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Abstract. An electro-mechanical system of vibrational energy harvest-
ing is studied. The beam is excited by external and kinematic periodic
forces and damped by an electrical resistor through the coupled piezo-
electric transducer. Nonlinearities are introduced by stoppers limiting
the transverse displacements of the beam. The interaction between
the beam and the stoppers is modeled as Winkler elastic foundation.
The mechanical properties of the piezoelectric layer are taken into
account and the beam is modeled as a composite structure. For the
examined composite beam, the geometrically nonlinear version of the
Timoshenko’s beam theory is assumed. The equations of motion are
derived by the principle of virtual work considering large deflections.
An isogeometric approach is applied for space discretization and
B-Splines are used as shape functions. Finally, the power output and
the efficiency of the system due to harmonic excitations are discussed.
The influence of the position of the stoppers and their length on the
dynamics of the beam and consequently on the power output are
analyzed and presented.

1 Introduction

During the last decades the research connected with energy harvesting systems in-
creased dramatically. The development of micro and nano technologies, smart sensors
and structures, the requirements of health monitoring of different devices, defined the
need of independent energy sources for small devices and self-powered sensors. A lot
of devices that convert kinetic energy of structures into electrical energy have been
studied theoretically and experimentally. The most popular in the engineering prac-
tice and scientific research are the devices that use piezoelectric elements as energy
transducers. Among the devices which transform kinetic energy into electrical one the
devices which perform nonlinear oscillations are very important [1-3].

The main advantage of nonlinear energy harvesters is that the nonlinear harvesters
convert energy over a broader frequency range of vibrations. One of the simplest
and mostly used mechanical systems for energy harvesting is based on a cantilever
beam with tip mass [4-6]. The tip mass can interact nonlinearly via magnetic [4] or
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gravitational [5] forces. The authors often accept that the mass which is connected
to the tip of the cantilever is several times heavier than the beam and this allow
the authors to model the beam with a tip mass as a single degree of freedom model.
Such approach simplifies a lot the problem and allows studying even analytically the
complex nonlinear behavior of the electromechanical system.

Broadband vibration energy harvesting based on piezoelectric converter requires
nonlinear systems including mechanical resonator and piezoelectric transducer and
electric circuit. In contrast to linear systems which should involve narrow band of
resonance, nonlinear systems are characterized by a broader region of resonance due
to the amplitude dependent resonating frequency and the existence of higher har-
monics and multiple solutions.

Recently, the concept about the kinetic energy harvester model, based on non-
linear mechanical resonator and electromagnetic/piezoelectic transducers [6-8] was
reviewed. Among the different types of nonlinearities those with softening and hard-
ening are broadening the resonance regions into smaller and larger frequencies, re-
spectively. Especially the nonlinear impacting harvesters with stoppers, derived from
the idea of Soliman et al. [9] and followed in other papers [10,11]. Electrostatic and
piezoelectric impacting harvesters were investigated also in [12-15].

It is important to note that the current motivation of our investigations is to com-
bine the works of nonlinear devices forced by an excitation with composite structure
of a beam. The detailed studies of piezoelectric composite beam have been performed
by Erturk and Inman [3]. Most of their research was performed on linear systems
and solutions were obtained by analytical methods. They also investigated nonlinear
electro-mechanical couplings by using the Duffing equation for motion of the resonat-
ing beam.

In the current work, a nonlinear model for composite beams based on the geomet-
rically nonlinear version of the Timoshenko’s beam theory is used to represent the
beam motion. Electro-mechanical coupling is introduced by piezo-electric constitutive
equations. The contact interactions with the stoppers introduce additional nonlinear-
ities in the equation of motion. The system of partial differential equations (PDEs)
is discretized into a system of ordinary differential equations (ODEs) by the finite
element method (FEM). Appropriate set of B-Splines is used for each displacement
component. This formulation is preferred here because of the discontinuities in the
model. They arise when the piezo layer is shorter than the main layer of the composite
beam. In this case there is a jump of the thickness and the mechanical properties of
the beam. Other discontinuities arise from the interaction with the stoppers. By using
multiple knots, in the definition of B-Spline functions, this kind of discontinuities are
modelled appropriately. The resulting system of nonlinear ODEs is solved in time
domain by the Newmark’s method. Newton-Raphson’s method is used to solve the
resulting nonlinear algebraic system. The time responses and the power output are
presented in time domain for different excitation forces and base excitations, consid-
ering stoppers at different distances from the beam and assuming a tip mass on the
free end.

The goal of the current work is to present more detailed and more precise theo-
retical and numerical model of a beam structure suitable to capture discontinuities
such as jump of the thickness or impact with stoppers. Such structures are widely
used in engineering applications. Particularly in the current work, several examples
are presented where the beam structure is used as an energy harvester.

2 Mathematical model

The considered beam consists of two layers: a main layer which is assumed to be
brass and a second layer which is from piezo material. The length of the additional
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Fig. 1. Beam with stoppers and tip mass.

layer can vary. The length of the beam is denoted by [, the width is denoted by b,
thickness of the layer with brass material is denoted by h; and the thickness of the
piezo layer is denoted by h,. During its motion the beam can interact with stoppers
(Fig. 1). The stoppers are positioned at distance &; from the clamped end. The length
of the stoppers is denoted by I; and the distance between the beam’s surface and the
stoppers is denoted by hs. The beam carries tip mass m at its free end. It is assumed
that the edge of the beam x = 0 is clamped to a base which can move.

2.1 Electro-mechanical coupling

The equation of motion is derived by assuming Timoshenko’s theory for bending.
The motion of the beam is accomplished in the horizontal plane and gravity is as-
sumed to be negligible. The longitudinal displacement u (x, z,t) and the transverse
displacement w (z, z,t) are expressed by the following relations [16]:

u(z, z,t) = ug (z,t) + (2 — z0) ¢ (z, 1), (1)
w(x, z,t) = wo (z,t) + wp (t),

where wug (z,t) and wy (x,t) are the displacements of the reference line and ¢ (z,t) is
the angle of rotation of the cross section about the axis y.

As a reference line is used the middle line of the brass layer. z. is the position of the
centroid of the cross section. wy (t) is the base excitation (the prescribed displacements
of the clamped edge). It is assumed that the clamped end performs a harmonic motion.
With this formulation, wg (z,t) presents the transverse displacement relative to the
clamped end of the beam.
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The strains are expressed by assuming Green’s strain tensor [17]. Considering only
the nonzero terms, the direct strain €, and the shear strain -,, are expressed as:

_Ou 1 0w\ _Ouy 09 1 (0wg)®
5””_ax 2 \ Oz T oz zax 2\ Oz

_Ow  Ou_ duw
Yoz = or 0z Oz

(2)
+ ¢

The piezo-electric constitutive equations are used in their reduced form [3]:

O E 0 —€31 Ex
Tz p =1 0 MG 0 Yoz P (3)
Dg 531 0 §§3 E3

where o, and 7,, are bending and shear stresses, F is the Young’s modulus of the
material, G is the shear modulus, ) is a shear correction factor, D3 represents electric
displacement component, €37 is an effective piezo-electric stress constant, E§3 is per-
mittivity component and Fj is electric field component. The electric field component

can be presented as F3 = —% where v (t) is an electric potential difference (volt-
P

age) and h,, is the thickness of the piezo layer. The brass material does not have any
electrical components, thus its constitutive relations are just the structural elastic
components from Eq. (3).

The interaction of the beam with the stoppers is modelled as a contact interaction
of the beam with a Winkler’s foundation [18] with a spring constant k., i.e. the
reaction force which arise when the moving beam reaches a stopper is:

[ kywo (z,t) if [wo (z,t)| > hs for &L <z <&+
R(z,t) = {0, otherwise (4)

The boundary conditions of the beam can be expressed as [3]:
Ugp (0, t) =

w (0,t) = wy (t

¢(0,t) =

0,
)5

0,

=l

 (Puy
=l B " atz

The equation of motion is derived by the principle of virtual work:

AGbh, (‘97””8(;”’0 + ¢(x,t))

=l

Wy + Win + Wi + 6Wie + 6Wie = 0, (6)

where Wy, is the virtual work of internal forces, dW;,, is the virtual work of inertia
forces, 6Wg is the virtual work of external forces, §W;, is the virtual work of internal
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electrical energy and 6 W, is the non-conservative virtual work due to electric charge
output [19]. They are given by the following expressions:

Wy = — / (6e)Ta dV,
14
Win = — / p(6d)T dv,
14
SWig = / (ddo) Ty aV, @
14

Wie = — / (6E3)Ds dV,,
V;

p

Whe = —6vQ,

where dg is the virtual strain vector and ¢ is the stress vector, dd is the virtual
displacement vector, d. represents the acceleration vector, p is the density, ddg rep-
resents virtual displacements on the reference line, f is vector of external forces
and moments on the reference line, §E3 is virtual electric field component, dv is
the virtual electric potential difference and @ representthe electric charge output.
V' represents the volume of the beam while V, represents the volume of the piezo
layer only. Integration for the virtual work of internal electrical energy is performed
over the piezo layer only because there is no electrical energy for the brass layer. It
is noted that the virtual works of internal and inertia forces can be separated of two
integrals, for each layer, and the corresponding material properties should be used.
The time derivative of electric charge output can be written as [20]:

oy ®)

where R; is the resistive load. This expression will be used in the equation of motion.

2.2 Isogeometric formulation

The discretization of the beam along its length is performed by using B-Splines.
The usage of B-Splines for space discretization has advantages over the standard
finite element schemes. B-Splines are used for construction of NURBS (Non-uniform
rational B-Splines). NURBS can represent any conic section including circle exactly
while non-rational splines or Bezier curves can only approximate it. NURBS are
commonly used in computer graphics and computer-aided design (CAD). The main
idea of the isogeometric analysis is to use the same basis, used to model the geometry
of the object, as a basis for the solution space of the numerical method [21]. Another
important feature, which is used in this work, is that by multiplying the knots, one
can control the continuity of the derivatives of the basis functions. This property is
very important in modelling structures with discontinuities, such as interaction with
stoppers or jump of the thickness.

The definition of B-Splines and their main properties are summarized briefly be-
low. A knot vector B = {£1,&2,...,&n+pt+1} is a non-decreasing set of coordinates in
the parameter space, where §; € R is the i*" knot, p is the polynomial order and n is
the number of basis functions. The B-Spline basis functions are defined recursively:

Ni,O (f) _ { 17§ € (6ia§i+1] 5 <9)

0, otherwise,

Nip(§) = 5:5} Nip-1(£) + &#Niwq,pfl &)

+p+1—&it1
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If the knots are equally spaced, the knot vector is called uniform. An important
property of B-Spline basis of uniform knot vector is that p*® order function has p-1
continuous derivatives across knots. The non-uniform knot vector gives opportunities
to control smoothness and discontinuities of the derivatives of the B-Splines across
the knots. If given knot &; has multiplicity of m;, then the basis functions of order
p have p — m; continuous derivative across knot &;. This property is important for
the case of beam with layers with different lengths, which results into jump of the
thickness or for modelling interaction with stoppers.

For the isogeometric formulation of the beam is necessary to define three sets of
basis B-Splines for approximating the displacements ug (z,t) and wq (z,t) and the
rotation ¢ (z,t). Let 2, and E,, are knot vectors that span the interval [0, 1]. The
linear function

1§, £ €10,1],

10
0, otherwise, (10)

re-{

maps one-to-one the reference interval into the interval Q = [0,!] that represents
the beam. The isogeometric basis functions on 2, for the displacements wug (z,t) and
wo (x,t) and for the rotation ¢ (z,t), are defined by:

Vi (z) = Ny, (F71 (2)) (11)
vy (x) = N, (F7 (2))
¥f (@) = N, (F~' (),

and the spaces Vi’ = span{¢}'}, V' = span{¢}’} and V,f = span {1/}?} are their
isogeometric trial spaces.

The isogeometric discretization of the displacements and the rotation is
expressed as:

Pu

Zq/z“ ) € VY,
Zw ) e vy, (12)

Zw¢ )evy,

where p,,, p,, and pg are the number of basis functions used for the space discretization

for the displacements and the rotation. ¢¥ (), ¢/ (¢t) and qf (t) are unknown coeffi-
cients that depend on time ¢. They are also called vectors of generalized coordinates.

Replacing Eq. (7) into Eq. (6) and using the discretization (12), the following
systems of ordinary differential equations is obtained:

Mg + Cq, +K1q + Kni(q)q + Kwq + 010 + 0y (q)v = f,

1
Cyo+Q —0Fa— 305 (a)a = 0. (13)
In the above equations, M is the mass matrix, K is the stiffness matrix of constant
terms, Ky (q) is the stiffness matrix that depends on the vector of generalized coordi-
nates q. Ky (q) results from the geometrical nonlinearity of the model and introduces
quadratic and cubic terms at the equation of motion, C is the damping matrix, 0; is
vector of constant terms which results from the electro-mechanical coupling, 0, (q)
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Table 1. Geometrical and material properties of the beam layers.

Main structure (brass) PZT-5A
Length 0.2m 0.2m
Width 0.01m 0.01m
Thickness 0.002m 0.001 m
Young modulus (E11) 105 GPa 60.6 GPa
Shear modulus (G) 3.9GPa 23 GPa
Density (p) 9000 kg/m3 7500 kg/m3
Piezo-electric stress constant (e31) | - —10.4C/m2
Permittivity constant (&53) - 13.3 x 1077 F/m

is vector which also results from the electro-mechanical coupling but it depends lin-
early on the vector of generalized coordinates q. This is also a consequence of the
geometrical nonlinearity used in the model. f represents the vector of generalised ex-
ternal forces, ) represents the electric charge output on the electrodes and C), is the
corresponding capacitance.

K, is matrix of constant terms which results from the interaction with the stop-
pers. It has the following form:

0, if —hs <w(z,t) <hg for & <z <&+

K. = E1+1s
w kw / Ty, otherwise.
1

Taking the time derivative of the second equation from Eqgs (13) and using Eq. (8),
the equation of motion becomes:
Mg + Cq + Kiq+ Kni(q)q + Kuwq + 010 + 0ni(q)v = £,

v (14)

Oy + -~ 07— 0 (@a =0,

The average power is used to compare the models and the influence of the stoppers.
It is computed by the following formula:

1
v
Pove = = dt, 15
[ (15)
t1

where T is the period of vibration and ¢; is an arbitrary moment from the steady-state
vibration of the beam.

3 Application

Beams composed of two layers, brass and PZT-5A, are considered for the numerical
examples. The geometrical and material properties of both materials are presented
in Table 1. Two types of external excitations are applied, harmonic force on the
free end and kinematic excitation of the clamped edge (base excitation) according to
harmonic low. Models with and without interactions with stoppers are compared and
analyzed. Stoppers are positioned at different distances from the clamped end of the
beam. Their length is [,=0.005m and the spring constant of the Winkler foundation
modeling the stoppers is assumed to be ky, = 7 - 105 N/m?2. The value of the spring
constant corresponds to a soft material (rubber) which is usually used to produce
stoppers for engineering applications.
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Table 2. Validation of the beam model with 3D FEM by comparing the natural frequen-
cies (rad/s) of beam from Fig 1(a). The stoppers are positioned on the beam’s surface for
computing the natural frequencies with interaction.

Without interaction with stoppers, | With interaction with stoppers
tip mass 0.02g tip mass 0.02g
Mode | Current | Elmer Difference Current | Elmer | Difference
model 70000 % model 70000 %
DOF DOF
1 146.57 144.98 1.10 203.72 201.47 1.12
2 1147.00 | 1137.90 0.80 1440.03 | 1430.57 0.66
3 3464.59 | 3438.32 0.76 3672.49 | 3646.86 0.70
4 7064.48 | 7010.48 0.77 7068.95 | 6989.25 1.14
(a) (®)
(c) (d

Fig. 2. Mode shapes of beam from Fig. 1(a) with tip mass of 0.02g. The results are from
3D software. (a) First mode, (b) second mode, (c) third mode, (d) fourth mode.

3.1 Validation

The elastic part of the electro-mechanical beam model is validated by three-
dimensional finite elements. Elmer software [22], which is open-source finite element
software, is used to model the beam with the tip mass and the stoppers. The tip
mass is modelled as elastic body with very high elastic modulus and with appropriate
density in order to represent the desired mass. The stoppers are modelled as elastic
bodies with Young’s modulus equivalent to the one used as a spring constant which
represent the Winkler foundation. The density of the stoppers is chosen to be zero in
order not to influence the mass matrix, like the Winkler foundation. For the validation
of the impact, the stoppers are assumed to be positioned on the beam’s surface.

The comparison of the natural frequencies is summarized in Table 2 and the
natural modes of the case with interaction with the stoppers are presented in
Fig. 2. The validation confirms that the proposed numerical approach can be used
for discontinuous problems.

3.2 Numerical results

The natural frequencies of beam presented in Fig. 1(a) but considering different
weights for the tip mass are given in Table 3. The natural frequencies of beam
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Table 3. Natural frequencies (rad/s) of beam (Fig. 1(a)) with and without interaction
with stoppers. The stoppers are positioned on the beam’s surface for computing the natural
frequencies with interaction.

Without interaction with stoppers | With interaction with stoppers
Without | Tip mass | Tip mass | Without | Tip mass | Tip mass
tip mass 0.01kg 0.02kg tip mass 0.01kg 0.02kg

1 234.06 177.06 146.57 342.82 249.87 203.72
2 1465.40 1220.00 1147.00 1786.78 1516.14 1440.03
3 4097.02 3571.76 3464.59 4247.56 3768.05 3672.49
4 8012.60 7189.53 7064.48 8013.35 7192.72 7068.95
0.0008] wgtopper
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0.0004
0.0002] /
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-0.0002] "
-0.0004{

-0.0006
-0,00081

(b)

2001 0.0005;
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100
0.0003
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0.000H
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Fig. 3. Responses due to excitation force f = 0.5 cos(234 t) applied on the free end,
R; = 10%Q. (a) Amplitude on the free end (m); (b) amplitude on the stopper (m); (c) voltage
output (V); (d) power — v?/R; (W). — response without stoppers, Pyye = 0.14mW, —- —- —
stoppers at distance hs = 0.0005m from the surface of the beam, Py,e = 0.05mW, - - - -
stoppers at distance hs = 0.0004 m from the surface of the beam, P,,. = 0.04 mW. Piezo
layer is considered to be along the whole length of the beam.

with impact are computed assuming that the stoppers are positioned directly on
the surface (in the case of a contact without separation). These frequencies provide
information about the resonance of the structure when the contact with the stoppers
is reached. A distance between the stoppers and the beam is assumed in the numerical
experiments.

First, an external force with excitation frequency equal to the fundamental fre-
quency of the beam without tip mass and without any interaction with the stop-
pers is applied. Three cases are considered: without stoppers, stoppers at distances
hs = 0.0004 m and stoppers at distances hs = 0.0005 m from the surface of the beam.
The response of the beam and the output power are presented in Fig. 3.

The results demonstrate that when there are no stoppers the amplitude of vibra-
tion is bigger because the excitation frequency is equal to the fundamental natural
frequency. Consequently the voltage output and the average power are also bigger.
When there are stoppers, the vibration of the beam is with a smaller amplitude,
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Fig. 4. Responses due to excitation force f = 5 cos(342.8 t) applied on the free end,
R; = 10%Q. (a) Amplitude on the free end (m); (b) amplitude on the stopper (m); (c) voltage
output (V); (d) power — v*/R; (W). —- response without stoppers, Paye = 0.33mW, - - -
- stoppers at distance hs = 0.00075 m from the surface of the beam, Py, = 1.06 mW. Piezo
layer is considered to be along the whole length of the beam.

because the excitation frequency is smaller than any natural frequency of the beam
interacting with stoppers and consequently the voltage output and the power are
smaller.

The numerical experiments with excitation frequency equal to the fundamental
frequency of beam with interaction with stoppers are presented in Fig. 4. In this case
the amplitude of vibration is larger when there are interactions with the stoppers, even
though they can limit the motion. As a result, the structure generates more power.

Because of the fact that the problem is strongly nonlinear, more than one solution
can exists for a given external force. Figure 5 presents two different solutions for struc-
ture with stoppers. At the first solution the beam vibrates with smaller amplitude
and does not reach the stoppers, hence there is no impact. The second solution shows
interaction with the stoppers and because of the fact that the excitation frequency
is close to the fundamental frequency of beam interacting with the elastic founda-
tion (stoppers), it vibrates with larger amplitude. Consequently, the power output of
the case of an interaction with the stoppers is bigger. The different solutions were
computed with the same configurations of external force and positions of stopper but
with different initial conditions.

The following examples consider beams excited kinematically, i.e. it is assumed
that the clamped end of the beam moves according to the equations:

wp = ap €08 (wet) (16)

where a is the amplitude of vibration of the clamped end and w,. is the excitation
frequency.

The influence of the excitation frequency and the position of the stoppers in
the generation of energy are studied. It is accepted that the stoppers are connected
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Fig. 5. Responses due to excitation force f = 5 cos(350 t) applied on the free end, R; = 108Q.
(a) Amplitude on the free end (m); (b) amplitude on the stopper (m); (c) voltage output
(V); (d) power — v*/R; (W). — periodic solution without interaction with the stoppers,
Pave = 0.24mW, - - - - periodic solution with interaction with the stoppers. Stoppers are
at distance hs = 0.00145m from the surface of the beam, Py,e = 0.70 mW. Straight grey
lines on figure (b) show the position of the stoppers.

with the frame (base) at which the beam is clamped and they move according to
the same law. A tip mass of 0.02kg is considered. Model without any stoppers is
compared with models with stoppers at distances hy = 0.0015m and Ay = 0.002m
from the beam’s surface. The results are summarized in Figs 6, 7 and 8. The excitation
frequency (146rad/s) of Fig. 6 corresponds to the fundamental frequency of the beam
with tip mass 0.02kg but without any contact interaction. The excitation frequency
(203 rad/s) of the graphics presented in Fig. 7 is equal to the fundamental frequency
of the beam with tip mass 0.02kg and contact interaction with stoppers (without
separation). Figure 8 presents vibrations with excitation frequency (250 rad/s) bigger
than the previous two and it is not close to any natural frequency.

The results from Figs. 6 and 7 differ from the observations from the previous
examples. When the beam is exited kinematically, the fundamental frequency of the
beam with stoppers does not lead to vibration with larger amplitude than to the
one for beam without stoppers. This is shown in Fig. 7 where the frequency of the
excitation w, is equal to the fundamental frequency of the beam with stopper. The
model without stoppers vibrates with larger amplitude of vibration and consequently
generates more power. Figure 8 shows that the position of the stoppers is important
for efficient power generation. The excitation frequency is not close to any of the
fundamental frequencies of the structure with and without impact. The model with
stoppers positioned closer to the beam gives much more power than the model without
stoppers. The position of the stoppers also has strong influence on the power output.
The ones at distance hy = 0.0015m from the beam’s surface generate more power
output than the ones at bigger distance — 0.002 m. The average power output of the
examples from Figs. 6, 7 and 8 are given in Table 4.
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Fig. 6. Response of beam with tip mass 0.02kg due to base excitations with amplitude
0.005 and excitation frequency 146 rad/s. R; = 1089, k,, = TMPa. (a) Amplitude on the free
end (m); (b) amplitude on the stopper (m); (c) voltage output (V); (d) power v?/R; (W).
—— response without stoppers, — - — - — stoppers at distance hs = 0.002 m from the surface
of the beam, stoppers at distance hs = 0.0015 m from the surface of the beam.
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Fig. 7. Response of beam with tip mass 0.02kg due to base excitations with amplitude
0.005 and excitation frequency 203 rad/s. R; = 10°Q, k,, = 7TMPa. (a) Amplitude on the free
end (m); (b) amplitude on the stopper (m); (c) voltage output (V); (d) power v*/R; (W).
—- response without stoppers, — - — - — stoppers at distance hs = 0.002m from the surface
of the beam, - - - - stoppers at distance hs = 0.0015m from the surface of the beam.
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Fig. 8. Response of beam with tip mass 0.02kg due to base excitations with amplitude
0.005 and excitation frequency 250rad/s. R; = 10°Q, k,, = TMPa. (a) Amplitude on the free
end (m); (b) amplitude on the stopper (m); (c) voltage output (V); (d) power v?/R; (W).
—- response without stoppers, — - — - — stoppers at distance hs = 0.002 m from the surface
of the beam, - - - - stoppers at distance h; = 0.0015m from the surface of the beam.

Table 4. Average power output of examples presented in Figs. 6, 7 and 8.

No stoppers 2.81 mW
wp = 0.005 cos (146t) | hs = 0.002m 2.35mW
hs = 0.00156m | 1.72mW
No stoppers 5.42mW
wp = 0.005 cos (203t) | hs = 0.002m | 4.48mW
hs = 0.0015m | 3.85mW
No stoppers 2.34 mW
wp = 0.005 cos (250t) | hs = 0.002m | 3.51mW
hs = 0.0015m | 4.31 mW

The influence of the length of the piezo layer on the response of the system is
investigated in the last numerical example. The model from the previous examples
is compared with a beam structure with piezo layer equal to 3/4 from the beam’s
length (Fig. 1(b)). A kinematic excitation is assumed for both beams. Rigid mass on
the free end is not considered. The results are computed with excitation frequency
we = 388rad/s. This is the fundamental frequency of the beam with length of the
piezo layer equal to 3/4 of the beam’s length interacting with the stoppers.

The responses of both beams without any stoppers are compared in Fig. 9. In this
case, without interaction with the stoppers, the excitation frequency differs from the
fundamental frequencies of both beams. The amplitudes of vibration are with almost
equal amplitudes, but the voltage output and the power are different. It can be seen
that the model with shorter piezo layer produces more power, i.e. the average power
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Fig. 9. Comparison of responses of beam with different length of piezo layers due to base
excitations w, = 0.005 cos (388t). (—-) beam with full piezo layer, Pyye = 3.43mW; (- - - -)
beam with piezo layer equal to 3/4 of the length, P,pe = 4.39mW, R; = 10%Q, k,, = 7 MPa.
(a) Amplitude on the free end (m); (b) amplitude on the stopper (m); (c) voltage output
(V); (d) power v?/R; (W). Stoppers are not considered.
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Fig. 10. Comparison of responses of beam with different length of piezo layers due to base
excitations wy = 0.005 cos (388 t). (—-) beam with full piezo layer, Pyye = 4.04mW; (- - - =)
beam with piezo layer equal to 3/4 of the length, P, = 4.22mW, R; = 10802, ky, = 7 MPa.
(a) Amplitude on the free end (m); (b) amplitude on the stopper (m); (c) voltage output
(V); (d) power v?/R; (W). Stoppers are positioned at distance hs = 0.0025 m.
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of the model with shorter piezo layer is 4.39 mW while the average power of the model
with full piezo layer is 3.43 mW.

The results of the same beams with the same kinematic excitation but with stop-
pers positioned at distance hs = 0.0025 m are presented in Fig. 10. The average power
of the model with full piezo layer increases when there is interaction with the stoppers
(from 3.43mW without stoppers to 4.04 mW). The opposite can be noticed for the
beam with a shorter piezo layer, i.e. the average power decreases from 4.39 mW for
the model without stoppers to 4.04 mW for the model with stoppers. This results
from the limitation of the displacements of the piezo layers because of the stoppers.
An important observation is the production of more power with smaller piezo layers
which is valid in both cases with and without stoppers.

4 Conclusions

An electro-mechanical beam model, based on the geometrically nonlinear version of
the Timoshenko’s theory was developed and presented. The mechanical properties
of the piezoelectric layer were taken into account and the beam was modelled as a
composite structure considering large displacements. The electro-mechanical coupling
was introduced into the equation of motion by piezoelectric constitutive equations.
The equation of motion was derived by the principle of virtual work. The interaction
of the beam with stoppers, modelled as an elastic foundation of Winkler’s type, was
introduced in the model. Space discretization was achieved by isogeometric approach.
B-Splines with multiple knots were used for the points which introduce discontinuities
in the model, like the interaction with the stoppers. An external harmonic force on
the free end and kinematic excitation at the clamped end were considered.

Several numerical simulations were performed. It was shown that the stoppers
can increase the power output of the system if the excitation frequency and the ini-
tial conditions are appropriate. This is related to the appearance of two solutions
-resonating and non-resonating solutions, in case of stiffened characteristics of the
restore force in the impacting system. Note that in contrast to a linear system where
the optimization procedure is made with respect to resonance conditions, the nonlin-
ear system is designed to work in a frequency broad band to adopt variable ambient
vibration conditions.

The length of the piezo layer has influence on the response of the system. It was
demonstrated that more energy can be generated with smaller piezo layer.
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