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Abstract. Nonlinear bistable systems have proven to be advantageous
for energy harvesting of random and real ambient vibrations. One sim-
ple way of implementing a bistable transducer is setting a piezoelectric
beam in a post-buckled configuration by axial compression. Besides,
hinged or clamped-clamped type of boundary conditions correspond to
two different post-buckled shape functions. Here we study, through the-
oretical analysis and numerical simulations, the efficiency of a hinged
and clamped-clamped piezoelectric bridge under band-limited random
noise with progressive axial load. Clamped configuration results to
harvest 26% more power than hinged around an optimal axial load
of 0.05%, while, in the intra-well trapped situation, above 0.1%, the
two configurations present no substantial difference. Nevertheless, sim-
ulations confirm the advantage of exploiting inter-well oscillations in
bistable regime.

1 Introduction

In last decade, piezoelectric generators have attracted a growing interest of acad-
emics and industry because of their employ in vibration energy harvesting as well
as in micro- and nano-sensors. The progress in minimization and power consump-
tion of wireless electronics is now reaching the capability of small energy harvesting
systems. In fact, the marriage between zero-power electronics and energy harvesting
systems will enable a vast number of applications of wireless-sensor-network (WSNs),
otherwise impossible without self-powering and maintenance-free capabilities [1,2].
This technological improvement is taking place at various physical levels: materials,
efficient design, components and circuitry [3,4].
In general, resonating vibration energy harvesters (VEHs) work optimally when

the input vibration is tuned to their main frequency, whereas are inefficient far off
this value. On the other hand, real ambient vibrations often present variable power
spectral density and amplitude in time [2]. Therefore, alternative concepts have been
proposed beyond linear spring-mass systems. Some of recent examples are self-tuning
systems [5,6], array of oscillators to covers larger frequency interval [7,8] and multi-
modal oscillators [9,10]. In addition, the exploitation of nonlinear bistable oscillators
have been proposed both for electromagnetic transduction [11,12] and via piezo-
electric generators by the authors of this work [13,14] and [15,16]. In these works,
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Fig. 1. Piezoelectric beam in unbuckled a) clamped-clamped, c) hinged boundary conditions
and b),d) post-buckled configurations with wiring scheme.

a repulsive magnetic force was used to create a Duffing-like potential. However, the
use of magnetic fields to induce bistability can interfere with wireless electronics and
face complex integration of permanent magnets at small scales. Thus, the employ
of bistable piezoelectric buckled beam is more desirable. A theoretical analysis and
experiments of piezoelectric buckled beams (PBBs) was previously presented by the
author of this work [17] for noise energy harvesting. In this regard, other researchers
have studied simply-supported PBBs under harmonic sweeping [18,19]. Buckled piezo-
electric bridge were also successfully proposed for air-flow energy harvesting [20]. The
enhancement in harvesting performance of buckled configurations have been proven in
these works. In particular, these harvesters take advantage from wideband inter-well
and intra-well oscillations.
As a further contribution to the understanding of such devices, here we present

theoretical analysis and numerical simulations of a unimorph PBB focused on the
aspect of different clamping configuration: clamped-clamped (CC) and hinged (HI).
The model parameters of the piezoelectric bridge is based on the experimental test de-
vice of our previous work [17] and tested under band-limited exponentially correlated
vibration noise. The performance comparison is discussed accounting on the sym-
metry of the piezoelectric layer ratio of time constants of mechanical and electrical
branches of the harvester. The electrical and dynamical response have been stud-
ied with variable axial compression ratio in order to distinguish mono- and bi-stable
regimes.

2 Theoretical model

Here we do not aim at giving a complete analysis, which has been already carried on
in [17,21] based on the first order composite plate theory according to Reddy [22].
Nevertheless, we want to investigate the effect of two different boundary conditions of
the beam: clamped-clamped and hinged. A sketch of the piezoelectric buckled beam is
shown in Fig. 1 in (a) clamped-clamped and (b) hinged setting, whereas Fig. 1(c) rep-
resents the post-buckled shape when applying an axial load P . It consists of a support
steel beam that can be sandwiched between two (bimorph) or one (unimorph) piezo-
electric layer, assumed to be polarized only along the z-axis. An additional inertial
mass can be attached onto the mid-point of the beam in order to change the system
inertia. One of the extremes is displaced by an amount ΔL, corresponding to a static
axial force P . The piezoelectric layer of length Lp starts at a distance L1 from the left
end side. The charges are collected by two electrodes along the piezoelectric layer and
short-circuited to a resistive load by wires. The support frame vibrates vertically by
a displacement y, and, the shape function w(x, t) of the beam deflection is in general
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time dependent. For slender beam, the main contribution to the electro-mechanical
coupling is related to the longitudinal strain of the beam, therefore we consider only
the effect of ezx in the stress-charge piezoelectric equations.
Considering only the first mode of the Galerkin expansion, ψ(x), the shape func-

tion can be expressed as w(x, t) = ψ(x)q(t), where q(t) is the midpoint displacement.
By naming V the generated voltage across the electrical load RL, the Lagrangian
L (q, q̇, V ) is:

L (q, q̇, V ) = C ′pV 2

2
− k0qV − 1

2
q2(k2 − k1V )− k3q3 − k4q

4

4

+
1

2
ẏ2(M0 +MB) +

1

2
q̇2(M0 +MBeff ) + ηq̇ẏ (1)

where the overhead dot are time derivatives. The parameters M0, MB , MBeff and η
represent the mid-point additional mass, total beam mass, effective beam mass and
inertia factor respectively; k0, k1, k2, k3 and k4 represent, in order, the piezoelectric
coupling factor, in-plane piezoelectric force factor, linear, nonlinear cubic and quar-
tic stiffness constant respectively. All these parameters are calculated from physical
system characteristics as follows, where the apex are space derivative with respect
to x.

MB = b (nSLphpρp + Lhsρs) , (2)

η =M0 ψ (L/2) + nSLphpρp
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L1
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∫ L
0
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1
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1
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0

(ψ′)2 dx, (6)

k2 =

∫ L
0

D(x) (ψ′′)2 dx− P
∫ L
0

(ψ′)2 dx, (7)

k3 = − 1
2L

∫ L
0

(ψ′)2 dx
∫ L
0

B(x)ψ′′ dx, (8)

k4 =
1

2L2

∫ L
0

A(x)dx

(∫ L
0

(ψ′)2 dx
)2
· (9)

These expressions are valid for piezoelectric layers that are not, in general, symmet-
rically placed with respect the midpoint of the support layer.
The difference between unimorph to bimorph beams and series and parallel con-

figuration depends on the parameters: ns, A,B,D,Np,Mp; where, ns is the number
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of piezoelectric layers (1 for unimorph, 2 for bimorph), A,B,D represent the stiff-
ness of the beam to, respectively, extensional, mixed bending-extensional and bending
stiffness. In a isotropic material they are the first three moments of Young modulus.
Because of symmetry along z-axis, B = 0 for bimorph beams. Np,Mp are the piezo-
electric resultants and depend also on the electrical connection: for bimorph beams
connected in series (parallel) Np = 0 (Mp = 0). Moreover, for first order Galerkin
expansion, the k0 component reduces up to zero as Lp tends to L.
The Euler-Lagrange equations obtained from Eq. (1), in the generalized coordi-

nates of the beam midpoint, result

(M0 +MBEff ) q̈ + cq̇ + k2q + 3k4q
2 + k3q

3 + (k0 − k1q)V = −ηÿ (10)

CpV̇ +
V

RL
= k0q̇ − k1qq̇ (11)

having considered the mechanical dissipation as (cq̇). The vibration source transfers
energy to the system through the inertial force ηÿ.

2.1 Differences between hinged and clamped configuration

The boundary conditions on the shape function w(x, t) depends on the physical con-
nections at the extremes, in particular, w(0) = w(L) = w′(0) = w′(L) = 0 for
clamped and w(0) = w(L) = w′′(0) = w′′(L) = 0 for hinged configuration. Therefore,
considering only the first mode ψ of Galerkin expansion, the shape function takes the
form w(x, t) = ψ(x)q(t) with

ψH = sin
(πx
L

)
, hinged (12)

ψC =
1− cos ( 2πx

L

)
2

, clamped. (13)

From a direct inspection, we expect no differences in terms involving the integral
of (ψ′)2 and only a multiplicative factor close to 1 in terms involving ψ and (ψ′′)2.
In particular k1 and k4 are unaffected, while η and MBeff are always larger in the
hinged system. In reality, these differences are not really significant in presence of the
additional mass M0 as, usually, it dominates over MBeff . In our case M0/MBeff =
4.7. The term k2, which would depend on the kind of support, is modulated by the
external axial force, P . The critical buckling load, beyond which k2 becomes negative,
P has to be larger in clamped configuration [22].
The terms which are significantly dependent on the hinged/clamped state are k3

and k0. The k3 term, present only for unimorph systems, accounts for the preferential
buckling of the beam toward the less stiff side. Depending on the difference between
the Young moduli, it can strongly affects the dynamical behaviour of not-buckled
beams, but in deeply buckled systems it is negligible. More important is the effect on
the first electromechanical coefficient k0 (the second being k1). Note that this means
that for parallel connected bimorph beams which have Mp = 0, there is no practical
difference with the clamping scheme.
On the contrary, for bimorph, series connected systems k1 = 0, and therefore the

coupling of the electrical circuit with the mechanical vibration depends only on k0.
In order to maximize k0, the design of the beam should be different for clamped and
hinged beams: in particular the length of the piezoelectric layers Lp, should be equal
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Table 1. Values of the electromechanical coupling coefficient for bridged beams.

Clamped Hinged
Bimorph Series k0 max if L1 = L/4 and Lp = L/2 k0 max if Lp = L

k1 = 0 k1 = 0
Bimorph Par k0 = 0 k0 = 0

k1 max if Lp = L k1 max if Lp = L
Unimorph k0 max if L1 = L/4 and Lp = L/2 k0 max if Lp = L

k1 max if Lp = L k1 max if Lp = L

Fig. 2. Elastic potential energy of the piezoelectric beam as a function of mid-point dis-
placement for increasing values of axial compression ratio ΔL/L. The potential parameters
have been computed using the data in Table 2.

to the total length L or L/2 respectively for hinged or clamped beams, with k0 taking
the value πb ezx(hs + hp)/L in both cases.
In unimorph beams, in principle, both k0 and k1 can be different from zero at

the same time. Still, holding the previous considerations on k0, in the clamped con-
figuration, it is not possible to maximize both k0 (maximum at Lp = L/2) and
k1 (maximum at Lp = L). Note that in any case in the unimorph beams there is
a higher degree of complexity.
Table 1 summarizes the values taken by the electromechanical parametrs k0 and

k1 for the cases just discussed.

2.2 Potential energy

The potential energy (at short circuit) is represented in Fig. 2 for increasing values
of ΔL/L = 0÷ 0.06. The critical buckling load Pcr corresponds to k2 = 0, hence, by
equating to zero Eq. (7),

Pcr =

∫ L
0

D(x) (ψ′′)2 dx/
∫ L
0

(ψ′)2 dx. (14)

For P ≤ Pcr, k2 ≥ 0 and the potential energy is a quartic with one global minimum
q0 = 0. For P > Pcr, k2 < 0 and the Duffing-like potential has two local minima
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Fig. 3. Oscillation frequency around local minima versus increasing values of the axial load
P corresponding to ΔL/L = 0÷ 0.33%.

q− and q+

q− =
−3k3 −

√
9k23 − 4k2k4
2k4

, q+ =
−3k3 +

√
9k23 − 4k2k4
2k4

. (15)

In the unimorph case, the cubic term k3 is not zero, hence, the potential function
is, in fact, slightly tilted. As the axial load P increases, the beam dynamics spans
from monostable to bistable, depending on the noise amplitude and potential bar-
rier. In particular, for increasing axial load close to critical buckling, the potential
well is flattened and the resonant frequency decreases, which results in softening
effect ; whereas, above the critical buckling load the oscillation frequency around
the two potential minima increases resulting in hardening effect. This effect can be
seen by computing the local oscillation frequency around the equilibrium positions
q− and q+

f− =
1

2π

√
−k2 + 3k3q−
M0 +MBeff

, f+ =
1

2π

√
−k2 − 3k3q+
M0 +MBeff

. (16)

It can be noted that, when the beam is unbuckled we have only one equilibrium
position q0 = q− = q+ = 0, hence, the resulting resonance becomes the one of the

linear oscillator f0 =
√
k2/(M0 +MBeff )/2π. In addition, when the beam is bimorph,

k3 = 0 and the local minima retrieve back to those of symmetric quartic potential as
in [17].
Figure 3 shows the oscillation frequency around q+ as a function of the axial load

calculated by Eq. (16) for both clamped and hinged case. The softening effect is clear
when the compression approaches the critical buckling, whereas the hardening takes
place beyond this value. As expected, the critical buckling load is higher for clamped
than hinged configuration, due to the higher stiffness of the former.

3 Numerical simulations

The case of unimorph beam is of particular interest because the electromechanical
terms k0 and k1 are both not zero, as well as the asymmetrical elastic contribution
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Table 2. Model parameters used for numerical simulations. The chosen piezoelectric mate-
rial was Lead-Zirconate-Titanate (PZT).

Parameter, symbol Value
Support layer
Young’s modulus, Es 200GPa
Mass density, ρs 7850 kgm−3

Length, L 60 × 10−3m
Width, bs 10 × 10−3m
Thickness, hs 0.1 × 10−3m
Piezoelectric layer (PZT)
Young’s modulus, Ep 62GPa
Mass density, ρp 7800 kgm−3

Length, Lp 30 × 10−3m
Width, bp 10 × 10−3m
Thickness, hs 0.08 × 10−3m
Distance from end, L1 10 × 10−3m
Relative permittivity, εr 3800
Piezoelectric constant, e31 −6.2Cm−1

given by k3. Therefore, in the following we will focus on this configuration. Moreover,
we choose a piezoelectric layer placed on top of the steel support symmetrically cen-
tered around the midpoint in order to maximize k0. In particular, we will study the
dependence of the harvested power on the design of a unimorph piezoelectric beam
in clamped and hinged boundary conditions with parameters calculated as reported
in the Appendix. Table 2 resumes the physical parameters used for the model under
consideration. Note that the length of the piezolectric layer was chosen in order to
maximize k0 for the clamped configuration. Numerical simulations were performed
under exponentially correlated Gaussian noise with base acceleration amplitude of
σ = 1grms, correlation time of τ = 0.001 s and damping term c = 0.05Nsm−1. The
nonlinear stochastic Eqs. (10) and (11) were integrated by using the modified Euler
method with predictor-corrector [23,24]. In particular, the time evolution of the mid-
point displacement q(t) and voltage V (t) across a load RL =10 kΩ were performed
for increasing values of compression ratio ΔL/L in order to scan the dynamics going
from monostable to bistable regime.
Figure 4 shows the time traces of the mid-point displacement q(t) and voltage V (t)

across an electrical load of 10 kΩ for (right) clamped and (left) hinged configuration
at compressive ratio of ΔL/L = 0.1%. It can be noted that clamped beam seems to
snap across the barrier height a bit more frequently than hinged, though, the resulting
maximum displacement is almost equal. In both cases, one of the potential minima
seem to be slightly preferred. However, this asymmetry, that is due to the cubic term
of the potential, is very mild as expected. The resulting RMS voltage is comparable
in both cases: 7.5 V (clamped) and 7.3 V (hinged). Even if the acceleration base is the
same in the two cases, clamped beam is, indeed, a bit more stressed close to its ends
than hinged one. In addition, there is a difference in the electromechanical coupling:
k0 = 3.2× 104 (clamped), while, k0 = 2.3× 104 (hinged).
In Fig. 5 we can see the behavior of the midpoint displacement standard devi-

ation, σ(q), and generated voltage, RMS(V ) versus ΔL/L, calculated over a time
evolution of 10 s, with an integration step dt = 10−5 s. Starting by zero compression,
the PBBs oscillation increases around the equilibrium position, then, after passing the
critical bucking, snap through the barrier of the potential well and reach a maximum
amplitude, which results 1.08mm for clamped and about 0.9mm for hinged. After
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Fig. 4. Numerical simulations of the piezoelectric beam in post-buckled configuration with
ΔL/L = 0.05% and RL = 10 kΩ. From top to bottom: input base acceleration (exponentially
correlated Gaussian noise of σ = 1grms), mid-point displacement and output voltage across
electrical load, for (left-column) clamped and (right-column) hinged.

Fig. 5. (a) Standard deviation of mid-point displacement and (b) RMS voltage across
load versus axial compression ratio ΔL/L = 0 ÷ 0.3% at 1grms of base acceleration and
RL = 10 kΩ.

a certain axial load, depending on the vibration amplitude and Kramers rate [25],
the inter-well jumps cease and the beam vibrates around one of the local minima.
What is interesting to note, is that the region of the maximum voltage anticipates
the max displacement over the axial load increase. The optimal working point for the
max power is thus located in the inter-well region, but it does not necessarily cor-
respond to the max amplitude of oscillation. Furthermore, the clamped beam shows
a max Vrms = 7.7, while for the hinged Vrms = 7.2, and, below 0.13%, little higher
performance in the bistable regime of inter-well oscillations.
In the intra-well region, the oscillation amplitudes and RMS voltage converge for

the two configurations. In addition, the RMS voltage doesn’t fall down in this region
along with the displacement, as it was shown in [17,19] because of the presence of
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Fig. 6. Generated power for hinged and clamped configurations versus axial compression
ratio ΔL/L = 0÷ 0.3% for two different electrical load: (a) RL = 103 Ω and (b) RL = 106 Ω
at 1grms.

higher harmonics (stiffening effect), well above the cut-off frequency of the the circuit,
that compensate the lower displacement amplitude.

3.1 Power performance

Now, we want to analyze the power performance for different electrical time scales
determined by the value of τc = RLC. In particular, when this value approached zero
or infinite, in order to analyze the efficiency of nonlinearity, as was also shown by
Halvorsen [26].
In Fig. 6 the average power P =< V 2 > /RL is calculated for two different val-

ues of electrical load: (left) RL = 10
3 and (right) RL = 10

6. These values yield two
characteristic times of equivalent circuit: τc = 6 × 10−2 s and τc = 6 × 10−5 s, and
the related cut-off frequencies of the high-pass filter result fc = 1/(2πτc) = 2.5Hz
and 2.5 kHz. As a consequence, the ratio between mechanical (Eq. (16)) and cut-
off frequency is f+/−/fc > 1 and f+/−/fc < 1, which means that, in the first
case (a),(c), the harvester takes advantage of the wide bandwidth of the bistable
regime, whereas, in the second case (b),(d), only higher harmonics of the intra-
well oscillations contribute to the generation of electrical power that are provided
at high compression ratio ΔL/L = 0.2 ÷ 0.3%. As expected, in the fast time-scale
(left-column) the power achieves a plateaux of max value soon after ΔL/L = 0.1%,
whereas, in the slow time-scale (right-column), the maximum power is located around
ΔL/L = 0.05%, in the bistable regime with inter-well oscillations. Finally, here the
clamped configuration results about 20% more efficient than the hinged one.
Figure 7 illustrates the comparison of the RMS voltage and the corresponding elec-

trical power versus the electrical load. In particular, the unbuckled beam is compared
to a post-buckled configuration with ΔL/L = 0.05%. The maximum power generated
in buckled case is 2 times higher than that of the unbuckled for both hinged and
clamped configuration. The optimal load has been found to be Ropt ∼ 15 kΩ for both
systems, at which: the clamped configuration shows a power peak Pmax = 6.3mW,
while, for hinged, Pmax = 5mW, thus a difference of 26%.

4 Conclusions

In this work, the theoretical model of a piezoelectric bridge (PZT), based on com-
posite linear plate theory, was analyzed. In particular, the study was focused on the
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Fig. 7. Top: RMS voltage and (bottom) average power across load for hinged and clamped
configurations for axial compression ratio of ΔL/L = 0% (unbuckled) and 0.05% (buckled)
respectively, at 1grms.

effect of different boundary conditions: clamped-clamped and hinged, with progres-
sive axial load. A unimorph piezoelectric beam with symmetric piezoelectric layer
was discussed and numerically simulated under transverse vibration generated by
exponentially correlated Gaussian noise.
Clamped conguration showed slightly better performance than hinged, with about

26% more generated power, in the bistable regime with inter-well oscillations, corre-
sponding to axial compression ΔL/L < 0.1%. Above this value, the two configurations
converge, so there is no substantial difference.
Regarding to the circuit filtering, for fast circuit time-scale, τc = RLC � 6.3 ×

10−5 s, the generated power achieve a plateux just above 0.1% of axial compression,
whereas, for slow circuit time-scale, τc = RLC � 6.3× 10−2 s, the optimal efficiency
is within 0 and 0.1%.
In conclusion, the results confirm the advantage of exploiting the nonlinear bistable

regime for piezoelectric bridge operating as vibrational energy harvester with low
damping, and, when choosing the type of support, clamped-clamped ends appear the
best choice.

Appendix

Unimorph beam

For a unimorph beam, the electrical and mechanical parameters assume the following
values:

Np(x) = bezxV Π
L1+Lp
L1

(x), (A.1)

Mp(x) = 1/2bezxhsV Π
L1+Lp
L1

(x), (A.2)

A(x) = bEshs + bEphp Π
L1+Lp
L1

(x), (A.3)
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B(x) = −(1/2)bEshphs + 1/2bEphphs ΠL1+LpL1
(x), (A.4)

D(x) = 1/12b(3Esh
2
phs + Esh

3
s) +

1/12b(Eph
3
p + 3Ephph

2
s) Π

L1+Lp
L1

(x), (A.5)

the step function Π
L1+Lp
L1

(x) assumes the value 1 between the extremes of piezoelec-
tric layer (L1 and L1 + Lp) zero otherwise. It is included to account for the x-axis
dependency of the coefficients Np,Mp, A, B and D because the steel and piezoelectric
layers have not in general the same length.
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