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Abstract. The local densities and current densities of conserved quan-
tities are expressed in a tutorial scope, for a fluid under arbitrary off-
equilibrium conditions, in terms of the two-particle potentialW (r) and
of the one- and two-particle densities in phase space f and f2. When
f and f2 vary significantly over the range of W (r), the density and
current density of energy are not defined in a unique fashion, so that
conservation of energy can be implemented locally in many different
ways. Owing to Galilean invariance, the stress tensor and the heat flux
are defined even far from the hydrodynamic regime.

This article is supplemented with comments by Y. Pomeau and
J. Piasecki.

In the 1960’s, Jacques Yvon was professor of physics at the University of Paris.
Beforehand, he had directed the Department of physics and nuclear reactors at Saclay.
He therefore asked Cirano De Dominicis, then myself, who worked in this department,
to become his assistant for his course of statistical mechanics. He focused on classical
fluids, modelled as an assembly of N point particles with mass m interacting through
a two-body potential W (|rj − rk|). His lectures started from the most fundamental
dynamical description, based on the Liouville equation governing the density in the
6N -dimensional phase space, a function of the time-dependent coordinates rj and pj
(1 ≤ j ≤ N). Having defined the reduced 1-body, 2-body, . . . densities

f (r, p; t) ≡
〈∑
j

δ3 (rj − r) δ3 (pj − p)
〉
, (1)

f2 (r, p; r
′, p′; t) ≡

〈∑
j �=k
δ3 (rj − r) δ3 (pj − p) δ3 (rk − r′) δ3 (pk − p′)

〉
, . . . , (2)

where 〈. . .〉 is the expectation value over positions and momenta in phase space,
he derived the BBGKY hierarchy of equations that he had initiated long ago [1].
Among the many topics he treated thereafter, he established rigorous foundations for
conservation laws in classical statistical mechanics; this part of his course inspires the
present discussion. Most of the forthcoming results appear in textbooks [2–5] with
various derivations.
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From the global conservation of the particle number N , of the energy E, of the
three components of the momentum P and of the angular momentum L, one infers the
existence at each point r of densities ρN of particles, ρE of energy, ρP of momentum
and ρL of angular momentum, and the existence of corresponding current densities
JN , JE , JP and JL that satisfy local conservation laws ∂ρ/∂t +div J = 0. Our pur-
pose is to define these quantities without approximations, for an arbitrary potential
W having possibly a long range, and in any regime even far from local equilibrium,
for instance within shock waves or near boundaries.
The density of particles is

ρN (r, t) =

〈∑
j

δ3 (rj − r)
〉
=

∫
d3p f (r, p; t) . (3)

Its time derivative follows from Hamilton’s equations drj/dt = vj = pj/m, dpj/dt =
Fj , so that the conservation of particle number ∂ρN/∂t + div JN = 0 is readily
expressed in terms of the current density of particles

JN (r, t) =

〈∑
j

vjδ
3 (rj − r)

〉
=

∫
d3p

p

m
f (r, p; t) . (4)

As regards the conservation of momentum, after having defined the three components
of the density of momentum through

ρP (r, t) =

〈∑
j

pjδ
3 (rj − r)

〉
=

∫
d3pp f (r, p; t) , (5)

we need to express their time derivative (involving the velocities vj and the forces Fj
issued from the potential W ),

∂ρPβ

∂t
(r, t) =

〈∑
j, α

vjαpβ
∂δ3 (rj − r)
∂rjα

〉
−
〈∑
j �=k

∂W (|rj − rk|)
∂rjβ

δ3 (rj − r)
〉
, (6)

in the form of the divergence −∑α ∂JαPβ/∂rα of a tensor JαPβ(r, t). This is straight-
forward for the first term. We rewrite the second term as

−1
2

∫
d3r′
r′β
r′
dW (r′)
dr′

〈∑
j �=k
δ3 (r′ − rj + rk)

[
δ3 (rj − r)− δ3 (rk − r)

]〉
,

and transform the last bracket into a divergence according to

δ3 (rj − r)− δ3 (rk − r) =
∫ 1
−1
dλ
dδ3
[
r− 12 (1 + λ) rj − 12 (1− λ) rk

]
dλ

(7)

= −1
2

∑
α

∂

∂rα

∫ 1
−1
dλ (rjα − rkα) δ3

[
r− 12 (1 + λ) rj − 12 (1− λ) rk

]
.

This finally yields the expression of the conserved current density of momentum:

JαPβ (r, t) =

∫
d3p
pαpβ

m
f (r, p; t)− 1

4

∫
d3p d3p′d3r′ (8)

× r
′
αr
′
β

r′
dW (r′)
dr′

∫ 1
−1
dλf2

[
r+ 12 (1− λ)r′, p; r− 12 (1 + λ)r′, p′; t

]
.
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Due to the non-locality of the potential, JP(r, t) involves contributions from the two-
body function f2 taken at points located on each side of r, at distances of the order
of the range of W .
The above results for the local balance of momentum can alternatively be derived

through Noether’s approach [5]. The conservation of the total momentum results
from the invariance of the Lagrangian under the translation rj �→ rj + δrj by a small
vector δrj = a. Consider now a slowly varying infinitesimal vector field a(r, t). Given
a solution {rj(t)} of the equations of motion in the 3N -dimensional space, a change
of rj(t) into rj(t)+a[rj(t), t] produces a variation of the action around this solution,
which has the form

δS =

∫
d3rdt

⎡
⎣∑
β

∂aβ (r, t)

∂t
ρPβ (r, t) +

∑
α, β

∂aβ (r, t)

∂rα
JαPβ (r, t)

⎤
⎦ (9)

in terms of the time derivative and of the gradient of a(r, t). The coefficients ρPβ(r, t)
and JαPβ(r, t) arising from this calculation are found to be equal to (5) and (8),
respectively. Integration by parts yields the local conservation law of momentum,
owing to the stationarity of S for arbitrary a(r, t).
In the above derivation of the momentum balance at the point r, after having

written in (6) the force exerted by the particle k onto the particle j in terms of the
potential W (|rj − rk|), we have transferred through Eq. (7) this force to the running
points r located between rj and rk. Likewise, the contribution of the potentialW (|rj−
rk|) to the energy density ρE(r, t) should be transferred to r. We are thus led to
distribute the potential energy W (|rj−rk|) over the segment (rj , rk). Characterising
as above a point r = 1

2 (1 + λ)rj +
1
2 (1 − λ)rk on (rj , rk) by the parameter λ, we

introduce on the segment −1 ≤ λ ≤ 1 a normalised measure dχ/dλ, generated by a
function χ(λ) that increases from χ(−1) = −12 to χ(1) = 1

2 . The density of energy is
then defined as

ρE (r, t) =

〈∑
j

p2j

2m
δ3 (rj − r)

〉
(10)

+

〈
1

2

∑
j �=k

∫ 1
−1
dλ
dχ

dλ
W (|rj − rk|) δ3

[
r− 12 (1 + λ) rj − 12 (1− λ) rk

]〉

=

∫
d3p
p2

2m
f (r,p; t) +

1

2

∫
d3r′d3p d3p′

×W (r′)
∫ 1
−1
dλ
dχ

dλ
f2
[
r+ 12 (1− λ) r′, p; r− 12 (1 + λ) r′,p′; t

]
.

Its time derivative is given by

∂ρE (r, t)

∂t
= −

〈 ∑
j �=k,β

vjβ
∂W (|rj − rk|)

∂rjβ
δ3 (rj − r)

〉
+

〈∑
j, α

p2j

2m
vjα
∂δ3 (rj − r)
∂rjα

〉

−
〈
1

2

∑
j �=k, α

∫ 1
−1
dλ
dχ

dλ
W (|rj − rk|)

[
1
2 (1 + λ) vjα +

1
2 (1− λ)vkα

]
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× ∂δ
3
[
r− 12 (1 + λ)rj − 12 (1− λ)rk

]
∂rα

〉

+

〈 ∑
j �=k, β

∫ 1
−1
dλ
dχ

dλ
(vjβ − vkβ)∂W (|rj − rk|)

2∂rjβ
δ3

× [r− 12 (1 + λ)rj − 12 (1− λ)rk]
〉
·

While the two middle terms readily produce a divergence with respect to r, the first
and last terms should be combined so as to account for exchanges between kinetic
and potential energies. Symmetrizing the first one with respect to j and k, integrating
by parts over λ, then using (7), we find their sum as

1

2

∫
d3r′
〈 ∑
j �=k, β

r′β
r′
dW (r′)
dr′

δ3(r′ − rj + rk)
∫ 1
−1
dλ
dχ

dλ

×
{[
δ3
[
r− 12 (1 + λ)rj − 12 (1− λ) rk

]− δ3 (r− rj)] vjβ
− [δ3 [r− 12 (1 + λ) rj − 12 (1− λ) rk]− δ3 (r− rk)] vkβ

}〉

=
1

4

∫
d3r′
〈 ∑
j �=k, α, β

r′β
r′
dW (r′)
dr′

δ3 (r′ − rj + rk)
∫ 1
−1
dλ

× {[ 12 + χ (λ)] vjβ + [ 12 − χ (λ)] vkβ} r′α ∂δ3
[
r− 12 (1 + λ) rj − 12 (1− λ) rk

]
∂rα

〉
.

Altogether, the current density of energy is found as

JE (r, t) =

∫
d3p

p

m

p2

2m
f (r, p; t) +

1

2m

∫
d3r′d3p d3p′

∫ 1
−1
dλ (11)

×
⎧⎨
⎩W (r′) dχdλ

[
(1 + λ)

2
p+
(1− λ)
2
p′
]

− r′
∑
β

r′β
r′
dW (r′)
2dr′

[(
1
2 + χ

)
pβ +

(
1
2 − χ

)
p′β
]⎫⎬⎭

× f2
[
r+ 12 (1− λ)r′, p; r− 12 (1 + λ) r′, p′; t

]
.

The conservation of energy can therefore be locally implemented in many different
ways. This arbitrariness depends on the choice of the function χ(λ) (defined for |λ| ≤
1) that enters the above definitions of the density and flux of energy. If we take
χ = 1

2λ/|λ| (or dχ/dλ = δ(λ)), the contribution W (|rj − rk|) to the potential energy
is assigned to the middle of the segment (rj , rk) ; if χ(λ) = λ/2, it is uniformly
spread over (rj , rk) ; if dχ/dλ =

1
2 [δ(λ + 1) + δ(λ − 1)] (or χ = 0 for |λ| < 1), it is

assigned in half to rj and to rk. The latter choice is usually made either implicitly
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[1–3] or explicitely [4]. Another source of arbitrariness has been pointed out in [2], the
possibility of replacing in the definitions (3), (5), (10) of the densities, the distribution
δ by some smooth localised normalised weight.

As noted in [4], the choice of χ(λ) is irrelevant if the factor f2 entering (8), (10)
and (11) does not vary significantly when r is translated over a distance smaller than
the range of the potential W ; in such a case, these expressions simplify into

JαPβ (r, t) =

∫
d3p
pαpβ

m
f(r,p; t) (12)

− 1
4

∫
d3p d3p′d3r′

r′αr′β
r′
dW (r′)
dr′

f2
(
r+ 12r

′,p; r− 12r′,p′; t
)
,

ρE (r, t) =

∫
d3p
p2

2m
f (r, p; t) (13)

+
1

2

∫
d3r′d3pd3p′W (r′) f2

(
r+ 12r

′,p; r− 12r′,p′; t
)
,

JE (r, t) =

∫
d3p

p

m

p2

2m
f (r, p; t) +

1

4m

∫
d3r′d3p d3p′ (14)

×
⎡
⎣W (r′) (p+ p′)− r′∑

β

r′β
r′
dW (r′)
dr′

(
pβ + p

′
β

)⎤⎦
× f2

(
r+ 12r

′, p; r− 12r′, p′; t
)
.

However, either for long-range forces or in situations involving rapid space variations,
the various formulations of the energy conservation differ and one should retain the
expressions (8), (10) and (11).

The conservation of the total angular momentum L is related to the invariance of
the Lagrangian under a rotation δrj(t) = ω∧rj(t). Here again, one can use Noether’s
method, replacing the rotation vector ω by an infinitesimal vector field ω(r, t), and
evaluating the variation δS of the action when the coordinates rj(t) are transformed
into rj(t)+ω[rj(t), t]∧rj(t). The coefficients yield as in (9) the components of the local
density ρL(r, t) and current density JL(r, t) of angular momentum, the stationarity of
the action implying the local conservation of angular momentum ∂ρL/∂t+div JL = 0.
In fact, the calculation is the same as in (9) within replacement of a[rj(t), t] by
ω[rj(t), t]∧ rj(t). Without even writing the specific forms of ρP, ρL, JP and JL, one
finds

ρL (r, t) = r ∧ ρP (r, t) , JαL (r, t) = r ∧ JαP (r, t) , (15)

relations valid for point particles without intrinsic angular momentum. Together with
(15), the local conservation of angular momentum entails the symmetry of the ten-
sor JαPβ(r, t). The latter property, readily checked on (8), is thus a consequence of
rotational invariance.

We now consider the consequences of Galilean invariance. If the frame is set
into motion with a velocity u, the coordinates r, p are changed into r′ = r − ut,
p′ = p −mu, the total momentum into P′ = P −muN and the energy into E′ =
E − u ·P+ 12mu2N . Accordingly, the density of momentum acquires a contribution
from the density of particles, and the density of energy acquires contributions from
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the densities of momentum and particles, according to

ρ′N (r
′, t) = ρN (r, t) , ρ′P′ (r

′, t) = ρP (r, t)−muρN (r, t), (16)

ρ′E′ (r
′, t) = ρE (r, t)−

∑
β

uβρPβ (r, t) +
1
2mu

2ρN (r, t).

Besides the change of P into P′ and E into E′, the transformation of the current
densities should account for the motion of the frame, so as to ensure that the equations
of conservation hold in both frames. The conserved currents in the moving frame
are therefore

J′N (r
′, t) = JN (r, t)− uρ′N (r′, t) , (17)

J′P′β (r
′, t) = JPβ (r, t)−muβJN (r, t)− uρ′P′β (r′, t) ,

J′E′ (r
′, t) = JE (r, t)−

∑
β

uβJPβ (r, t) +
1
2mu

2JN (r, t)− uρ′E′ (r′, t) ·

The local velocity u(r, t) of the fluid at a given point r is defined by imposing that,
in a Galilean frame with uniform velocity u = u(r, t), the density of momentum
ρ′P′(r

′, t) at the corresponding moving point (or equivalently the current density of
particles J′N (r

′, t)) vanishes. Introducing the mass density ρ = mρN , we have

mJN (r, t) = ρP (r, t) ≡ u (r, t) ρ (r, t), (18)

that is, using Eqs. (4) and (5),

u (r, t) =

∫
d3p p

m
f (r, p; t)∫

d3pf(r, p; t)
· (19)

The relations (16) and (17) suggest to parametrise ρE , JP and JE in terms of ρ(r, t),
of u(r, t), and of the quantities ρ′E′ ≡ ρU , J′P′ ≡ σ and J′E′ ≡ JQ which pertain to
the local rest frame, according to

ρE =
1
2ρu

2 + ρU , (20)

JαPβ = uαuβ ρ (r, t) + σ
α
β , (21)

JE =
(
1
2ρu

2 + ρU
)
u+
∑
β

uβσ
α
β + JQ, (22)

all these quantities being functions of r and t. Microscopic expressions for ρU , σ and
JQ are obtained by inserting (8), (10) and (11) into Eqs. (20)–(22). The stress tensor
σ has then the form (8) where pαpβ is replaced by (pα−muα)(pβ−muβ), the density
of internal energy ρU has the form (10) where p

2 is replaced by (p −mu)2, and the
heat flux JQ the form (11) where each pα is replaced by (pα −muα) in the factors
that precede f and f2.
We have interpreted 12ρu

2 as the density of kinetic energy, ρU as the density of
internal energy in the local rest frame, σ as the stress tensor and JQ as the heat flow.
These interpretations are confirmed by rewriting the conservation laws in terms of
the new quantities. We first get the mass conservation

∂ρ

∂t
+ div ρu = 0. (23)

Then, the conservation of momentum yields

ρ

[
∂uβ

∂t
+
∑
α

uα
∂uβ

∂rα

]
= −

∑
α

∂σαβ

∂rα
, (24)
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which is identified with Newton’s equation in the Eulerian description, applied to
an infinitesimal volume element around the point r. The conservation of energy,
rewritten as

∂ρU

∂t
+
∑
α

uα
∂ρU

∂rα
= −

∑
αβ

σαβ
∂uβ

∂rα
− div JQ, (25)

exhibits the balance of work done by the stresses on the volume element and of heat
that it receives. The conservation of angular momentum entails the symmetry of the
stress tensor σαβ .
These well-known laws have been recovered here as consequences of invariances

(including Galilean invariance) in an arbitrary situation, possibly far from local equi-
librium. In the hydrodynamic regime, they would be complemented by Fourier’s heat
law and by the equations of viscosity, but in the general case considered here the
local temperature and the local chemical potential are not defined. We can still rely,
however, on the dynamical laws (23)–(25) that relate the various quantities expressed
by the above microscopic formulae.

I am grateful to J. Piasecki for his critical reading.
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Debates. Microscopic local conservation laws for classical fluids

by R. Balian

Comments by Y. Pomeau and J. Piasecki

The derivation of the conservation laws from the BBGKY hierarchy dates back to
Yvon’s and Kirkwood’ time. It is well described in the book by George E. Uhlenbeck
and George W.G. Ford [1] “Lectures in Statistical Mechanics”, where an auxiliary pa-
rameter λ is used to build the fluxes of the conserved quantities. The problem arising
from the non-local character of the interaction between pairs of particles is clearly
discussed in the book by Pierre Résibois and Michel De Leener [2] “Classical Kinetic
Theory of Fluids”. The potential energy inside a volume includes the contribution of
pairs of particles, one of which is inside and the other one is outside this volume: this
contribution is not well defined and implies that the local density also is imprecisely
defined. This arbitrary aspect gives rise to the different definitions of energy density
considered by Roger Balian.



934 The European Physical Journal Special Topics

Moreover, Pierre Résibois and Michel de Leener discuss the situations where
this arbitrary character is insignificant, being only a surface correction, negligible
with respect to the volume energy. The fact that the potential energy corresponding
to distant pairs of particles implies a deep discussion of the local energy density
is also evoked in the book by Daniel Massignon [3] “Mécanique Statistique des
Fluides: Fluctuations et Propriétés Locales”, where a detailed general derivation of
the conservation laws can be found.
It is also of interest to look at a physical situation where a precise definition

of the molecular flux is needed. It means that the gradients are so large that one
cannot use the standard first order term for this flux in the limit where this gradient
is small. Physically it amounts to a change of the thermodynamic parameters that
is very small over a distance of order of atomic scales, molecule distances in dense
media or mean free path in a dilute system. Such a very fast variation of the density
(for instance) exists in liquid-vapour interfaces. The relevant quantity there is the
stress that is computed in the interface, precisely its xx-component where x is the
coordinate in the plane of the the interface. Assuming a discontinuity of density, when
deriving Laplace’s law for the capillary pressure drop across a curved liquid-vapour
interface, Laplace computed what can be seen in modern terms the xx-component of
the stress, a flux of momentum. Over the years Laplace’s expression was improved
until a definite form, equivalent to the JαPβ (r, t) of equation (8

′) of the contribution
by Balian, was found by Kirkwood and Buff [4]. This expression was derived in full
by Yvon in the lectures attended by one of us (YP) in the early sixties. Extending
Laplace’s derivation, Kirkwood and Buff express surface tension as the integral over
z (perpendicular to the interface) of the difference between the xx-and zz-component
of the stress. Amazingly Yvon did not present in his lectures his own original (and
different of Kirkwood-Buff) expression of the surface tension [5].
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