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Abstract. Markov State Modelling as a concept for a coarse grained de-
scription of the essential kinetics of a molecular system in equilibrium
has gained a lot of attention recently. The last 10 years have seen an
ever increasing publication activity on how to construct Markov State
Models (MSMs) for very different molecular systems ranging
from peptides to proteins, from RNA to DNA, and via molec-
ular sensors to molecular aggregation. Simultaneously the accom-
panying theory behind MSM building and approximation qual-
ity has been developed well beyond the concepts and ideas
used in practical applications. This article reviews the main
theoretical results, provides links to crucial new developments,
outlines the full power of MSM building today, and discusses the
essential limitations still to overcome.

1 Introduction

Applications in modern biotechnology and molecular medicine require simulation of
biomolecular systems in atomic representation with immense length and timescales
that are far beyond the capacity of computer power currently available. The processes
that constitute molecular function are rare event processes appearing on timescales
that are many orders of magnitude, say 10–15 orders of magnitude, longer than the
typical time steps of the numerical simulation. As a consequence, there is an increasing
need for reduced models that reproduce the correct rare event statistics.
In most molecular systems the biologically interesting and computationally prob-

lematic rare events belong to so-called conformation changes. Conformations are
metastable sets of the dynamical behavior of the molecule, that is, regions of the
molecule’s state space that are attractive for the dynamics in the sense that typical
trajectories remain within such regions for long periods of time before exiting towards
other metastable sets.
Markov State Modelling is about how to exploit the existence of metastable sets

for constructing a reduced molecular dynamics model with good approximation prop-
erties on the long timescales. In the standard setting a Markov State Model (MSM)
is a Markov chain whose transition matrix is given by the transition probabilities
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Pμ(Xτ ∈ Ak|X0 ∈ Aj) of the original molecular dynamics process (Xt) between some
subsets A1, . . . , Am of the molecular state space that form the (macro-)states of the
MSM. The timescale τ for which the transition probabilities are computed is called
the lagtime and typically is much shorter than the timescales of transitions between
the metastable sets of the process. Mathematically, the process of reducing the origi-
nal molecular dynamics process to the MSM process is a discretization of the so-called
transfer operator of the molecular dynamics process [1].
The main advantage of MSMs is that we know how to coarse grain them optimally.

Based on the dominant eigenvectors of a fine-scale MSM one can find aggregated
(macro-)states that correspond to the dominant metastable sets of the original mole-
cular dynamics [2,3]. It has been shown that for molecular systems exhibiting such
metastable sets, the Markovian dynamics given by an MSM allows very close approxi-
mation of the longest relaxation processes of the underlying molecular system, at least
under equilibrium conditions [4–6]. In fact, whenever we assume sufficient sampling,
the error E between dynamic long-term behavior of the original MD process and the
MSM process on timescales t > τ is bounded by

E(t) � C(δ + η)2 exp
(
− t

t2

)
, (1.1)

where δ can be made small by choosing the discretization fine enough, η is decreasing
exponentially with growing lagtime τ , t2 is the slowest timescale of the original MD
process, and C is a constant that depends mildly on the timescale and the number of
states of the MSM. We observe that, in principle, for long enough lagtime and appro-
priate discretization, the error on long timescales can be made arbitrarily small. For
details of how to compute C, δ, and η given the discretization and the lagtime please
see Sect. 4.2. It has been demonstrated that, in many cases of practical relevance,
MSM building requires short lagtime, i.e., short MD trajectories only, much shorter
than the timescales of interest, compare [7–11], for example. Thus, MSM building
often allows the study of dynamic behavior on long timescales without requiring MD
trajectories of comparable length. However, the problem of how to optimally choose
the appropriate lagtime and discretization in general has not been solved in general,
in particular for very high dimensional systems, and is still a topic of ongoing research
[12].
MSM building in molecular dynamics started with a series of papers more than

15 years ago [1,2,13,14]. Recent years have seen an ever increasing publication ac-
tivity on how to construct MSMs for very different molecular systems ranging from
peptides to proteins, from RNA to DNA, and via molecular sensors to molecular
aggregation. Moreover, MSMs have been used to construct kinetic fingerprints from
MD simulations which facilitates understanding of essential dynamics and comparison
with experimental data [15]. Several recent books review these practical approaches
in a lot of algorithmic detail, see [12,16] for an overview. Also, several MSM software
environments are available [17–19].
By far most of the literature on pratical applications uses standard MSM construc-

tions where the MSM consists of transition probabilities between sets in state space
as outlined above. With standard MSMs, despite the theoretical knowledge contained
in the error estimate (1.1), a reliable practical estimation of the deviation between
the original MD and the MSM process on long timescales is only possible for molec-
ular systems of moderate size [12]. However, more general MSM schemes have been
developed that exhibit improved approximation quality especially in high dimensions
[6,20–24]. That is, the full power of the idea behind MSMs has not been utilized yet.
Therefore, the present article concentrates on demonstrating the full breadth of pos-
sibilities of MSM building and the resulting opportunities and limitations. We will
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not go into details of how to realize MSMs for specific molecular systems but will
instead review how the idea of standard MSMs has been generalized in recent years,
why this leads to improved approximation quality and how the error of MSMs in
comparison to the original MD process can be controlled including the error resulting
from incomplete sampling.

2 The transfer operator

In order to allow for the discussion of MSM building beyond standard MSMs we have
to introduce the transfer operator of the original MD process. To this end we assume
that the MD process is a Markov process (Xt)t∈T in state space X, discrete in time
(T = N; as resulting from MD simulations) or time-continuous (T = R), with non-
negative transition kernel p(t, x, y) with

∫
X
p(t, x, y)dy = 1 for all x ∈ S. The kernel

p(t, x, y) tells us the probability of the MD process to go from x to y in time t, or, more
precisely, the density associated with it. We assume that the process has a positive
invariant (or stationary) density μ(x), typically of the form μ(x) ∝ exp(−βH(x)) for
some energy function H, such that

μ(y) =

∫
X

p(t, x, y)μ(x)dx.

This setting is rather general and includes most (stochastic as well as thermostatted)
cases of MD; an extension also covers pure micro-canonical MD, see [6] for details.
We introduce the Hilbert space L2μ = {u : X→ R;

∫
X
u(x)2μ(x)dx <∞} with scalar

product

〈u, v〉μ =
∫
X

u(x)v(x)μ(x)dx.

The transfer operator is defined as [6]

Ttu(y)μ(y) =

∫
X

p(t, x, y)u(x)μ(x)dx.

It transports function in state space according to the underlying dynamics and rel-
ative to the invariant measure, and transports probability densities into probability
densities. Tt plays the role of the propagator in quantum mechanics (QM). However,
opposed to QM propagators, it is a bounded operator on the Hilbert space L2μ; its
eigenvalues all are smaller or equal to 1 in modulus. λ = 1 always is an eigenvalue with
eigenvector 1 (the function being constant 1 on all of X). Under additional assump-
tions on the ergodicity of the Markov process (geometric ergodicity), λ = 1 is the
largest eigenvalue and the rest of the spectrum σ(Tt) satisfies λ ∈ σ(Tt) ⇒ |λ| < 1.
The adjoint operator of Tt wrt the scalar product 〈·, ·〉μ is given by [6]

T ∗t u(x) = Ex
(
u(Xt)

)
.

If the Markov process is reversible the detailed balance condition

μ(x)p(t, x, y) = μ(y)p(t, y, x)

is satisfied and the transfer operator is self-adjoint in L2μ [6] such that

Tt = T
∗
t .
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This is the situation we will consider in the following: reversible dynamics and self-
adjoint transfer operator. However, it should be emphasized that the assumption of
reversibility is made for the sake of simplicity of explanations and is not required
for doing Markov State Modelling. Generalization of the results presented here to
non-reversible Markov processes can be found in [6,25] (theory) and [26] (practical
construction).

Transition probabilities

Let us denote with Pμ the probability measure given by the stationary density μ,
i.e., Pμ(X0 ∈ A) = μ(A) =

∫
A
μ(x)dx. Then all transition probabilities of the MD

process (Xt) started from the equilibrium distribution can be computed by means of
the transfer operator according to

Pμ(Xt ∈ B|X0 ∈ A) = 1

μ(A)

∫
B

∫
A

p(t, x, y)μ(x)dx dy

=
1

μ(A)

∫
p(t, x, y)1A(x)1B(y)μ(x)dx dy

=
〈Tt1A,1B〉μ
〈1A,1A〉μ , (2.1)

where 1A denotes the indicator function of the set A, i.e., 1A(x) = 1 if x ∈ A and
1A(x) = 0 otherwise. This formula shows that any information on the long-term of
Ttu for u = 1A (or more general functions u) will allow us to understand the long-term
transition behavior of the underlying MD process.

Analogies: QM and Rouse model

In Quantum Mechanics (QM) the propagator Pt describes the evolution of wave-
functions. It is given by Pt = exp(−itH/�) where H denotes the Hamiltonian of the
quantum system. Spectral decomposition into the eigenenergies (eigenfunctions of H)
allow to describe the dynamics in terms of eigenenergies and associated eigenphases.
Often only the lowest eigenenergies are populated and the dynamics is essentially
given by the lowest eigenvalues and eigenvectors of H or Pt, respectively. In close
analogy this is what we are going to do with the transfer operator Tt: we will describe
the long-term dynamics by the dominant eigenvalues and eigenvectors of Tt. However,
the QM propagator is different from the transfer operator since its eigenvalues all have
modulus 1 (that is, there is no dissipation). In contrast the transfer operator in MD
just has one eigenvalue of modulus 1; all other have modulus strictly smaller than
one (thus, there is dissipation). In this respect the Rouse model of polymer physics
can be regarded as a closer analogy to MD transfer operators. For the Rouse model
the largest eigenvalues dominate the long-term dynamics [27] in the same way as we
will see in the following for the MD transfer operator.

Long-term dynamics and dominant timescales ti

Let us now consider the transfer operator Tτ associated with a certain lagtime τ .
Since Tτ is assumed to be self-adjoint it has only real-valued eigenvalues and -vectors.
We assume that it only has isolated, positive eigenvalues, ordered according to 1 =
λ1 > λ2 � . . . � λm ≥ . . . (infinitely many ones with possible repetitions due to
multiplicity). We associate a timescales with each eigenvalue by setting

ti =
τ

| log λi| , (2.2)
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such that we get a monotonically decreasing sequence of characteristic timescales
t1 =∞ > t2 � t3 ≥ . . ..
Let u0, u1, . . . be the corresponding normalized eigenvectors. Since Tτ is self-

adjoint, the eigenvectors are orthogonal and

Tτu =

∞∑
j=1

λj〈uj , u〉μuj =
∞∑
j=1

〈uj , u〉μuj exp
(
− τ

tj

)
·

The long-time transport properties of the Markov process, we call it “kinetics” in the
following, are given by

Tkτu = (Tτ )
ku =

∞∑
j=1

〈uj , u〉μuj exp
(
− kτ

tj

)
, (2.3)

which can also be written as

Tkτu = (Tτ )
ku =

m∑
j=1

〈uj , u〉μuj exp
(
− kτ

tj

)
+ Rku,

with ‖Rk‖2μ < exp(−kτ/tm) � 1 for large k. Thus, the dominant eigenval-
ues/timescales govern the kinetics induced by the Markov process. For the more
general case that a part of the spectrum of Tτ may be continuous (the “unbounded”
states in QM) or some eigenvalues may be negative, visit [6].
Because of this insight, we are interested in the dominant eigenvalues and eigen-

vectors of Tt, and thus in the eigenvalue problem Ttu = λu in L
2
μ, or, respectively, in

the variational formulation of the eigenvalue problem

u ∈ L2μ, λ ∈ R : 〈Tτu, v〉μ = λ〈u, v〉μ, ∀v ∈ L2μ. (2.4)

In general, Markov State Models are appropriate discretizations of the
eigenvalue problem that allow to approximate the dominant eigenvalues
and eigenvectors of Tt well, and thus encode the kinetics of the underlying
Markov process.

3 Galerkin discretization of transfer operators

In order to computationally treat the eigenvalue problem, we have to define a fi-
nite dimensional ansatz space spanned by N linearly independent basis functions
φ1, . . . , φN

S = span{φ1, . . . , φN} = {u ∈ L2μ| u =
N∑
j=1

ajφj , aj ∈ R}.

We will discuss two approaches that share two essential characteristics. First, they
make use of the ansatz space S to derive a finite linear equation that approximates
the original eigenvalue problem. Second, the entries of the matrices representing the
linear equation can be estimated from observations of the underlying Markov process.
The Galerkin approach is based on the restriction of the variational eigenvalue

problem to the subspace S:

uS ∈ S, λS ∈ R : 〈TτuS , v〉μ = λS〈uS , v〉μ, ∀v ∈ S (3.1)
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3.1 Standard MSMs

The standard form of MSMs, as utilized by most articles on the topic [12,16,28],
is derived from the Galerkin ansatz as follows [13]: Let {Aj}j=1,...,N be a complete
partition of the state space X into non-overlapping sets, i.e.,

∪Nj=1Aj = X, μ(Aj ∩Ak) = 0, j �= k,
and choose the ansatz functions as the indicator functions of the sets Aj ,

φj = 1Aj .

When inserting this into (3.1) with uS =
∑N
j=1 cj1Aj and varying v over the basis

1Ak , k = 1, . . . , k of S we get a system of N equations

N∑
j=1

〈Tτ1Aj ,1Ak〉μ cj = λS〈1Ak ,1Ak〉μ ck, k = 1, . . . , N

for the coefficients ck of the eigenvector uS . By using the form of the transition
probabilities (2.1) we immediately see that these equations are equivalent to the
finite-dimensional eigenvalue problem

T̂ c = λSc (3.2)

with the coefficient vector c = (ck)k=1,...,N and the transition matrix

T̂jk = Pμ
(
Xt ∈ Ak|X0 ∈ Aj

)
. (3.3)

Thus, discretization of the transfer operator eigenproblem using a complete partition
of state space results in a eigenproblem of the transition matrix of the MD process.
This is the standard setting used in by far most publications regarding pratical use
of MSMs, see [12]. However, the general Galerkin discretization approach (3.1) is far
more general and allows MSM building schemes with much improved approximation
properties.

Perfect approximation of long-term dynamics

In theory we can now ask what happens if we use an arbitrarily fine discretization.
The answer is given in [13], Cor. 5.4: If the sets Ak are made arbitrarily fine, i.e., if
maxk μ(Ak) → 0 and N → ∞, and all dominant eigenvalues are isolated, then the
dominant eigenvalues and eigenvectors of the discretized problem (3.2) converge to
the ones of the full transfer operator Tτ . This means that the long-term dynamics
of the MD process is approximated perfectly, at least regarding the propagation of
functions (2.3), if the MSM is made finer and finer.
On the first glance this theoretical result seems counter-intuitive: In general, i.e.,

without assuming that the lagtime τ is very long, the MD process (Xt) will not be
Markovian if restricted to some arbitrarily fine discretization sets Ak. Despite this,
the Markov model T̂ allows for perfect approximation of the long-term dynamics. The
resolution of the apparent contradiction lies in the observation that the dynamical
behavior as of (2.3) does not concern single MD trajectories but the resulting kinetics
in an ergodic sense and that the mathematical convergence result just states that on
this particular level the memory of the MD process regarding the discretization sets
is without importance.
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The curse of dimension

It is quite obvious that if we consider systems with growing dimension d, the size N
of typical full partitions will explode with d. There are essentially two scenarios in
which this fundamental problem can be circumvented, (1) if there is a subspace Xr of
reduced dimension r � d spanned by r reaction coordinates of the system to which
the box discretization can be restricted (i.e., the sets Ai have the form of cylinders that
are based on a full partition of Xr), or (2) if a geometry-based clustering of sampling
data allows to identify reliable partition sets, cf. [12]. Both cases do not offer general
solutions to the problem but depend on the system at hand and expert intervention.
Because of this limitation of standard MSM building other ansatz spaces have been
considered. We will discuss two alternatives to standard MSMs (core-set and meshless
MSMs). To this end we first have to discuss the general form of discretization matrices
resulting from the Galerkin ansatz.

3.2 Galerkin discretization: The general case

In general, the finite-dimensional variational problem (3.1) is equivalent to the finite-
dimensional generalized eigenvalue problem [6]

Pc = λSMc (3.4)

with uS =
∑N
j=1 cjφj and

Pjk = 〈Tτφj , φk〉μ, Mjk = 〈φj , φk〉μ.
By defining ĉ = Mc, we can rewrite (3.4) in form of the equivalent finite eigenvalue
problem

T̂ ĉ = λS ĉ, T̂ = PM−1. (3.5)

The matrix T̂ is a matrix representation of the so called projected transfer operator
[6]

QTτQ : S → S,

where Q : L2μ → S is the orthogonal projection onto S with respect to 〈·, ·〉μ that can
be expressed as

(Qf)(x) =

N∑
i,j=1

φi(x)M
−1
ij 〈φj , f〉μ,

where M−1 is the inverse of the matrix M defined above and the inverse exists since
the φj are linearly independent. That is, solving the restricted eigenvalue problem is
equivalent to computing the eigenvalues of the projected operator QTQ.
The entries of the matrix P can always be rewritten in the following form:

Pjk = 〈φj , T ∗φk〉μ =
∫
Ex

(
φj(x)φk(Xt)

)
μ(x)dx = Eμ

(
φi(X0)φk(Xt)

)
, (3.6)

where Ex denotes expectation with respect to the paths of (Xs)s∈[0,t] when starting in
X0 = x. This shows that the entries of P are correlation functions of the underlying
dynamics. Recently, an approach to Markov State Modelling using the Rayleigh Ritz
variational formula for eigenvalues of self-adjoint transfer operators has been proposed
[29,30]. The resulting linear variation method again results in the restricted eigenvalue
problem (3.4) with P and M in the above correlation matrix form.
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Core set MSMs

The first alternative to standard (full-partition) MSM building schemes are so-called
core set MSMs [6,21,22,26,31]: The ansatz space S results from the following set-
based construction: We start with disjoint sets, the so-called core sets Cj for j =
1, . . . , N that do not partition the whole state space X but only form the core basins
of the metastable sets. The ansatz space then is constructed by choosing the so called
committor functions {qj}, j = 1, . . . , N , as ansatz functions [22]. The committor
qj(x) is defined as the probability that starting in state x ∈ X the next core set that
the Markov process will visit is Cj . The committors {qj}, j = 1, . . . , N form a set
of linearly independent, non-negative functions that constitute a partition of unity
(
∑
i qi(x) = 1 for all x ∈ X). Setting φi = qi we end up with discretization matrices

Pjk = 〈Tqj , qk〉μ, Mjk = 〈qj , qk〉μ.
Unfortunately, efficient explicit computation of the committor functions is not feasible
in high dimensions. However, in core-set MSM buidling these ansatz functions are
never computed explicitly. Instead one defines the so-called milestoning processes
(X̂−t ) and (X̂

+
t ) based on the core sets Cj , by setting X̂

−
t = k if the original process

at time t came last from Ck, and X̂
+
t = k if the original process at time t went next

to Ck. Utilizing this, the two matrices P and M can be written in the form [6,22]

Pjk = Pμ

(
X̂+t = k, X̂

−
0 = j

)
, Mjk = Pμ

(
X̂+0 = k, X̂

−
0 = j

)
, (3.7)

and thus can be computed by means of trajectories of the MD process without need
to compute the committor functions explicitly.
In comparison to standard full partition MSMs, core-set MSMs show significantly

enhanced approximation quality (see next section) and in principle can also be con-
structed for high dimension systems as long as the system exhibits only a limited
number of strongly metastable sets.

Meshless MSMs

In [24,32,33] a meshless discretization of the transfer operator has been presented. It
uses the ansatz functions

φi(x) =
1

Zi
exp(−α‖x− xi‖2), Zi =

∑
j

exp(−α‖x− xj‖2),

where ‖·‖2 denotes the Euclidean norm, and the set of points xi are free and adaptively
chosen during the process of exploring state space by the dynamics. The φi form a non-
negative partition of unity like the committor functions. But instead of being chosen
in a problem-adapted way according to some pre-defined core sets like the committor
functions, the meshless ansatz functions can be adapted to the exploration of state
space by the dynamics by means of moving/choosing the points xi appropriately.

3.3 Computing the discretized transfer operator

As we have seen, the Galerkin approach for discretizing the transfer operator lead to
linear systems, where the entries of the matrices are given in terms of probabilities or
expectation values. So computing approximate solutions of the restricted eigenvalue
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problem (3.1) is based on sampling these stochastic quantities. Constructing a full-

partition MSM aims at estimating the matrix T̂ from (3.3) given by

T̂jk = Pμ

(
Xτ ∈ Ak|X0 ∈ Aj

)
.

Having sampled a long trajectory (xi)i=0,...,K of the original process with stepsize Δt,
a maximum likelihood estimator is given by [6]

T̃
(K)
jk =

#(xi+Δi ∈ Ak|xi ∈ Aj)
#(xi ∈ Aj) ,

where Δi = τ/Δt. The above formula can be easily adapted to the case where a collec-
tion of short trajectories is available instead of one long trajectory (cf. [9]). Obviously,
for core-set MSM building the construction can be done in close analogy. Alternative
approaches utilize the fact that the process has to pass the surface between discretiza-
tion boxes for efficient computation of the transition matrix T̃ without requiring long
trajectories [34].

4 How accurate can MSMs be?

The computation of the discretization by the described methods is based on an appro-
priate construction of the ansatz space S on the one hand, and an accurate sampling
of the probabilistic entries of the matrices on the other hand. The overall error can
be decomposed into these two parts,

‖Tτ − T̃ (K)‖ � ‖Tτ −QTτQ‖+ ‖QTτQ− T̃ (K)‖. (4.1)

Here, the first part describes the discretization error that is related to the approxima-
tion of the restricted eigenvalue problem, and the second part measures the sampling
error relative to a pre-defined discretization.

4.1 Discretization error: Eigenvalues

The Galerkin ansatz allows for a quite general estimation of the discretization error:
Assume that the ansatz functions φi that span the finite-dimensional ansatz space
S are non-negative and form a partition of unity (which is the case for indicator
functions, committor functions as well as meshless ansatz functions). Then S ⊂ L2(μ)
is a subspace with

1 ∈ S. (4.2)

Furthermore, for an m � dim(S) =: n, let 1 = λ1 > λ2 > . . . > λm be the m
dominant eigenvalues of a self-adjoint operator Tt, i.e. for every other eigenvalue λ it
holds λ < λm. Let u1, u2, . . . , um be the corresponding normalized eigenvectors, and
let Q denote the orthogonal projection onto S with respect to 〈·, ·〉μ. Moreover, let
1 = λ̂1 > λ̂2 > . . . > λ̂m be the dominating eigenvalues of the projected operator
QTQ, that is, solutions of the corresponding restricted eigenvalue problem. Then [4,6]

max
i=1,...,m

|λi − λ̂i| � λ1(m− 1)δ2, (4.3)

where
δ = max

i=1,...,m
‖(Id−Q)ui‖ (4.4)
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is the maximal projection error of the leading m eigenvectors to the space S. That is,
the better my ansatz space allows to approximate the leading eigenvectors the smaller
the discretization error will be. The generality of this result guarantees that it holds
for standard full MSMs as well as core set or meshless MSMs. Surprisingly a similar
result can be proved for any non-dominant eigenvalue of the transfer operator [6,35],
that is, the above statement is not limited to the cluster of the m largest eigenvalues.
In [35] it is also discussed how to estimate the projection error δ just from trajectories,
i.e., without using information on the eigenvectors.
The estimate (4.4) of the discretization error does neither require any assumptions

on a spectral gap nor on the Markovianity of the MD process. The reasons for this are
as discussed above: the eigenvalues characterize the dynamics in an ergodic (average)
sense and not in any sense related to single trajectories.

4.2 Discretization error: Long-term transport

One can not only bound the discretization error regarding the eigenvalues, but also
compare the full long-term transport of the MD process with the discretized process.
The associated transport error in the L2μ-space is

E(k) = ‖QT kτ Q− (QTτQ)k‖,
where long-term transport belongs to large k. In [5] it has been shown that -under the
same assumptions as above- this error depends on the lag time τ and the projection
error δ (4.4) for the dominant m eigenvectors:

E(k) � (mδ + η)
[
m1/2(k − 1) δ + η

1− η (1− η
k−1)
]
· exp

(
− kτ

t2

)
, (4.5)

with the spectral gap quantity

η = λm+1/λ2 = exp
(
− t2 − tm+1

t2tm+1
τ
)
·

In particular, whenever δ decreases faster as m3/2 for increasing m, and in addition
we are interested in timescales associated with large enough k, the error can be made
arbitrarily small by

– increasing the number m, so that δ is small enough (choose discretization appro-
priately), and

– choosing the lagtime τ large enough so that η is small enough (select appropriate
timescale).

In comparison to the result (4.3) on the eigenvalue error, the latter estimate bounds
the full long-term transport error. The fact that one needs an additional spectral gap
condition (make η small by selecting appropriate τ) shows that spatial relaxation
requires some memory loss of the MD process that only comes with long enough
timescales.

Remark

The estimate (4.5) reduces the much cruder one (1.1) by setting t = kτ , and C =
max(tm3/2, (1− ηk−1)/(1− η)).
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A critical commentary

Careful analysis of the above error uncovers another disadvantage of standard full
partition MSMs: For a given standard MSM, reduction of the transport error below
a certain threshold is only possible by further refining the partition in the transition
region between the metastable sets where sampling is rare and its improvement com-
putationally expensive, see [5] (theory) and in particular the extensive discussion of
the practical consequences in [28]. This problem cannot be circumvented for standard
MSMs but only by core set MSMs where the committors automatically incorporate
the optimal discretization of the transition region. This explains their superior ap-
proximation quality of core-set MSMs in comparison to standard MSMs.
In many articles on practical applications of MSM building the discretization er-

ror is completely ignored : While the dependence of the overall error on the lagtime
τ is checked carefully in many publications on MSM building, starting with [7,8,36],
the discretization error often is not considered at all. Instead tests for Markovianity
or simular consistancy checks are utilized in order to justify the validity of the re-
sulting MSM; however, these tests can show positive results even if the underlying
discretization error still is totally off [6,28]. Thus an explicit warning seems appropri-
ate: Checking for Markovianity and sufficiently long lagtime does not guarantee that
the resulting MSM is accurately reproducing the longest timescales of the underlying
MD process.

4.3 Sampling error

Like the discretization error, also the sampling error can be estimated, at least for
standard full partition and core set MSMs: Given available trajectory data (xi)i=0,...,K
one considers its discretized version D = (yi)i=0,...,K with yi = j if xi ∈ Aj . Then
the probability P(D|T̃ (K)) that this data has been produced by the transition matrix
T̃ (K) of a Markov chain is given by

P(D|T̃ (K)) =
K−1∏
i=0

T̃ (K)yi,yi+1
.

Given a prior distribution ρ on transition matrix space, Bayes formula allows us to
write down the posterior probability distribution of transition matrices [37]

P(T̃ (K)|D) = P(D|T̃ (K))ρ(T̃ (K)),
from which the sampling error can be computed. Several algorithms for sampling
P(T̃ (K)|D) have been designed [37–39] so that a posteriori estimation of the sampling
error is possible, e.g., by using the standard deviation of P(T̃ (K)|D) as an estimator for
‖QTtQ− T̃ (K)‖, or by computing the posterior distribution of the leading eigenvalues
and eigenvectors from P(T̃ (K)|D).

Remark

Although the total error decomposes as in (4.1), it is important to note that the two
error contributions are not independent, in general. Clearly, a very fine full-partition
of state space will guarantee a small projection error, but increases the sampling effort
dramatically because of the increasing number of transition probabilities that need
to be estimated [31].
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5 Pros and cons

Let us now take a step back from all the details and review the advantages and
disadvantages of MSM building based on Galerkin discretizations. The main pros
and cons seem to be the following:

+ MSM building allows for error-controlled approximation of the longest timescales
of the underlying MD process; reliable schemes for error estimation are available.

+ This approximation can be very precise if the discretization is chosen appropriately
and the underlying exploration of state space based on short MD trajectory is
sufficient.

+ The construction of MSMs is a not too sophisticated procedure, requires short MD
trajectories only, can be easily parallelized, and is applicable to most molecular
systems with dominant metastable sets.

– The process of finding appropriate discretizations (full box partition or good core
sets) is still not automated but essentially case- and expert-dependent.

– In order to get acceptably small error for high dimensional systems additional
information about the system at hand is needed: For choosing not-too-large full
partitions in high dimensions, information on the reaction coordinates of the sys-
tem is required; this can be avoided in core-set MSM but then the choice of good
core sets requires knowledge on the main metastable regions in state space.

– Guaranteeing sufficient sampling still is the main bottleneck for large molecular
systems. Integration of enhanced sampling methods into MSM building is possible
but cannot fully cure the problem. As a result, for most really large molecular
systems, reliable estimation of the MSM approximation error is infeasible since one
cannot guarantee that all important parts of the state space have been explored.

The combination of the obstacles of choosing good discretizations and getting suffi-
cient sampling in high dimensions motivates an alternative approach to MSM building
that will be discussed in the next section.

6 The future: Collocation discretization of transfer operators

The discretization by collocation is a partial remedy for the two main problems of
the Galerkin approach to MSM building. It is based on the idea of satisfying the
eigenvalue problem of Tτ just on some preselected collocation points: Again assume
that we can represent the eigenvalue u by ansatz functions {φj}, so

u(x) =

N∑
j=1

ajφj(x). (6.1)

Applying the transfer operator Tτ = T
∗
τ gives

Tτu(x) =
N∑
j=1

ajEx(φj(Xt)).

Now we only require that the eigenvalue problem for Tτ is satisfied at N collocation
points x1, . . . , xN

Ttu(xk) = λu(xk), k = 1, . . . , N.

This again yields a finite eigenvalue problem

Ea = λBa
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with
Ekj = Exk(φj(Xt)), Bkj = φj(xk). (6.2)

This way, the computation of the matrix entries (6.2) for the collocation method
makes only use of probability measures of the form Pxk , where the process is always
initially started at a collocation point. That is, no probabilities of the form Pμ have
to be computed and no explicit information on μ is needed.

Is this still an MSM?

Collocation discretization will in general not lead to stochastic discretization matrices
in stark contrast to the cases discussed in most articles on practical MSM building. It
thus may seem contra-intuitive if we still use the name “Markov State Model” for the
resulting finite dimensional problem. However, the matrices resulting from collocation
discretization allow for an aggregation into a Markov model in a post-processing step.
We will discuss this issue further in our numerical example in Sect. 6.2.

Computation from trajectories

Accurate sampling of the matrix E from (6.2) can be achieved by starting K inde-
pendent trajectories of length τ from each collocation point xj . If yi(xj) denotes the
end point of the ith trajectory of length τ starting in xj , then

Ẽ
(K)
kj =

1

K

K∑
i=1

φk(yi(xj))

is a maximum likelihood estimator for the matrix E. Note that for this sampling
no ergodicity of the trajectory has to be assumed since knowledge of the invariant
density is not needed.

6.1 Ansatz functions

We cannot go into details on the choice of ansatz functions and collocation points for
collocation discretization of transfer operators. We just want to add some comments
on the fundamental opportunities that result from the fact that we have complete
freedom in choosing the ansatz functions.

Trigonometric collocation

Whenever we look at torsion or peptide angles in molecular dynamics, we face periodic
potentials. Hence, periodic ansatz functions like the basis of the discrete Fourier
transform would be an appropriate choice for approximation. That is, we could choose
N = 2n+ 1 and

ψ1 = 1/2, ψ2k = cos(kx), ψ2k+1 = sin(kx), k = 1, . . . , n

together with uniform collocation points xk = (k − 1)2π/n, k = 1, . . . , n, such that

S = {f : f(x) =
1

2
a1 +

n∑
k=1

(
a2k cos(kx) + a2k+1 sin(kx)

)
.

Additionally, the unitarity of the discrete Fourier transform guarantees that for any
function in L2μ our approximation will converge if we let N tend to infinity.
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Fig. 1. Left: periodic two-well potential energy function V . Right: committors for the vicini-
ties of the two minima of the potential energy as core sets C1, and C2.

Polynomial collocation

If one considers bonding potentials for non-angular coordinates, one might want to
choose polynomial ansatz functions. This becomes obvious if one considers the pro-
totypical example of a harmonic potential, where the eigenfunctions of the transfer
operator in one dimension are given by the Hermite polynomials Hn, n = 1, 2 . . .. We
thus propose the use of the ansatz space

S =

⎧⎨
⎩f : f(x) =

n∑
j=1

ajHj(x)

⎫⎬
⎭ ,

with Hermite polynomial centered to the equilibrium position of the bonding potential
and with collocation points resulting from the zeros of Hn.

6.2 Numerical example

Since collocation discretization will in general not lead to stochastic discretization
matrices, we will now demonstrate how the MSMs resulting from collocation will look
like. As an example we choose a diffusion process in a periodic two-well potential. The
process (Xt) is a solution of the following stochastic differential equation

dXt = −∇V (Xt)dt+ σdBt,

where Bt denotes standard Brownian motion, and the noise intensity σ is associated
with an inverse temperature β = 2/σ2. The potential V is illustrated in Fig. 1 and
we use β = 3.
First, we choose N = 7 and apply the trigonometric collocation method with

equidistant collocation points (xj = 2jπ/n for j = 0, . . . , n − 1 as usual in FFT).
We find the following estimates of the leading three eigenvalues resulting from the
generalized eigenvalue problem Eu = λBu as in (6.2)

λ̃3, λ̃2, λ̃1 = 0.1003, 0.9724, 1.0000

while the exact eigenvalues of the transfer operator are given by

λ3, λ2, λ1 = 0.1138, 0.9682, 1.0000.
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Fig. 2. Results for trigonometric collocation method. Left: error in second eigenvalue for
different numbers of collocation points. The error remaining for n > 15 is not related to
discretization but results from the finite sampling. Right: comparison of second eigenvector
for N = 7 with exact second eigenvector.

The matrix T̂ = B−1E can also be computed:

T̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 −0.5216 −1.2763 0.7867 0.0211 0.0079 −0.0294
0 0.1311 −0.1215 −0.0842 −0.0040 0.0025 0.0048

0 0.0233 0.0456 −0.0690 0.0167 −0.0096 −0.0087
0 0.0467 −0.0050 −0.0493 0.0009 0.0013 −0.0036
0 0.0080 −0.0102 −0.0078 1.0690 −0.4921 −0.5049
0 −0.0036 0.0065 0.0079 −0.0100 0.0633 −0.0607
0 0.0071 −0.0153 0.0129 0.2030 −0.1035 −0.0752

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Note that in contrast to the transition matrix in classical Markov State Modelling
this matrix is not a stochastic matrix. At first glance, this might seem to be a disad-
vantage because a transition matrix directly relates to a Markov chain which can be
interpreted as a dynamical approximation of the original process. On the other hand,
the limitation to ansatz functions that lead to stochastic matrix approximations is
not necessary if we are interested in approximating the variational eigenvalue prob-
lem. In particular, information about the eigenvectors and eigenvalues is valuable for
constructing a discretization that an accurate Markov State Model can be built on.
In Fig. 2 one can see that the approximation of the second eigenvalue by the

periodic ansatz functions of the discrete Fourier transform converges quickly, but also
gives a good result with only few collocation points used. The second eigenvector tells
us how to coarse grain the collocation MSM further: It exhibits a sign change at x0 ≈ π
so that we can coarse grain using two macrostates, A = [0, x0], and B = [x0, 2π]. By
using these sets and the available trajectory information (which has been collected
while computing the collocation discretization for N = 7), we get an estimate for the
respective 2× 2 MSM transition matrix

T̂ =

(
0.9876 0.0124

0.0124 0.9876

)
,

with eigenvalues 0.9752 and 1. In order to get the same accuracy by using a standard
full partition MSM with uniform boxes, we need N = 19 boxes.
In comparison, the core set approach with 2 sets (ball of radius 0.3 around the two

minima of the potential, see right hand panel in Fig. 1) gives the estimate λ̃2 = 0.9685
for the second eigenvalue which is three digits accurate. In comparison, the standard
full partition MSM approach only achieves this accuracy if more than n = 30 boxes
are used. This demonstrates that the core set approach –provided good choices for
the core sets are available– has superior approximation properties.
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6.3 Sparse tensor approximation in high dimensions

Assume now that we are dealing with two dimensions, an angular one, x1, and a
bond-length like dimension, x2. Then, we consider approximations in which we first
expand f(·, x2) for fixed x2 in terms of trigonometric ansatz functions, and then the
x2-dimension in Hermite polynomial

f(x1, x2) =

n1∑
i1=1

ci1(x2)ψi1(x1)

=

n1∑
i1=1

n2∑
i2=1

ai1,i2ψi1(x1)Hi2(x2).

In d dimensions this kind of tensor approximation leads to the ansatz space

Sn1,...,nd =

⎧⎨
⎩f(x1, . . . , xd) =

n1,...,nd∑
i1,...,id=1

ai1,...,idφi1(x1) · . . . · φid(xd)
⎫⎬
⎭

where φi is either trigonometric or polynomial depending on the dimension xi. The
dimension of this ansatz space is n1 × . . .× nd and thus exponential in d. In order to
avoid the curse of dimensions, sparse tensor approximation considers ansatz spaces
like

Sn =

⎧⎨
⎩f(x1, . . . , xd) =

∑
i1,...,id∈In

ai1,...,idφi1(x1) · . . . · φid(xd)
⎫⎬
⎭

In =

{
(i1, . . . , id) :

d∏
k=1

max(1, ik) < n

}
·

The literature on sparse tensor approximation shows that Sn still has sufficient ap-
proximation properties [40] and that the dimension of Sn just grows like n(log n)

d−1.
It has been shown in [23] that the dominant eigenvectors of the transfer operator

are almost constant in the direction of fast degrees of freedom. Therefore, any tensor
ansatz can be limited to ni = 1 if xi is one of the fast dimensions. Numerical schemes
for identifying such dimensions in the framework of sparse tensor approximation are
available (so-called adaptive dimension schemes [41]). In this way, collocation MSMs
based on Sn in combination with adaptive dimension schemes open the opportunity
for the construction of MSM building schemes that can be applied in an automatic
way even in very high dimensions.

6.4 Pros and cons of collocation

Let us very shortly discuss the advantages and disadvantages of MSM building based
on collocation:

+ Collocation schemes allow for sparse tensor approximations that avoid the curse
of dimensions and thus in principle would allow for automated MSM building in
very high dimensions.

+ Collocation schemes do not require that the invariant measure has to be sampled.
The collocation points result from the form of ansatz functions used.
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– Presently no validation (apart mathematical approximation theory and demon-
strations for test system) of collocation-based MSM building for realistic molecular
systems has been given.

– Presently no theory for estimating the approximation error of collocation-based
MSMs has been developed.

7 Concluding remarks

Based on the pros and cons already discussed above we will restrict our concluding
remarks to the following three:

1. Almost all practical applications of MSM building use standard full partition
MSMs, cf. [10,16]. In view of the rich variety of alternative MSM constructions and
their respective advantages, this is rather surprising. The explanation may be that
standard full partition MSMs provide trivial interpretation in form of a Markov
process that jumps between the discretization sets with just the right probability
which gives a direct kinetic meaning to it. However, all the alternative MSMs allow
for the same construction if wanted but deliver superior approximation properties.

2. Galerkin-based MSMs do not seem to be the optimal solution for construction of
accurate approximations and reliable sampling in very high dimensions, in partic-
ular if one cannot identify appropriate reaction coordinates to which discretization
can be limited. Instead sparse tensor approximation of transfer operators need to
be developed further. Collocation discretization of transfer operators seems to al-
low for this development because it opens the door for using dimension-adaptive
tensor approximations, cf. [41].

3. Most of the theory of MSM building is based on the assumption that the mole-
cular dynamics process considered is in equilibrium and has a unique invariant
measure. It covers scenarios in which the relaxation of a molecular system back to
equilibrium is described but it does not fully apply to nonequilibrium molecular
dynamics. There are some first approaches, like [26], that start to develop the
fundamentals of MSM building for nonequilibrium MD but the field is still rather
unexplored.

Despite the concept of MSM building in molecular dynamics is more than 15 years
old already and has developed into a toolkit that is successfully and widely utilized in
molecular research, its potential has not been fully explored and it seems that many
interesting developments can well be expected.
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