 3, SE(2), takes the form d1d2 = (b1(a1b2), a1a2), with
rotations both composing with other rotations and acting on translations. A key aspect of
such groups is that even though they do not possess the full orthogonality of a direct product
group, the A components do preserve their original properties, and thus results that depend
on these properties can be applied to the corresponding elements of D.
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A.5 Fiber bundles

A fiber bundle Q is a space that decomposes locally into a fiber space F and base space
B [7]. The fiber bundles we discuss in this paper are additionally both trivial and principal.
“Trivial” means that the decomposition is the same everywhere in Q, such that we can take
Q = F ×B; “principal” means that the fiber space F has Lie group structure, so we will use
the notation Q = G×B to refer to such bundles.

B Covectors and differential forms

The example systems’ equations of motion are described in terms of covectors and other
differential forms. In our analysis, we apply Stokes’ theorem and the Hodge-Helmholtz de-
composition to these forms and fields to identify their key characteristics:

B.1 Covectors

In vector calculus, directional quantities such as the velocity of a particle or the gradient of
a function are both consiered “vectors.” Differential geometry distinguishes between con-
travariant vectors (generally referred to simply as “vectors”), whose magnitude scales in-
versely with coordinate changes, and covariant vectors (or covectors) whose magnitude
scales proportionally with changes of coordinates. Within this distinction, velocities are
vectors–increasing the length of a unit distance reduces the number of units traveled in a
given time at given speed–and function gradients are covectors–increasing the unit distance
increases the rate at which the function changes per unit traveled. Note that that not all cov-
ectors are explicitly function gradients; as we discuss below, they need only locally represent
the rate of change of a quantity across a space, and that quantity may not be explicitly inte-
grable into a function on the space.

Covectors are elements of cotangent spaces T ∗qQ that are dual to vectors’ tangent spaces,
and covector fields are defined over sections of the cotangent bundle T ∗Q. Vectors and cov-
ectors at a point have a natural product, based on their magnitudes and relative alignment;
in coordinates, the product 〈ω, v〉 of a vector v ∈ TqQ and a covector ω ∈ T ∗qQ is the sum
of the products of their paired indices,

∑
i ωiv

i (i.e., their “dot product”). When the vector
and covector represent velocity and gradient terms, their product is the directional derivative,
measuring the rate of change along the vector of the function associated with the covector.11

The vector-covector product is computationally equivalent to the vector dot product, and
identified with it in treatments where the distinction between vectors and covectors is not
made. In practice, vectors and covectors are often expressed as “column” and “row” vectors
(in a linear algebraic sense), such that their product is the left matrix product of the covector
acting on the vector.

B.2 Visualizing covector fields

Three basic visual representations are available for covector fields, as illustrated in Fig. B.1.
Plane fields [41] depict the covectors as surfaces to which they are locally the gradi-
ent, with the vector-covector product the rate at which a vector climbs or descends its

11 Some sources use a definition of “directional derivative” that normalizes the vector-covector prod-
uct by the magnitude of the velocity. By removing speed from the calculation, this definition better
matches the notion of “directional”, but is less informative as an analytical tool and undefined for a
vector with zero magnitude.
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(a) Plane field (b) Local contours (c) Vector field

Fig. B.1. Three visual representations of the covector field ω(x, y) = (−y, x). All three renderings
illustrate that clockwise vectors have a positive product with this covector field and radial vectors have
a zero product with it, but this property is is most clearly discernible from the vector field representation.

corresponding surface. Local contour [42] plots project these surfaces onto the xy plane,
rendering each plane via a pair of contour lines separated by a fixed z distance. “Vector field”
plots [19] similarly project the surfaces onto the xy plane, but represent them via their gra-
dient vectors. Note that plotting a covector field in this matter does not conflate vectors and
covectors; rather, it makes use of their natural duality when represented in a shared basis [7],
such as that of the page. In particular, it allows us to visually identify the vector-covector
product with the vector dot product 〈ω, v〉 = ‖ω‖‖v‖ cos θ, i.e., the product of the vector and
covector magnitudes and alignment.

Many sources advocate the use of plane field or local contour representations, on the
grounds that they emphasize the gradient-like nature of covectors and minimize confusion
between the vector-covector product and the inner product of two vectors in a shared tan-
gent space. We agree that these plots serve well as pedagogical tools for teaching differential
geometry, but for examining system behavior we find that the vector field representations are
more convenient. In particular, the vector representation conveniently illustrates the addition
operation on one-forms, which plays a key part in our coordinate optimization approach. Fur-
ther, the local contour representation has the disadvantage of requiring a pair of contour lines
infinitely far apart to represent a covector of zero magnitude, whereas in our representation
we would plot this as a zero magnitude vector.

B.3 Differential forms

Covector fields are an example of a broader class of differential geometric constructs, dif-
ferential forms. In general, a differential k-form can be thought of as a position-dependent
operator that linearly maps sets of k vectors in the tangent space at that point to an output.
Unless otherwise specified, the output of a differential form is assumed to be a scalar value,
but other classes of outputs that can be meaningfully added, such as vectors, are also possible.
For the purposes of this paper, we can restrict our attention to the simplest of such structures:
zero-forms, one-forms, and two-forms.

Zero-forms are functions whose outputs depend only on the input position. One-forms are
covector fields; their product depends on both position in the manifold and the orientation and
magnitude of an input vector. Two-forms take in a pair of vectors representing a infinitesimal
parallelogram and return a value based on its orientation and scale (i.e., the projections of the
parallelogram onto each pair of basis vectors). It is often useful to think of differential forms
in terms of their integrals. For instance, one-forms have line integrals along one-dimensional
paths that sum their products with the paths’ tangent vectors. Similarly, two-forms have two-
dimensional surface integrals that intuitively correspond to “fluxes” through the surfaces.
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The exterior derivative dω of a k-form ω measures how components of ω change in di-
rections normal to themselves, and is itself a (k + 1)-form. For the examples we consider in
this paper, which are restricted to k-forms over two-dimensional spaces, the exterior deriva-
tive is intuitively linked to two concepts in vector calculus–gradient and curl. As discussed
above, the gradient of a function (zero-form) is a covector field (one-form). Similarly, the curl
of a vector field (dual to a one-form) corresponds to the exterior derivative of a one-form. In
vector calculus the curl is treated as a vector field in its own right (defined in terms of com-
ponents along basis vectors), rather than as a structure with components along pairs of basis
vectors; this is a convenient artifact of working in three dimensions, where each pair of basis
vectors is uniquely defined by their shared normal vector.

Two important classifications of differential forms are closed and exact. Closed forms
have null exterior derivatives, dω = 0, and exact forms are themselves the exterior deriv-
atives of other forms, ω = dΩ. An especially useful result from differential geometry [7]
is that exact forms are automatically closed, d(dω) = 0, which, in vector calculus terms is
equivalent to saying that the curl of a gradient field is always zero (and thus that gradient
fields are conservative). We will return to this point in our discussion of optimal coordinates.

B.4 Stokes’ theorem

Stokes’ theorem [43] equates the integral of a differential k-form ω along a closed k-
dimensional manifold ∂Ω embedded in a space U to the integral of the exterior derivative
of that k-form over a (k + 1)-dimensional manifold Ω bounded by the original manifold,

∫

∂Ω

ω(u) du =

∫

Ω

dω(u) du. (B.1)

In two dimensions and with ω a one-form, the surface Ω is simply the region of U enclosed
by the closed curve ∂Ω, and (B.1) specializes to the simple area integral

(B.2)

This equation is commonly encountered as “Green’s theorem” in vector calculus, where it is
described as equating a line integral along a closed loop on a vector field with an area integral
of the field’s curl.

B.5 Hodge-Helmholtz decomposition

The fundamental theorem of calculus states that for a one-dimensional function, if we know
dy/dx as a function of x, then we know y(x) up to a constant of integration. Expanding this
principle to higher dimensions leads to the principle that if we know the gradient of a func-
tion, we know the function up to the addition of a scalar, and then to the fundamental theorem
of vector calculus (also known as Helmholtz’s theorem), which states that if we know the curl
of a vector field, we know the vector field up to the addition of a gradient (conservative) field.
In terms of differential forms, these statements are all aspects of a more general theorem that
states that if we know the exterior derivative dω of a form ω, then we know ω up to the addi-
tion of a closed form.

In single-variable calculus, many functions have canonical anti-derivatives, such as∫
cos = sin, to which the constant of integration is added. Similarly, it is often useful to

designate a canonical form Ω as the anti-exterior-derivative of a form ω. This separation is
achieved by the Hodge decomposition [44], referred to as the Helmholtz decomposition in
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vector calculus contexts. The Hodge-Helmholtz decomposition splits a k-form ω into three
components,

ω = dA+ δB + C, (B.3)

where dA is an exact, and therefore closed, k-form (corresponding to a curl-free vector field),
δB is a k-form orthogonal to the set of closed k-forms (a divergence-free field in vector
calculus), and C is a harmonic remainder (satisfying boundary conditions), generally much
smaller than either of the first two components.

Because the exterior derivative is a linear operator and the double-exterior derivative is
always zero, a one-form’s exterior derivative independent of A,

dω = d(dA+ δB + C) = d(δB + C), (B.4)

with d(dA) = 0. In this context we can consider δB+C as the anti-exterior-derivative of dω,
and the set of closed forms dA as the set of constants of integration.

The dA term can also be considered as the projection of ω onto the space of conservative
k-forms. For one-forms, the sum δB + C therefore has the interesting property of being the
smallest one-form with an exterior derivative equal to that of ω,

argmin
dΩ=dω

(
∫ ‖Ω‖2) = ω − dA = δB + C, (B.5)

where the “size” of Ω is its squared norm (steepness) integrated over the domain under con-
sideration. In [10,11], we demonstrated a useful correspondence between this sum (which,
due to the relatively small contribution of C, we refer to as the “divergence free component”
for brevity) and an optimal choice of coordinates for locomotion analysis, and presented a
numerical algorithm for finding it over a finite domain, based on that in [45]. In Sect. 5, we
examine this application more closely, and from a differential geometric standpoint.

B.6 Covariant derivatives

In spaces defined by Cartesian coordinates, the directional derivatives of vector fields and
differential forms are taken as the individual directional derivatives of their components.
This definition inherently makes use of the “parallel” nature of the basis vectors at different
points in these spaces: the difference between two nearby vectors is the difference in their
components. The notion of a directional derivative does not, however, extend cleanly to non-
Cartesian spaces, such as the plane in polar coordinates or the special Euclidean group we
consider below. In these spaces the basis vectors are position-dependent, and the change in
these bases affects the component-wise differentiation of a vector field or form.

Covariant derivatives generalize directional derivatives to such spaces in a way that cap-
tures the changes in the basis vectors. When represented in coordinates, they augment the
directional derivative with a set of Christoffel symbols that act as differential operators on the
vector field or form and encode the rotation and dilation of the basis vectors. These symbols
obey transformation laws that ensure coordinate-independence of the covariant derivative–if
the coordinates change such that a given vector field or form’s directional derivative shrinks,
its Christoffel symbol differentiation grows proportionally, and vice versa. The covariant
derivative can be combined with other forms of differentiation, such as the exterior deriva-
tive, to ensure that they correctly handle changes in the underlying basis vectors.

C Constraints

For the system we are investigating, the equations of motion are dictated by holonomic and
nonholonomic constraints, which together generate a constraint distribution containing the
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allowable directions in which the system can move. The constraints on the locomoting sys-
tems considered here take the form of principal connections on their configuration spaces.
Lie brackets provide a means of examining how these constraints change as the system moves
through its configuration space.

C.1 Holonomic and nonholonomic constraints

Differential geometry offers many categorizations for the constraints on a system’s config-
urations, with the different categories corresponding to tools that can be applied to their
respective systems. In this work, we make use of holonomic and nonholonomic constraints.
Broadly speaking, holonomic constraints restrict a system to a lower-dimensional subspace of
its configuration space (such as the end of a pendulum being constrained to a constant-radius
arc around the pivot), whereas nonholonomic constraints only constrain the instantaneous
velocity (a car’s wheels prevent it from moving sideways, but a parallel-parking maneuver
will let it move in a net lateral direction).

C.2 Constraint distributions

A constraint distribution D is a set of vector fields encoding the directions in which a system
can move through its configuration space without violating its constraints. The distribution
for an unconstrained system with an n-dimensional configuration space contains n indepen-
dent vector fields; each constraint added to the system removes one of these vector fields. In
general, D(q), the set of vectors in the distribution at point q, forms an independent basis at
each q. A point where these fields do not form an independent basis is a type of singularity,
in which the system has “extra” freedom to move in some directions, while losing the ability
to move in others.

C.3 Principal connections

A principal connection A is a constraint distribution on a principal fiber bundle (Sect. A.5)
that is both complementary to the space of pure fiber velocities and symmetric with respect to
group actions on the fiber space [3]. The first property means that the distribution contains as
many independent vector fields as there are dimensions in the base space, and that no vectors
in these fields are aligned purely in the fiber direction. The second property means that the
connection needs only to be defined for a single fiber value (such as the group identity e),
after which it can be generated at any other fiber value via the group’s lifted actions (A.2).

Principal connections are encoded as vector-valued one-forms on the fiber bundle that
output elements of TeG. The kernels (null-spaces) of these one-forms contain the velocities
allowed by the system constraints,

DA(q) = {q̇ ∈ TqQ | A(q) q̇ = 0}. (C.1)

Because this distribution is complementary to the space of pure fiber velocities, vectors in
DA are fully specified by their base-space components: at a configuration q = (g, r), for any
base velocity ṙ ∈ TrB there is a unique fiber velocity ġ ∈ TgG for which the total velocity
q̇ = (ġ, ṙ) satisfies the null-space condition in (C.1) [3]. This attribute allows the connection
to be expressed in a local form as a one-formA that maps from base velocities to their asso-
ciated fiber velocities.

The symmetry in a principal connection means that their local forms can be further re-
duced to depend on only the base variables. For a system whose constraints are symmetric
with respect to left group actions, the relationship between base and fiber velocities is

TgLg−1 ġ = −A(r)ṙ, (C.2)
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where the left-hand side is the left group-equivalent velocity to ġ in TeG, and the negative
sign at right is a longstanding convention in the study of connections [3].

C.4 Lie bracket of vector fields

The Lie bracket [31] of two vector fieldsX and Y measures their rates of change with respect
to each other. For fields defined on an n-dimensional space U , the Lie bracket is a vector field
defined as

[X,Y ] = (∇Y ·X)− (∇X · Y ), (C.3)

or componentwise as

[X,Y ]i =

n∑
j=1

(
xj
∂yi

∂uj
− yj ∂x

i

∂uj

)
= −[Y,X]i. (C.4)

There are several applications of the Lie bracket in the context of control systems, but the
interpretation most germane to the present work is that flowing infinitesimally along X , Y ,
−X , and −Y is equivalent to flowing infinitesimally along [X,Y ].

A special definition of the Lie bracket applies to elements of the Lie algebra g corre-
sponding to a Lie group G. In this case, the Lie bracket of two vectors a, b ∈ g is the Lie
bracket of the two left-invariant vector fields onG generated by applying the left lifted action
to a and b,

[a, b] ≡ [TeLga, TeLgb]
∣∣
g=e

. (C.5)

Note that this class of Lie bracket is a vector-valued two-form: the derivatives from (C.4) are
fully determined here by the group structure, so the bracket takes in a pair of vectors and
bilinearly maps them to an output vector.

D Derivation of the local curvature

The expression for the local curvature of the connection in (26) was presented in [8], based
on earlier work in [14]. To the best of our knowledge, however, the relationship between this
curvature and the Lie bracket in (24) has not been explicitly shown in modern notation. Here,
we offer a derivation linking the two expressions, i.e., showing that

[(
ṙ1

−TeLgA(r)ṙ1
)
,

(
ṙ2

−TeLgA(r)ṙ2
)]∣∣∣∣

q0

=

(
0(−dA+

[
A1,A2

])
(r0)

)
. (D.1)

First, a general Lie bracket in which the vector components can be grouped into two subvec-
tors, i.e., of the form

[q̇1, q̇2] =

[(
ṙ1
ġ1

)
,

(
ṙ2
ġ2

)]
, (D.2)

can be evaluated by applying the Lie bracket formula in (C.4) blockwise to (D.2), producing
the expression

[(
ṙ1
ġ1

)
,

(
ṙ2
ġ2

)]∣∣∣∣
(r0,g0)

=

⎛
⎜⎜⎜⎜⎝

(
∂ṙ2

∂r
ṙ1 − ∂ṙ1

∂r
ṙ2

)
+

(
∂ṙ2

∂g
ġ1 − ∂ṙ1

∂g
ġ2

)

(
∂ġ2

∂r
ṙ1 − ∂ġ1

∂r
ṙ2

)
+

(
∂ġ2

∂g
ġ1 − ∂ġ1

∂g
ġ2

)

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
(r0,g0)

. (D.3)
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Second, for the problem at hand we are considering a pair of vector fields in which the ṙ
vectors are each a unit vector aligned with the chosen basis, and so have components (using
Kronecker delta notation),

ṙji = δij . (D.4)

The position velocities in the vector fields are functions of the shape velocity,

ġi = −TeLgA(r)ṙi = −TeLgAi(r), (D.5)

where the final equality is due to the ith shape velocity serving to select the ith column of the
local connection.

Given these two definitions, the partial derivatives of the shape velocity fields are clearly
zero,

∂ṙi

∂r
= 0 and

∂ṙi

∂g
= 0, (D.6)

as they are constant fields. The position velocity fields’ derivatives with respect to the shape
fields can be found by applying the product rule for differentiation,

−∂ġi
∂r

∣∣∣∣
(r0,g0)

=
∂ TeLgAi(r)

∂r

∣∣∣∣
(r0,g0)

=
∂ TeLg

∂r
Ai(r0) + TeLg0

∂Ai(r)

∂r
, (D.7)

and noting that TeLg is independent of r, so

−∂ġi
∂r

∣∣∣∣
(r0,g0)

= TeLg0
∂Ai(r)

∂r
· (D.8)

Further, each derivative of ġi in the lower-left term of (D.3) is multiplied by the shape velocity
ṙj with i �= j, selecting out the jth derivative and giving these terms the form

−∂ġi
∂r

ṙj

∣∣∣∣
(r0,g0)

= − ∂ġi

∂rj

∣∣∣∣
(r0,g0)

= TeLg0
∂Ai(r)

∂rj
· (D.9)

Differentiating the position velocities with respect to the position space follows the same
pattern,

−∂ġi
∂g

∣∣∣∣
(r0,g0)

=
∂ TeLgAi(r)

∂g

∣∣∣∣
(r0,g0)

=
∂ TeLg

∂g
Ai(r0) + TeLg0

∂Ai(r)

∂g
(D.10)

=
∂ TeLg

∂g
Ai(r0). (D.11)

Inserting the results of (D.6), (D.9), and (D.11) into (D.3) and factoring out a TeLg0 term
from each subexpression in the bottom row reduces the Lie bracket to
[(
ṙ1
ġ1

)
,

(
ṙ2
ġ2

)]∣∣∣∣
(r0,g0)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0

TeLg0

⎛
⎜⎜⎝−

(
∂A2(r)

∂r1
− ∂A1(r)

∂r2

)
+

(
∂ TeLg A2(r0)

∂g
Tg0LgA1(r0)

−∂ TeLg A1(r0)
∂g

Tg0LgA2(r0)

)

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(D.12)
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The left-hand term in this new expression is the exterior derivative of the local connection,

∂A2(r)

∂r1
− ∂A1(r)

∂r2

∣∣∣∣
r0

= dA(r0). (D.13)

Taking g0 = e (placing the origin at the initial position of the system) eliminates the TeLg0
factor applied to the whole row and makes the right-hand term in the new expression

(
∂ TeLg A2(r0)

∂g
TeLgA1(r0)− ∂ TeLg A1(r0)

∂g
TeLgA2(r0)

)
. (D.14)

Using the definition of the Lie bracket in (C.3), this expression is clearly the bracket

[TeLgA1(r0), TeLgA2(r0)] = [A1,A2](r0), (D.15)

where the expression to the right makes use of the simplified notation for Lie brackets on
left-invariant fields given in (C.5).

Finally, combining the expressions in (D.13) and (D.15) provides an equation matching
that in (D.1):

[(
ṙ1

−TeLgA(r)ṙ1
)
,

(
ṙ2

−TeLgA(r)ṙ2
)]∣∣∣∣

q0

=

(
0(−dA+

[
A1,A2

])
(r0)

)
. (D.16)
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