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Abstract. Elastic phase transitions of crystals and phase transitions
whose order parameter couples linearly to elastic degrees of freedom
are reviewed with particular focus on instabilities at zero temperature.
A characteristic feature of these transitions is the suppression of critical
fluctuations by long-range shear forces. As a consequence, at an elas-
tic crystal symmetry-breaking quantum phase transition the phonon
velocity vanishes only along certain crystallographic directions giving
rise to critical phonon thermodynamics described by a stable Gaussian
fixed point. At an isostructural solid-solid quantum critical end point,
on the other hand, the complete suppression of critical fluctuations
results in true mean-field critical behavior without a diverging corre-
lation length. Whenever an order parameter couples bilinearly to the
strain tensor, the critical properties are eventually governed by critical
crystal elasticity. This is, for example, the case for quantum critical
metamagnetism but also for the classical critical Mott end point at
finite T . We discuss and compare the solid-solid end points expected
close to the Mott transition in V2O3 and κ-(BEDT-TTF)2X.

1 Introduction

In most quantum or classical phase transitions in solids, the underlying lattice is
affected by criticality. The change of the lattice constant measured in a thermal
expansion experiment is, for example, often a very sensitive probe of criticality. In
this review, we will focus on situations where either the lattice itself becomes critical or
strongly affects criticality. The ratio of thermal expansion, α = (1/V )(∂V/∂T )p, and
specific heat, Cp = T (∂S/∂T )p, turns out to be a useful, unbiased tool to identify and
classify zero temperature quantum phase transitions in general, that can be tuned
with pressure. It can be identified with the relative change of temperature upon
adiabatically varying the pressure

Γ =
1

VmT

∂T

∂p

∣
∣
∣
∣
S

=
α

Cp
, (1)

with the molar volume Vm, and it is closely related to the parameter originally
introduced by Grüneisen [1,2]. The Grüneisen ratio Γ is predicted to diverge with a
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characteristic power-law at a quantum critical point [3]. At the critical pressure pc, it
diverges as a function of temperature as Γ ∼ T−1/(νz) with an exponent determined
by the product of the correlation length exponent ν and the dynamical exponent z.
Moreover, in the low-temperature limit the divergence as a function of pressure is uni-
versal, Γ = − G

Vm(p−pc) , in the sense that its prefactor G is solely determined by critical
exponents. The Grüneisen parameter thus not only provides a necessary criterion
for the existence of a quantum critical point but also yields important information
about its universality class by identifying certain combinations of critical exponents.
Moreover, Γ also changes sign close to a quantum critical point, and the sign changes
reveal the locations of entropy acummulation [4]. Measurements of Γ [5–8] and its
magnetic counterpart, the magnetocaloric effect [9–14], have proven useful in the
investigation of various quantum critical systems, see Refs. [15–17] for reviews.
However, the theory of Ref. [3] implicitly assumes that the crystal lattice couples

only perturbatively to the critical system and can be considered as a non-invasive
probe that does not modify the critical properties itself. This assumption is often justi-
fied. Nevertheless, there are exceptions where the crystal lattice and critical degrees of
freedom are instead strongly coupled and the assumptions of Ref. [3] break down. Such
quantum phase transitions that are governed by crystal elasticity are at the focus of
this short review. We will argue that the non-perturbative coupling to the crystal lat-
tice has a profound effect and fundamentally changes the critical behavior. The reason
for this is that the rigidity of the crystalline lattice can induce long-ranged forces which
suppress critical fluctuations, reminiscent of the suppression of Goldstone modes by
long-ranged gauge interactions within the Higgs mechanism. Consider, for example, a
large fluctuating domain of size L close to a critical point where the lattice constant
within this domain is changed by a factor 1+ ε with ε� 1. If the product Lε is much
larger than a lattice constant a, the crystal becomes strongly strained. As a result, the
corresponding energy cost can suppress the formation of such domains that exceed
a certain size. It can, however, happen that the whole crystal deforms without such
large scale fluctuations in a transition described asymptotically by mean-field theory.
For classical phase transitions, the coupling of critical fluctuations to the elastic

degrees of freedom, following early work by Rice [18] and Domb [19], were extensively
studied in the 1970ies [20–32]. Some of the results presented here are straightforward
generalizations of these previous works to the case of quantum phase transitions. We
start in Sect. 1.1 with a short introduction to elasticity theory and recapitulate in
Sect. 1.2 the most important elastic couplings to the critical fluctuations. Section 2
reviews Ref. [33] and discusses quantum critical elasticity focussing in particular on
spontaneous crystal symmetry-breaking quantum phase transitions and isostructural
solid-solid quantum critical end points (QCEPs). In Sect. 3, we discuss quantum
critical metamagnetism and argue that it is generally preempted by critical elasticity
providing an example of a fluctuation-induced solid-solid QCEP. Finally, in Sect. 4
the critical properties of the Mott end point at finite temperature is reviewed, which is
in fact an example of a classical solid-solid end point. We distinguish between a strong
and a weak non-perturbative elastic coupling scenario that might be relevant for V2O3
and κ-(BEDT-TTF)2X, respectively. Some of the results for the Mott end point have
been already presented in Ref. [34]. Part of this review is also based on Ref. [35].

1.1 Basics of elasticity theory

The fundamental quantities of elasticity theory are introduced in the following, which
are required for the subsequent discussion. For an in-depth introduction we refer the
reader to standard textbooks [36,37].
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The static elastic properties of a crystal are described by the following potential
for the strain tensor field εij

Velast = 1
2
εijCijklεkl (2)

where Cijkl is the elastic constant tensor. It is convenient to decompose the strain
field into a macroscopic part Eij and a part that carries finite momentum,

εij(r) = Eij +
1

2

(

∂iuj(r) + ∂jui(r)
)

. (3)

The latter is related to the phonon displacement field ui. The low-energy phonon
Lagrangian reads

Lphonon = ρ
2
(∂tui)

2 − 1
2
∂iujCijkl∂kul (4)

with the mass density ρ. The phonon energy-momentum dispersion follows from the
Lagrangian (4) and is given by ρω2−qiCijklqk = 0. In particular, the phonon velocities
are determined by the eigenvalues of the dynamical matrix Mjl(q) = qiCijklqk. On
the other hand, the macroscopic strain is governed by the potential

V(Eij) = 1
2
EijCijklEkl + σijEij (5)

where we also allowed for the presence of a macroscopic stress tensor σij . In case of
an applied hydrostatic pressure, p, the stress tensor is diagonal σij = −pδij . For a
uniaxial pressure, say, along the x-direction, σij = −pxδixδjx etc. The macroscopic
strain also possesses kinetic energy, and the boundary conditions couple its equation
of motion to the one of the phonon modes. Both effects do not contribute in the
thermodynamic limit and will therefore be neglected in the following.
Generally, the strain Ekl can be decomposed into irreducible representations of

the crystal class. Depending on the degeneracy of the corresponding eigenvalue of
the elastic constant matrix, these representations can be either singlets, doublets or
triplets. For example, a cubic crystal possesses a singlet Exx + Eyy + Ezz, a doublet
(Exx − Eyy, 2Ezz − Exx − Eyy) and a triplet (Eyz, Exz, Exy) with eigenvalues of the
elastic constant matrix in Voigt notation C11+2C12, C11−C12, and C44, respectively.
Macroscopic stability of the crystal requires that each of these eigenvalues are positive,
i.e., in general the tensor Cijkl should be positive definite so that the potential (5) is
stable.

1.2 Elastic coupling to critical fluctuations

We now consider the coupling of these elastic degrees of freedom to the critical fluc-
tuations of a second-order phase transition. In order to be concrete, let us assume
that this transition is described by the following φ4-potential in terms of a real singlet
order parameter φ

Vcr = r
2
φ2 +

u

4!
φ4 − hφ (6)

where u > 0 and the critical point obtains for r = 0 and h = 0. The order parameter
φ might represent some magnetic, electronic, or other degrees of freedom. The crystal
lattice that houses a critical subsystem will unavoidable couple to the fluctuations of
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the order parameter φ. Let us consider the most important couplings that are linear
in the strain field. As we consider here only a singlet order parameter φ, this coupling
can only involve a certain singlet of the crystal group that we denote by ε, and the
interaction can be written in the form

Vint = 1
2
γ2εφ

2 − γ1εφ. (7)

Whereas the coupling γ2 is expected to be finite, the bilinear coupling γ1 is often
forbidden by symmetry. For example, for an Ising ferromagnet where φ corresponds
to the Ising magnetization the coupling γ1 must vanish due to time-reversal symme-
try. Similarly, order parameters that break translational symmetries cannot couple
linearly to the strain. The coupling γ1 is however finite, for example, at end points
of lines of first-order metamagnetic or Mott transitions, or at an electronic nematic
transition.

1.2.1 Perturbative treatment of the elastic coupling

In the perturbative regime, we can neglect the phonon contributions and consider
only the macroscopic strain singlet, E, in Eq. (7). For a cubic crystal, for example,
the elastic part then reduces to

Vel = 1
2
γ2Eφ

2 − γ1Eφ+ K
2
E2 − pE (8)

where K is the corresponding modulus, i.e., K = (C11+2C12)/3, and p is the hydro-
static pressure. Perturbatively minimizing for the strain singlet one obtains E ≈ p/K
and the effective critical potential assumes the same form as Eq. (6)

Veff = r(p)
2
φ2 +

u

4!
φ4 − h(p)φ (9)

but with pressure-dependent parameters, r(p) = r + γ2p/K and h(p) = h + γ1p/K.
The tuning parameters, i.e., the prefactors of the most relevant operators in the
critical theory, h and r, thus obtain an effective pressure dependence.
Let us first discuss the case where γ1 is forbidden and, furthermore, h = 0. The

contribution to the free energy attributed to the quantum critical degrees of freedom
can then be written in the scaling form

Fcr = T d+zz f
( r(p)

T 1/(νz)

)

, (10)

where the scaling function f is assumed to possess the following asymptotic behavior
f(x)→ const. for x→ 0 and f(x) ∼ |x|ν(d+z) for |x| → ∞. This scaling form for the
quantum critical free energy with a pressure dependent tuning parameter, r, was used
in Ref. [3] for the discussion of the Grüneisen parameter. However, the critical free
energy (10) also predicts a critical renormalization of the bulk modulus. At T = 0 it
reduces to Fcr ∝ |r|ν(d+z) and the renormalization of the bulk modulus reads

δK ∼ ∂2pFcr ∼ ∂2rFcr ∼ |r|ν(d+z)−2. (11)

This renormalization will be perturbative as long as

ν(d+ z)− 2 > 0. (12)
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This is just the generalization of the corresponding result for classical criticality where
the elastic coupling remains perturbative if the specific heat exponent is negative
[18,19,22], i.e., α = 2 − νd < 0, from which the criterion for quantum criticality
(12) obtains after replacing the dimension d with the enhanced dimension d+ z. This
criterion simply arises from the requirement that the perturbative renormalizations of
the elastic constants due to the correlator 〈φ2φ2〉 of the order parameter remains non-
singular. Although there might be exceptions for effectively low-dimensional systems,
see e.g. Ref. [38], the criterion (12) for quantum criticality is usually fulfilled. In fact,
the theory of Ref. [3] for the Grüneisen parameter implicitly assumes that the criterion
(12) is obeyed.

1.2.2 Non-perturbative elastic coupling to critical degrees of freedom

The elastic coupling γ2 becomes non-perturbative if the criterion (12) is violated. On
the other hand, the bilinear coupling γ1 will always be non-perturbative. In the latter
case, the corresponding perturbative correction to the bulk modulus is attributed to
the correlator 〈φφ〉 of the order parameter that is singular by definition. Note that
this also applies to situations where the order parameter φ itself is a bilinear in fermi-
onic fields and the critical theory must be formulated in terms of fermionic degrees
of freedom. Whenever a coupling γ1 is present it will lead to a strong entanglement
between the critical and elastic degrees of freedom so that a perturbative treatment of
the elastic coupling unavoidably breaks down. If no first-order transition is induced,
one obtains instead an elastic critical point. The properties of such continuous elas-
tic phase transitions is at the focus of the following chapters. In chapter 2 we start
with a general analysis of continuous elastic quantum phase transitions irrespective of
their origin, i.e., whether they are genuine or are induced by other, critical degrees of
freedom. The effective critical elastic theory is analysed, the quantum critical thermo-
dynamics, and, in particular, the behavior of the Grüneisen parameter is discussed.
In chapter 3, the particular example of metamagnetic quantum criticality is investi-
gated that generically allows for a bilinear coupling γ1 and is thus non-perturbative.
Finally, in chapter 4 a corresponding example of classical criticality is also discussed
where we review the issue of the universality class of the critical end point at finite
temperature for the Mott transition.

2 Quantum critical elasticity

The instabilities of a crystal lattice can be studied from the point of view of an
effective critical theory in terms of the strain order parameter. Such an approach
was chosen in Ref. [33] where the quantum critical signatures of continuous elastic
quantum phase transitions were discussed building on previous work by Cowley [27]
and Schwabl and collaborators [28–31]. At such an instability an eigenvalue of the
elastic constant matrix Cijkl vanishes. The strain order parameter is identified as the
corresponding eigenvector, and depending on the degeneracy of this eigenvalue it can
either be a singlet, doublet or a triplet of the irreducible representations of the crystal
class.
Importantly, if such an eigenvalue of Cijkl vanishes the phonon velocities in general

remain finite. Mathematicaly this arises because the eigenvalues of Cijkl are deter-
mined from the 6 × 6 matrix of the elastic constant matrix in Voigt notation, Cρλ,
whereas the phonon velocities derive from the eigenvalues of the dynamical matrix
Mjl(q) = qiCijklqk (see above). Physically, it reflects the fact that general deforma-
tions of the crystal cannot be represented in terms of an acoustic phonon mode for
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Table 1. Table from Ref. [33] based on results of Refs. [27,28,30] listing possible second-
order elastic phase transitions. The columns from left to right specify the crystal symmetry
that is broken at the elastic transition, the eigenvalue of the elastic constant matrix in Voigt
notation that vanishes at the transition, the strain order parameter and the type of the
transition in the classification of Cowley [27]. Certain modifications apply for tetragonal
crystals with a finite component c16.

elastic transition constant strain type
orthorhombic → monoclinic c44 ε23 I
orthorhombic → monoclinic c55 ε13 I
orthorhombic → monoclinic c66 ε12 I
tetragonal → orthorhombic c11 − c12 ε11 − ε22 I
tetragonal → orthorhombic c66 ε12 I
tetragonal → mono- or triclinic c44 (ε23, ε13) I+II
hexagonal → mono- or triclinic c44 (ε23, ε13) I+II

fixed direction, q̂ = q/|q|. Only for specific directions of the phonon wavevector q̂,
the polarization of the phonons might induce the particular type of strain that is
akin to the one of the strain order parameter so that the phonon velocity only van-
ishes for this particular direction q̂ in momentum space. As discussed by Cowley [27]
and Folk et al. [28], there are elastic transitions where the phonon velocities either
remain finite for all q̂, vanish for q̂ pointing along certain directions or lying within
specific two-dimensional planes of momentum space. The phonons thus become only
critical in a m-dimensional subspace with m = 0, 1, 2 corresponding to type 0, I or
II, respectively, in the classification of Cowley [27]. As result of this restricted criti-
cal subspace, even the classical critical theory is either at or above its upper critical
dimension for m = 2 and m = 0, 1, respectively [28,32]. We will see below that the
corresponding quantum phase transition is always above its upper critical dimension.
In the following, we distinguish between elastic transitions that do and do not break
a crystal symmetry.

2.1 Spontaneous symmetry-breaking elastic transitions

For elastic transitions that break a crystal symmetry the expectation value of the
macroscopic strain order parameter E is zero in the symmetric undistorted phase
and assumes a finite value in the symmetry-broken phase. Such a transition can be
discontinuous or continuous, i.e., first or second order, respectively, depending on
the properties of the Landau potential V(E) for the order parameter. Assuming that
V(E) is analytic so that a Taylor expansion around E = 0 can be performed, the
transition can be of second order whenever the cubic term in this expansion vanishes.
According to Refs. [27,28,30], this is the case for the transitions listed in Table 1.
With the exceptions listed in the last two rows in Table 1, most of these transitions
are characterized by a singlet strain order parameter E, for which the potential reads

V(E) = r
2
E2 +

u

4!
E4 + σE, (13)

where σ is the appropriate singlet of an applied stress, which explicitly breaks the
symmetry E → −E, and a cubic term E3 is absent. If the quartic coupling is positive
u > 0, a second-order elastic quantum phase transition occurs at T = 0 and σ = 0
when the tuning parameter goes to zero r → 0+. This is the case when the elastic
constant listed in the second column of Table 1 vanishes. The tuning parameter
r = r(T, p) in general depends on temperature, T , and hydrostatic pressure, p. The
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latter effectively arises from anharmonicities in the elastic potential that couples
the singlet E to the trace of the strain tensor, Vanha ∼ tr{εij}E2. Minimizing the
trace in the presence of a hydrostatic pressure results in a pressure dependence of
K similarly as discussed in Sect. 1.2.1. The temperature dependence, on the other
hand, is induced either by anharmonicities, i.e., phonon excitations or coupling to
other degrees of freedom, e.g., electrons.
The symmetry-breaking elastic transition are either of type I or II in the Cowley

classification. The wavevector of the phonon can be decomposed, q = (p,k), into an
m-dimensional soft component p and a (3 −m)-dimensional stiff component k with
m = 1, 2 for type I and II, respectively. Close to the elastic phase transition, the
phonon dispersion then possesses the anisotropic form [29]

ω2 ∼ rp2 + ap4 + bk2 + . . . (14)

with finite constants a and b, and the dots represent further terms that are less
relevant. For the identification of scaling exponents, it is convenient to perform the
substitution k2 → k′4. This effectively corresponds to the introduction of an enhanced
spatial dimensionality deff = m+2(d−m) = 2d−m with d = 3. The dispersion (14)
is then characterized by the scaling r ∼ p2 and ω2 ∼ p4,k′4, which determines the
correlation length exponent ν = 1/2 and the dynamical exponent z = 2, respectively.
For classical elastic transitions, the upper critical dimension of the theory is ob-

tained from the criterion deff = 4 which amounts to d
+
CPT = 2 + m/2 [28,32].

While classical transitions with m = 0, 1 are above their upper critical dimension
d > d+CFT for d = 3 allowing for a mean-field description, classical type II transitions
with m = 2 are at their upper critical dimension giving rise to logarithmic correc-
tions to mean-field exponents. For elastic quantum phase transitions, on the other
hand, the upper critical dimension is further reduced by the dynamical exponent,
d+QPT = 2 +m/2 − z = m/2. All elastic second-order quantum phase transition are
therefore above their upper critical dimension for d = 3 and the phonon excitations
can be treated perturbatively.
In particular, the contribution of the critical phonon excitations to the free energy

can be written in the scaling form [3]

Fcr = T
deff+z

z f
( r

T 1/(νz)

)

, (15)

with νz = 1 and deff+z
z
= 4 −m/2. An explicit calculation shows that the function

f possesses the asymptotics f(x) = const. for x→ 0 and f(x) ∼ xνdeff−νzd = x−m/2
for x → ∞. From Eq. (15) the critical phonon thermodynamics is easily derived. At
criticality r = 0, i.e., in regime (i) of Fig. 1, the critical contribution to the phonon
specific heat is given by Ccr ∼ T 3−m/2, i.e., Ccr ∼ T 5/2 and Ccr ∼ T 2 for type I and
type II transitions, respectively. The volume thermal expansion, α, derives from the
pressure dependence of the tuning parameter r so that αcr ∼ T 2−m/2 at r = 0. For
the critical Grüneisen ratio defined as Γcr = αcr/Ccr follows

Γcr ∼ 1

T 1/(νz)
=
1

T
(16)

with νz = 1 in agreement with scaling considerations [3]. In the low-temperature
regime (ii) of Fig. 1, the divergence is universal

Γcr =
m

6

1

Vm(p− pc) (17)
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symmetry-
broken phase

T

r(T = 0)

r(Tc) = 0

T ∼ r

(ii)

(i)

0
0

I (i) (ii)
Ccr ∼ T 5/2 T 3r−1/2

αcr ∼ T 3/2 T 3r−3/2

αcr/Ccr ∼ 1/T = 1
6

1
p−pc

II (i) (ii)
Ccr ∼ T 2 T 3r−1

αcr ∼ T T 3r−2

αcr/Ccr ∼ 1/T = 1
3

1
p−pc

Fig. 1. Left: phase diagram for a symmetry-breaking elastic quantum phase transition. The
parameter r(T = 0) can be tuned by pressure and vanishes for tuning the corresponding
elastic constant to zero, see second column of Table 1. Its temperature dependence r(T )
determines the shape of the finite-temperature phase boundary. The thermodynamics at-
tributed to the critical phonons shows a crossover at T ∼ r resulting in two regimes (i) and
(ii). Right: critical phonon thermodynamics: specific heat Ccr, thermal expansion αcr and
Grüneisen ratio in the regimes (i) and (ii) for pressure tuning r(T = 0) ∝ p− pc; for type I
(upper table) and II (lower table), respectively.

with the prefactor m/6, i.e., 1/6 and 1/3 for type I and II, respectively, where we used
r(T = 0, p) ∝ p−pc with the critical pressure pc. The critical phonon thermodynamics
is summarized in the Tables of Fig. 1.
It should be noted, however, that the critical phonon thermodynamics vanishes

with a relatively high power of temperature for T → 0. As a consequence, it might be
actually subleading compared to other non-critical contributions, e.g., due to gapless
electronic degrees of freedom in metals. In such a case, the identification of the critical
phonon parts, Ccr and αcr, and thus the analysis of the critical Grüneisen ratio Γcr
might be challenging.

2.2 Isostructural elastic transitions

Elastic transitions not listed in Table 1 are generically first-order and exceptions
require additional fine-tuning. For example, the Taylor expansion for the potential
of the strain order parameter might allow for a cubic term whose prefactor can,
however, be tuned to zero. Another example, on which we focus in the following, are
isostructural transitions. The corresponding macroscopic strain order parameter, E,
is a singlet representation that is invariant under all crystal symmetry operations. Its
Landau potential generally includes all powers of E; after shifting the order parameter
by a constant E → E+E0 one can eliminate the cubic term and the potential assumes
the form

V(E) = K
2
E2 +

K4

4!
E4 + σE, (18)

with K4 > 0. For K < 0 a first-order phase transition arises where the expectation
value of E jumps at σ = 0 as function of σ. This corresponds to a transition between
two different solids that possess the same crystal symmetries while they are distin-
guished by different values of E. A second-order solid-solid quantum critical end point
(QCEP) obtains when both parameters, K and σ, are tuned to zero at T = 0. Here,
the expectation value of E changes in a critical manner, for example, as a function
of σ. The tuning might be achieved with the help of pressure p and an external field
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QCEP

T

0

σ
K

pc

Fc

F

p

Fig. 2. Phase diagram with a solid-solid quantum critical end point (QCEP). A line of first-
order solid-solid quantum phase transitions meets a line of finite temperature second-order
transitions at the QCEP and confine a surface (shaded area) of first-order transitions at
finite T . The dashed coordinate system is defined by the parameters K and σ, see Eq. (18),
that vanish at the QCEP.

F , on which the parameters depend, K = K(F, p) and σ = σ(F, p); the position of the
QCEP within the (F, p) phase diagram is then identified byK(Fc, pc) = σ(Fc, pc) = 0,
see Fig. 2.
Minimizing the potential (18) one obtains

E ∼
{

σ/K for |σ| �√K3/K4
−|σ/K4|1/3sgn(σ) for |σ| 


√

K3/K4.
(19)

In the latter limit at F = Fc, the strain depends on the pressure E ∼ (p− pc)1/3 in a
non-linear fashion with mean-field exponent δ = 3. This corresponds to a breakdown
of Hooke’s law, which is a hallmark of solid-solid end points.
Importantly, the solid-solid QCEP is characterized by the absence of critical mi-

croscopic fluctuations as the velocity of sound remains finite for all directions in this
case. In fact, all isostructural transitions are of type 0 in the Cowley classification
and the phonon sector remains non-critical because of the high symmetry of the order
parameter E. Consequently, the quantum phase transition associated with the solid-
solid QCEP is a true mean-field transition and exactly described by Landau theory.
In particular, there does not exist a diverging correlation length and the usual scaling
hypothesis for the critical free energy does not apply. The critical thermodynamics is
in fact non-universal and depends on other, non-critical degrees of freedom that in-
duce an effective temperature dependence of the tuning parameters, K = K(F, p, T )
and σ = σ(F, p, T ). For example, assuming that σ(F, p, T ) = σ0(F, p)+aT

x, with, e.g.,
x = 2 in a metal, it follows from minimizing the potential (18) a critical contribution
to the specific heat Ccr ∼ |σ0|1/3T x−1 and thermal expansion αcr ∼ |σ0|−2/3T x−1
for T → 0 at K = 0. In the same limit one obtains for the critical Grüneisen ratio
Γcr = αcr/Ccr,

Γcr

∣
∣
∣
T=0,F=Fc

=
1

3(x− 1)
1

Vm(p− pc) (20)

that diverges with the inverse of σ0(Fc, p) ∝ p − pc in agreement with expectations
but with a prefactor depending on the exponent x.
As the solid-solid QCEP separates two solids with different volumes but with the

same crystal symmetry, the discussion given above is in fact relevant for all quantum
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critical end points in solids that are not associated with the breaking of a true sym-
metry. Such critical end points are described with the help of a scalar order parameter
φ and are in the Ising universality class. However, in a crystal this order parameter
will in general couple linearly to the strain singlet, i.e., Vint = −γ1φε, so that the di-
verging susceptibility 〈φφ〉 will cause a isostructural instability with the concomitant
change in the universality class. As will be shown below, in this case the instability
of the macroscopic strain E preempts the critical endpoint of the φ field in such a
way that critical fluctuations are absent at the transition. This applies, for example,
to the Kondo volume collapse transition at zero temperature, where the asymptotic
critical behavior will be governed by a solid-solid QCEP [39,41]. It is also the case
for the metamagnetic QCEP [42,43], where F corresponds to a magnetic field, which
will be discussed in some detail in the next chapter. Similar reasoning applies to a
metaelectric QCEP, where the Ising order parameter is identified with the variation
in the longitudinal electric polarization, φ = P − Pcr, which increases in a critical
manner at some finite electric field. For the corresponding classical metaelectric end
point, that exists at finite temperatures in KH2PO4, the absence of a diverging cor-
relation length has been already demonstrated in Ref. [44]. Another famous classical
analogue is the γ − α transition of Ce [45–47]. In chapter 4, we will discuss the Mott
end point at finite T that is also predicted to be governed by critical elasticity [34].

3 Metamagnetic quantum critical end point

Metamagnetism is associated with a superlinear rise of the magnetization M(H) at
some finite magnetic field Hm [48]. As a function of decreasing temperature such a
metamagnetic crossover might develop into a first-order transition where the mag-
netization instead jumps as a function of field. The resulting line of metamagnetic
first-order transitions terminates in a critical end point (Tep,Hm) located at finite
temperature Tep. If this end point temperature Tep can be suppressed by some addi-
tional tuning, a metamagnetic QCEP arises for Tep → 0.
Metamagnetic quantum criticality was introduced in the context of Sr3Ru2O7 in

order to account for the anomalous behavior close to its metamagnetic field [42,49,51].
The universal critical thermodynamics close to such a metamagnetic QCEP has been
discussed by Weickert et al. in Ref. [50] however without considering the feedback of
the lattice to the critical behavior. Moreover, Zacharias and Garst [43] analyzed in
detail the critical thermodynamics close to such a QCEP within the spin-fluctuations
theory as proposed in Ref. [42]. In particular, it was pointed out that the metam-
agnetic QCEP is intrinsically unstable with respect to a magnetoelastic coupling.
The metamagnetic Ising order parameter is given by the change of the longitudinal
magnetization close to the critical field φ = M − 〈M〉H=Hm . Its Ising symmetry is
only emergent and, as a consequence, a linear coupling γ1 to the strain is generi-
cally allowed. This will have the consequence that the metamagnetic QCEP will be
preempted by an isostructural quantum phase transition.

3.1 Solid-solid quantum critical end point induced by metamagnetic fluctuations

The effective bosonic theory for quantum critical metamagnetism in a metal reads [42]

L = 1
2
φ
[

r −∇2]φ+ u
4!
φ4 − hφ+ Ldyn (21)
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where u > 0, h ∝ H − Hm measures the distance to the critical field, and the
metamagnetic quantum critical end point obtains for r = 0. The dynamical part

Sdyn =
∫ β

0

dτ

∫

drLdyn = 1
β

∑

ωnk

|ωn|
|k| |φ(k, iωn)|

2 (22)

is governed by the Landau-damping, i.e., damping of the order parameter by particle-
hole pairs in the metal. The resulting thermodynamics was discussed in detail in
Refs. [43,51].
A linear coupling γ1 of the order parameter to the strain field, see Eq. (7), is

generally allowed and will modify the quantum critical properties. An exhaustive dis-
cussion of the theory (21) linearly coupled to the crystal lattice including an analysis
of phonon degrees of freedom can be found in Ref. [35]. As the resulting isostructural
transition will be of type 0 where the phonons remain non-critical, see Sect. 2.2, we
can limit ourselves here to a coupling of the order parameter to the macroscopic sin-
glet, E, of the strain tensor only. Effectively, the coupling γ1 can then be absorbed
into a shift of the tuning parameter h→ h+γ1E. Integrating out the order parameter
fluctuations one then obtains the effective potential for the macroscopic strain E,

Veff(E) = K0
2
E2 + Fcr(r, h+ γ1E, T ) (23)

where K0 is the corresponding modulus and Fcr(r, h, T ) is the critical free energy of
Eq. (21). The magnetoelastic coupling gives rise to a renormalization of the modulus
of the form

K ≡ ∂2EVeff(E)
∣
∣
E=0
= K0 − γ21χcr (24)

where χcr = 〈φφ〉 = −∂2hFcr is the singular part of the differential susceptibility.
At h = 0 and zero temperature this susceptibility is simply given by χcr = 1/r
for r > 0. Consequently, before the metamagnetic QCEP is reached for r = 0 the
renormalized bulk modulus vanishes at r∗ = γ21/K > 0. The metamagnetic critical
point is effectively preempted by an isostructural QCEP that is realized for r∗ =
γ21/K0.
Using the results for Fcr(r, h, T ) of Ref. [43], one finds for the effective potential

at r = r∗ the explicit form close to the isostructural QCEP

VQCEP(E) = K0
2
E2 +

K4

4!
E4 + σ0E − (h+ γ1E)

2

2R∗
+ f0(r

∗, T ) (25)

where we introduced the corresponding singlet stress σ0 that couples to E and also
explicitly added a quartic term with coefficientK4 that stabilizes the potential (that is
also renormalized by δK4 ∼ uγ41/R∗4). The coefficient R∗ parameterizes the effective
stiffness, χcr = 1/R

∗, of the metamagnetic potential at r = r∗,

R∗ = r∗ + u

{

r1 T
d+1
3 , R∗ � T 2/3

r2 T
2r∗

d−5
2 , R∗ 
 T 2/3.

(26)

The remaining free energy independent of E is given by

f0(r
∗, T ) =

{

−f5 T d3+1, r∗ � T 2/3
−f6 T 2r∗

d−3
2 , r∗ 
 T 2/3.

(27)
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The coefficients fi and ri are explicitly listed in Ref. [43]. The potential (25) has
the same form as the one given in Eq. (18) with parameters K = K0 − γ21/R∗ and
σ = σ0 − γ1h/R∗.
A hallmark of the isostructural QCEP is the non-linear response of the crystal

lattice with respect to an externally applied stress σ0 corresponding to the breakdown
of Hooke’s law. Minimization of the potential at T = 0 and h = 0 yields E ∝
σ
1/3
0 . On the other hand, the metamagnetic fluctuations that drive the isostructural

transition are reflected in a crossover at a characteristic temperature T ∼ (r∗)3/2.
The specific heat for example, that follows from fcr(r

∗, T ) in Eq. (25), shows an
anomalous T -dependence, C ∼ T d3 at high temperatures, T 
 (r∗)3/2, whereas it is
of Fermi-liquid type, C ∼ Tr∗ d−32 , for T � (r∗)3/2. Apart from the contribution to
thermodynamics deriving from the underlying metamagnetic fluctuations, f0(r

∗, T ),
there will be also additional T -dependences of the bare parameters. In particular,
the bare stress σ0 will possess an intrinsic T

2 temperature dependence in a metal,
σ0(T ) = σ0(0) + aT

2, resulting in a thermal expansion of Fermi-liquid type, ∂TE =
∂Tσ0/K0 ∼ T , in the absence of criticality. Close to the solid-solid QCEP, however,
this will result in an additional, critical contribution to the specific heat. For example,
at h = 0 and at lowest temperatures, Ccr ∼ T∂2T |σ0(T )|4/3 ∼ |σ0(0)|1/3T . Similarly,
for the thermal expansion we obtain in the same limit αcr ∼ |σ0(0)|−2/3T reproducing
the result for the critical Grüneisen parameter of Eq. (20) with x = 2. Note, however,
that the critical contributions are here subleading compared to the ones deriving
from f0(r

∗, T ). In order to obtain the expected scaling for the critical Grüneisen
parameter Γcr = αcr/Ccr a careful subtraction of the leading non-critical contributions
are necessary. This limits the practicability of the Grüneisen analysis in the present
case.

3.2 Deviation of metamagnetic correlations from Ornstein-Zernicke form

Whereas the phonons remain non-critical at the isostructural QCEP they nevertheless
renormalize the metamagnetic fluctuation spectrum. In order to simplify the following
discussion, we again assume a cubic crystal where the metamagnetic fluctuations
couple linearly to the trace of the strain tensor. The quadratic part of the theory (21)
in the presence of an elastic coupling to the phonon modes ui, see Eq. (3), reads

L(2) = 1
2
φ
[

r −∇2]φ− γ1φ∂iui + 1
2
∂iujCijkl∂kul. (28)

The static correlator of the metamagnetic fluctuations χ(q) = 〈φφ〉q for γ1 = 0
possesses a standard Ornstein-Zernicke form

χ0(q) =
1

r + q2
(29)

at h = 0 and in lowest order in u. A finite linear magnetoelastic coupling γ1 leads to
a modification of the momentum dependence,

χ(q) =
χ0(q)

1− γ21χ0(q)qi(M−1)ijqj
(30)

where M−1 is the inverse of the dynamical matrix Mjl(q) = qiCijklqk, see Sect. 1.1.
For a cubic lattice the dynamical matrix reads explicitly

Mij = (C12 + C44)qiqj +
(

C44q
2 + (C11 − C12 − 2C44)q2i

)

δij . (31)
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Fig. 3. Density plot of the metamagnetic correlation function χ(q) of Eq. (30) in the limit
|q| → 0 within the (qx, qy) plane (a) in the absence, γ1 = 0 and (b) in the presence, γ1 �= 0, of
a magnetoelastic coupling for a certain choice of parameters (r = 2, γ21/K0 = 1.3, γ

2
1/(C11 −

C12) = 0.7, and γ
2
1/C44 = 0.5). For γ1 �= 0 the metamagnetic fluctuations inherit the spatial

anisotropy of the phonon spectrum with a characteristic four-fold symmetry for the cubic
crystal lattice.

where the last term should here not be summed over repeated indices. The bare
modulus of the previous section is here identified with K0 =

1
3 (C11 + 2C12). Due to

the phonon renormalization, the correlation function χ(q) depends on the orientation
of the momentum q̂ even in the limit |q| → 0. This is illustrated in Fig. 3. The inverse
1/χ(q) assumes for |q| → 0 the limiting values

lim
|q|→0

χ−1(q) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r − γ21
K0 + 2(C11 − C12)/3 for q̂||〈100〉

r − γ21

K0 +
1

6
(C11 − C12) + C44

for q̂||〈110〉

r − γ21

K0 +
4

3
C44

for q̂||〈111〉.

(32)

This explicit calculation also nicely demonstrates that the fluctuations indeed remain
gapped at the isostructural QCEP that is realized at r = r∗ ≡ γ21/K0. Due to the
stability conditions C11 − C12 > 0 and C44 > 0, the gap lim|q|→0 χ−1(q) remains
finite for all directions of q̂ even at the isostructural QCEP.
Such an asymmetry of the magnetic fluctuations is generically expected close to a

metamagnetic end point and could, in principle, be detected with the help of neutron
scattering. A similar asymmetry has been discussed and experimentally verified in
the case of critical piezoelectric ferroelectrics [52].

4 Critical Mott end point at finite temperature

Strongly correlated materials with a conduction band close to half-filling might exhibit
a Mott metal-insulator transition as a function of doping or applied pressure [53].
When all lattice sites are on average occupied by a single electron, their motion is
suppressed by a strong Coulomb repulsion that energetically disfavours to have a site
doubly occupied giving rise to a Mott insulating state. The application of pressure,
however, enhances the overlap integral of electron wavefunctions on adjacent lattice
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pressure ppc

Tc

Mott
insulator

T

metal

Δp∗

ΔT ∗

Fig. 4. Phase diagram of a system with a line of first-order Mott metal-insulator tran-
sitions that terminates in a second-order critical end point at (pc, Tc). Close to this end
point elastic criticality prevails indicated by the yellow shaded regime. The criticality of the
Mott end point therefore belongs to the universality class of a classical solid-solid end point
characterized by mean-field Landau criticality [34].

sites and thus the kinetic energy. For sufficiently large pressures the kinetic energy
prevails resulting in a Mott metal-insulator transition at some critical pressure pc.
This transition is first-order at low temperatures resulting in a line of first-order

transitions in the (T, p) temperature-pressure plane. This line ends at a second-order
critical end point at a finite Tc. For temperatures T > Tc there remains only a
crossover so that the system can be smoothly transformed from an insulator to a
metal by varying pressure and temperature, see Fig. 4. The topology of the phase
diagram resembles the one of the liquid-gas transition and, correspondingly, it has
been discussed theoretically and experimentally whether the Mott end point also
belongs to the Ising universality class [54–70].
However, we will argue that this is in fact not the case. As the Mott transition

is susceptible to pressure tuning its conjugate, i.e., the volume will exhibit a jump
across the line of first-order transitions. Correspondingly, the black line in the phase
diagram of Fig. 4 does not only separate the Mott insulator from the metal but also
two isostructural solids with different volumes. Consequently, its termination point is
not in the liquid-gas, i.e., Ising universality but it is rather a classical critical solid-
solid end point characterized by mean-field Landau criticality as already pointed out
in early work by Jayaraman et al. [56].
In this section, we will discuss the critical behavior close to the finite-temperature

Mott end point in some detail, especially as in this case quantitative estimates of the
importance of the lattice coupling are available. We will not consider the correspond-
ing Mott quantum phase transition at T = 0 here but, in contrast to the previous
sections, strictly limit ourselves to the classical transition at finite Tc > 0. We will
take it for granted here that the finite T -end point of the line of first-order Mott
metal-insulator transitions on an incompressible lattice is indeed described by the
classical Ising model,

L = 1
2
φ(r −∇2)φ+ u

4!
φ4 − hφ, (33)

with the Ising order parameter φ and pressure and temperature dependent tuning
parameters h = h(p, T ) and r = r(p, T ). The end point of the incompressible lattice
obtains for pressure and temperature values for which h = r = 0. The interaction
u gives rise to a Ginzburg scale [71] that defines a crossover between Mott mean-
field behavior away from the end point, that is described by Landau theory, and
non-trivial critical behavior ascribed to the Ising universality class. The coupling
of φ to the crystal lattice, Eqs. (7), eventually gives rise to another crossover to a
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(a) (b)

Fig. 5. Sketch of two scenarios for crossovers upon approaching the Mott end point. (a) For
relatively strong elastic coupling, there is a single crossover into a regime (yellow shaded)
governed by elastic criticality. (b) For a relatively weak elastic coupling, first a crossover
occurs into a regime (blue shaded) governed by the non-trivial Ising universality class, and
afterwards a second crossover takes place into a regime (yellow shaded) controlled by elas-
tic criticality. While scenario (a) applies to V2O3, scenario (b) is applicable to κ-(BEDT-
TTF)2X.

regime governed by critical elasticity. Depending on the relative strength of the elastic
coupling, one can distinguish two scenarios that we will discuss in the following.

4.1 Strong elastic coupling: Mott-Landau–to–elastic-Landau crossover

For a relatively strong elastic coupling, there is just a single crossover from the mean-
field Mott-Landau regime of the theory (33) to the regime in the immediate vicinity
of the solid-solid end point that is governed by crystal elasticity, see Fig. 5(a). This
scenario can be captured within simple mean-field theory and is described by the
potential,

V(φ,E) = r
2
φ2 +

u

4!
φ4 − hφ+ 1

2
γ2Eφ

2 − γ1Eφ+ K0
2
E2 − (p− pc)E. (34)

The curvature tensor ∂α∂βV(φ,E) with α, β = E, φ at h = 0 and p = pc for φ = 0
possesses a vanishing eigenvalue at r∗ = γ21/K0. If the end point is approached for
p = pc and h = 0 as a function of temperature, the Mott end point located at r = 0
for the incompressible lattice is preempted by an isostructural solid-solid end point at
r = r∗ > 0. For the strong elastic coupling scenario, the scale r∗ in addition preempts
the Ginzburg crossover present for the Mott transition on the incompressible lattice.
As a result, the critical properties are always captured by Landau mean-field theory.
Nevertheless, one could define a crossover between a Mott-Landau regime where

the elastic coupling is still perturbative and a elastic Landau regime where Hooke’s
law breaks down. Solving the classical equations, ∂φV(φ,E) = 0 and ∂EV(φ,E) = 0,
for the macroscopic strain, say, at criticality r = r∗, h = 0, setting γ2 = 0 for
simplicity, one finds that for pressure values |p − pc| 
 Δp∗ with Δp∗ = γ21/

√
K0u,

the response is linear, E ≈ (p − pc)/K0 but becomes non-linear, E ∼ |p − pc|1/3,
for |p − pc| � Δp∗. The pressure scale Δp∗ defines the width of the Landau critical
regime along the pressure axis that is governed by crystal elasticity (orange shaded
regime in Fig. 5(a)).
The scenario of a strong elastic coupling with a single crossover between a critical

Mott-Landau to a elastic Landau mean-field regime might be applicable to V2O3.
In Ref. [58] the critical behavior of Cr-doped V2O3, i.e., (V0.989Cr0.011)O3, close to
its end point was experimentally investigated with the help of conductivity measure-
ments. Its behavior could be explained with the help of mean-field exponents in a
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large range of pressures and temperatures except in the immediate vicinity of the
critical end point. It has been speculated [58] that the deviations observed very close
to the critical pressure in a narrow range Δp/pc ≈ 3� indicate a Ginzburg crossover
to non-trivial Ising exponents. However, detailed measurements of various sound ve-
locities by Nichols et al. [72] have revealed that the undoped compound V2O3, that
translates to an effective distance from the critical end point of Δp/pc ≈ 1.7% in
pressure units, possesses already a substantial softening of the corresponding bulk
modulus K. This modulus K denoted as λ4 in Ref. [72] has a deep minimum around
540K where it drops to around 26% of its value at room temperature. From our con-
siderations above follows the expectation that the value of this λ4 modulus indeed
vanishes exactly at the critical end point. The fact that it is so strongly reduced in
the pure compound indicates that V2O3 already accesses the elastic critical regime
(yellow shaded in Fig. 5(a)) as a function of temperature. In turn, it follows that most
of the experiment of Ref. [58] where the conductivity at the critical temperature was
tuned with the help of pressure is located in this elastic critical regime. This suggests
that the end point in this material is always governed by Landau mean-field theory
and, in particular, that the deviations mentioned above are not caused by a Ginzburg
crossover but are rather attributable to some other origin as, for example, the uncer-
tainty in determining the precise form of scaling variables like r, h or p−pc in Eq. (34).

4.2 Weak elastic coupling: Mott-Ising–to–elastic-Landau crossover

For a relatively weak elastic coupling, on the other hand, there are two crossovers, see
Fig. 5(b), upon approaching the critical end point. First, a crossover at the Ginzburg
scale occurs into a regime where the critical behavior is governed by non-trivial Ising
exponents (blue shaded regime) until a second crossover occurs into the elastic critical
regime (yellow shaded regime) described by Landau theory.
In this section, we concentrate on the latter, Mott-Ising to elastic Landau crossover

from the blue to yellow shaded regime in Fig. 5(b). For its description, we can adopt
the approach of Sect. (3.1), neglect the phonons and integrate out the Mott-Ising
degrees of freedom. This yields an effective potential for the macroscopic strain singlet

V(E) = K0
2
E2 + σ0E + fsing(r, h+ γ1E) (35)

where we included already the corresponding singlet stress σ0. The function fsing
is here governed by the Ising fixed-point and not known in closed form for general
spatial dimension d.
An extended Mott-Ising regime seems to be realized close to the Mott end

point of the quasi two-dimensional charge-transfer salt κ-(BEDT-TTF)2X. Exten-
sive investigations have demonstrated the critical properties in the vicinity of its end
point is controlled by non-trivial critical behavior probably of Ising type [59–66]. It is
suggestive that the reduced spatial dimensionality of the fluctuation in this material
promotes the Ginzburg crossover and thus the Mott-Ising regime before the elastic
crossover sets in.
The available data of thermal expansion [65,66] on κ-(BEDT-TTF)2X allowed

us in Ref. [34] to determine the parameters of the potential (35) and to theoretically
describe the expected second crossover to elastic criticality in this material. Motivated
by its quasi-two-dimensional structure, we followed Bartosch et al. [66] and used in
Eq. (35) the free energy, fsing, of the two-dimensional Ising model, d = 2, in the
asymptotic scaling regime, that can be computed numerically using the results of
Ref. [73]. Minimizing (35) with respect to E then yields the free energy F .
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Fig. 6. (a) The second derivative −∂2rF in dimensionless units at the critical pressure, pc.
It shows a pure mean-field jump (solid line) as a function of r preempting the logarithmic
Ising singularity (dashed line). (b) Macroscopic strain as a function of p − pc for various
temperatures T , see text.

Results from Ref. [34] for the T -dependence of the second derivative −∂2rF at the
critical pressure pc, which will govern the specific heat, are shown in Fig. 6(a). Without
the elastic coupling, γ1 = 0, this derivative exhibits the logarithmic singularity of the
2d Ising model (dotted line), that is however cutoff for finite γ1 > 0 (solid line) and
replaced by a pure mean-field jump [20]. The expected pressure dependence of the
strain E for various temperatures is shown in Fig. 6(b). Whereas for T < Tc the
change of strain δE as a function of p−pc exhibits a first-order jump, it only exhibits
a crossover for T > Tc. For T = Tc, finally, it behaves as δE ∼ |p− pc|1/3 indicating
a breakdown of Hooke’s law.
Our quantitative analysis allowed us, in particular, to estimate the width of the

elastic critical regime in κ-(BEDT-TTF)2X along the pressure and temperature axis,
Δp∗ and ΔT ∗, respectively,

Δp∗ = 45bar, ΔT ∗ = 2.5K. (36)

These values suggest that it should be experimentally feasible to detect the crossover
from the Mott-Ising to the elastic critical regime, and thus investigate the change in
universality class upon approaching the solid-solid end point of the Mott transition.

5 Conclusions

The characteristic feature of crystals is their shear rigidity which distinguishes solids in
particular from liquids or gases. This shear rigidity and the corresponding long-range
shear forces can in certain cases fundamentally alter the critical behavior close to a
second-order phase transition. An especially drastic example is the elastic instability
associated with a divergence of the bulk compressibility close to a solid-solid critical
end point discussed in Sect. 2.2. While the bulk compressibility diverges the phonons
remain non-critical because the shear stiffness ensures that the phonon velocities all
remain finite. As a result, the critical behavior of solid-solid end points do not possess
a diverging correlation length and are described by true mean-field behavior. This is
to be contrasted with the properties of the liquid-gas end point where the diverging
compressibility implies the vanishing of the sound velocity, that in turn leads to a
diverging correlation length and to non-trivial critical behavior belonging to the Ising
universality class.
In this paper we have discussed cases where the shear rigidity of solids strongly

affects quantum phase transitions. Besides genuine elastic transitions, this physics is of
importance for phase transitions that are primarily driven by magnetic, ferroelectric



1038 The European Physical Journal Special Topics

or electronic degrees of freedom. A first such case are critical end points of “liquid-
gas type” described by an Ising order parameter. In such a case, the coupling of the
order parameter to the strain field of the crystal will change the universality class and
critical elasticity prevails close to the critical point. We discussed two examples, the
metamagnetic quantum critical end point in Sect. 3 and the Mott end point at finite
temperature in Sect. 4, both of which are governed by the properties of solid-solid
end points.
Elastic quantum phase transitions associated with a change of crystal symmetry

were discussed in Sect. 2.1. In case of spontaneous crystal symmetry-breaking, phonon
velocities in certain crystallographic directions vanish resulting in critical thermo-
dynamics that is however still governed by a Gaussian fixed-point. We discussed
the corresponding quantum critical signatures and the resulting divergence of the
Grüneisen parameter. This quantum critical elasticity might be relevant, for example,
for the pnictide superconductors at its continuous tetragonal-to-orthorhombic tran-
sition close to optimal doping [33].
Studies of the thermal expansion, compressibility and of ultrasound are especially

useful to address the physics discussed in this review. With the help of such measure-
ments, the strength of the elastic coupling can be determined and the crossover to the
regime governed by critical elasticity can be quantitatively estimated, for a specific
example see Sect. 4.2. Furthermore, they allow to identify directly a breakdown of
Hooke’s law or the vanishing of sound velocities that are characteristic features of
elastic phase transition.

This is a review on work (Refs. [33–35,43,50]) that was supported by the DFG through FOR
960. We acknowledge a collaboration with I. Paul and L. Bartosch on topics presented here.

References
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