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Abstract. We discuss the relationships between large deviations in
stochastic systems, and “effective interactions” that induce particular
rare events. We focus on the nature of these effective interactions in
physical systems with many interacting degrees of freedom, which we
illustrate by reviewing several recent studies. We describe the connec-
tions between effective interactions, large deviations at “level 2.5”, and
the theory of optimal control. Finally, we discuss possible physical
applications of variational results associated with those theories.

1 Introduction

Rare events are important in many physical settings: classic examples include
phase transformation, protein-folding, and chemical reactions [1–4]. In those cases, a
system makes a transition between two distinct states, and a variety of analytical
and computational tools are available [4–8]. Here, we focus on a different class of
rare events, where systems behave in an unusual fashion over an extended period of
time. Specifically, we consider the probability of trajectories in which time-averaged
quantities remain far from their typical (equilibrium) values. If the system is ergodic,
the probabilities of such events decay to zero as the length of trajectory goes to
infinity: the rate of this decay is described by the mathematical theory of large
deviations [9]. Recent studies of these large deviations have provided insights into
fluctuation theorems [10,11], glassy systems [12–15], protein-folding [16–18], chaotic
dynamical systems [19,20] and interacting particle models [21–25].
It turns out that the rare trajectories of interest in these systems can be charac-

terised as typical trajectories for a certain modified system [26–31], which we refer
to here as the “auxiliary model”. The auxiliary model inherits many of its important
properties from the original system of interest: if the original model has the Markov
property then so does the auxiliary model. In many cases, the auxiliary model inherits
the symmetries of the original model, and other properties like kinetic constraints are
also preserved [30].
The existence of this auxiliary model raises important questions for the characteri-

sation of rare events. In particular, it means that by adding a particular set of
interactions to the original model, one may drive the system to realise these rare
events. In fact, these interactions can be shown to be the “optimal” ones for realising
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the rare events of interest, in a certain precise sense [32–35] (see Sect. 4.1, below). It
is therefore of great interest to characterise these interactions. For example, in glassy
systems, they can stabilise “amorphous solid states” [14,15] that are otherwise only
metastable – the nature of the interactions required to achieve this is a long-standing
question in the field. In protein-folding systems, effective interactions might stabilise
the native state, or they might favour misfolded states [17,18]: understanding how
these states can be characterised (and suppressed) is of vital importance in that
context.
In this paper, we survey some key results that are related to the existence and na-

ture of these auxiliary models, and the effective interactions that they encode. Our aim
is to draw together ideas from several different contexts and to give a (non-rigorous)
presentation that highlights the central outstanding questions, and possible routes
to solving them. In Sect. 2, we describe the setting for our main results. Section 3
illustrates the kinds of phenomena that we are interested in, through a summary of
some recent numerical results. Then, in Sect. 4, we describe some theoretical results,
including the relationship to large deviations at “level-2.5” [36] and to optimal control
theory [32–35]. These results have not yet been exploited very far in the physics con-
text – we highlight possibilities for future progress along these directions. Section 5
gives a brief summary and outlook.

2 Basic theory

In this section, we collect some key results related to large deviations in stochastic
processes. Many of these results have been derived independently in different contexts
and by different groups. Here we follow the presentation of [13,30,37]; further details
and references can be found in those works.

2.1 Models and master equations

We consider a Markov process in continuous time, on a (finite) discrete state space
with configurations C. For example, one can consider a lattice of Ising spins, or a
simple particle model such as the asymmetric exclusion process. In practical settings,
one is often interested in the thermodynamic limit, where the size of the state space
is taken to infinity, for example by considering spins on lattices of increasing size.
Alternatively, one may consider diffusive processes described by Langevin equations
(stochastic differential equations). These may typically be obtained from lattice mod-
els by a continuum limit: one defines a process on a discrete lattice and then takes
the lattice spacing to zero, rescaling time in an appropriate way to ensure diffusive
behaviour. Our restriction to finite state spaces means that the following analysis may
not always be valid on taking thermodynamic or continuum limits – in typical cases
we expect our results to remain valid in such limits, but this is not guaranteed. (In the
thermodynamic limit, the most serious problems arise in cases of phase transitions.
In the continuum limit, the difficulties are mostly technical – one expects the results
here to apply as long the system is ergodic, and particles’ probability distributions
decay to zero at large distances. We provide a few comments on these points in later
sections.)
The transition rates between configurations of the system are W (C′ ← C). Let

P (C, t) be the probability that the system is in configuration C at time t: this quantity
evolves by a Master equation

∂tP (C, t) = −r(C)P (C, t) +
∑

C′
W (C ← C′)P (C′, t) (1)
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where r(C) =
∑
C′W (C′ ← C) is the “escape rate” from configuration C. We assume

that the process is irreducible, which ensures ergodicity, since the state space is finite.
It is also useful to identify the subclass of these models that obey detailed balance.
For these models, there exists a “potential” EC such that

W (C ← C′)e−EC′ =W (C′ ← C)e−EC , (2)

for all C and C′. Models with this property have time-reversal symmetric (“equi-
librium”) steady states, in which the probability distribution over configurations is
p(C) ∝ e−EC .

2.2 Large deviations and biased ensembles

The rare events that we consider are defined by the choice of an observable, which
may be one of two types. A trajectory of the system consists of the (ordered) set of
states which the system visits, and the times at which transitions (jumps) between
states take place. The first type of observable takes the general form

A =
∑

jumps C→C′
α(C′ ← C) (3)

where the sum runs over all transitions within the trajectory and the α(C′ ← C) are
a given set of numbers. For example, if α = 1 for all pairs of configurations then A
is the total number of configuration changes in the trajectory. The second type of
observable is the time integral of a state-dependent quantity

B =

∫ tobs

0

dt b(C(t)). (4)

where C(t) is the configuration of the system at time t. For large tobs, the probability
distribution of B generically has a large deviation form:

p(B) ∼ exp[−tobsφ(B/tobs)] (5)

where φ(b) is known as a rate function. A similar expression holds for the distribution
of A. [Here, p is a probability density function and the precise meaning of (5) is
that limtobs→∞ t−1obs ln p(B = btobs) = −φ(b); the “∼” symbol is used in this sense
throughout this article.] The main question of interest in the following is: what kinds
of dynamical trajectory dominate the distribution p(B) when B is not equal to its
typical (steady-state) value?
To obtain information about these trajectories, it is convenient to write a biased

probability distribution over the possible trajectories of the model:

P[C(t); s] = P[C(t); 0] · e
−sB[C(t)]

Z(s, tobs)
(6)

where P[C(t); 0] is the unbiased (steady-state) probability distribution over trajecto-
ries C(t), the notation B = B[C(t)] indicates functional dependence on the trajectory
C(t), the parameter s sets the strength of the bias, and Z = 〈e−sB〉0 resembles a par-
tition function. (We note that P[C(t); s] is a probability density function in the space
of trajectories: see for example [13,37] for an explicit construction of these objects.
By contrast, probabilities such as P (C, t) in (1) are distributions over the discrete
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configuration space, at a fixed time t.) Hence, the average of any observable O within
the generalised ensemble defined by (6) is

〈O〉s =
〈Oe−sB〉0
Z(s, tobs)

· (7)

It may be shown [38] that averages within this biased ensemble are the same as those
in an ensemble in which the value of A (or B) is constrained to a particular value.
[Note that this equivalence is assured only in systems with finite state spaces, in
which case the free energy ψ(s) is analytic and convex. In systems with infinite state
spaces, dynamical phase transitions [12,37,39] may mean that trajectories which are
representative of some values of A (or B) cannot be obtained within biased ensembles
of the form given in (6).]
To analyse these biased ensembles, one considers the probability that a system

is in configuration C at time t, and that the observable B has a particular value B̃
associated with the trajectory up to time t [11,13,37]. (The analysis for observables of

type A is similar.) If the probability that B is between B̃ and B̃+dB̃ is P (C, B̃, t)dB̃
then we define P (C, s, t) =

∫
dB̃ P (C, B̃, t)e−sB̃ . This quantity evolves by an equation

which is formed from (1) by replacing P (C, t) with P (C, s, t), and adding a term
−sb(C)P (C, s, t) to the right hand side. The resulting equation is linear in P so it is
useful to write it formally as

∂t|P 〉 =W(s)|P 〉 (8)

where W(s) is an operator (matrix) with diagonal elements −r(C) − sb(C) and off-
diagonal elements W (C′ ← C). In the case of type-A observables, the parameters
α(C′ ← C) appear in the off-diagonal elements via multiplicative factors e−sα [13,37].
Note that (8) resembles a master equation, but it does not conserve probability (in
the sense that

∑
C P (C, s, t) is not constant under the time evolution).

2.3 Connection between type-A and type-B observables

We note at this point that the operatorW(s) fully specifies the probability distribution
in (6), up to possible boundary terms that we will neglect in the following (see also
Sect. 2.4, below). This means that if two processes have the same initial condition
and are associated with the same operatorW(s), then they have the same behaviour.
It follows that ensembles defined by type-A observables can be given alternative
definitions in terms of type-B observables, but for a different underlying stochastic
model.
For example, suppose that a model has transition ratesW (C′ ← C) and is biased by

an observable of type A. Then, the same operatorW(s) can be obtained by considering

a different model with transition rates W̃ (C′ ← C) = W (C′ ← C)e−sα(C′←C), biased
by an observable B̃ = s−1

∫
dt[r(Ct) − r̃(Ct)] where r̃(C) =

∑
C′ W̃ (C′ ← C): see for

example [13, Appendix B]. A similar transformation means that any B-biased process
can always be re-written as an A-biased one. (This requires that r(C) + sb(C) > 0 for
all configurations, which in finite state spaces can always be achieved by including
an appropriate constant shift in b(C).) Hence, in the following, we sometimes state
results either for type-A or type-B observables, since the results for the other type
can always be derived by an appropriate transformation.

2.4 Auxiliary models

Given a model [specified by rates W (C′ ← C)] and an observable [specified by the
α(C′ ← C) or b(C)], one may always define an auxiliary model whose steady state
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distribution of trajectories is close to (6). [A precise characterisation of this “closeness”
is given in (14) below]. For observables of type B, the transition rates of the auxiliary
model are [27,28,30,31]

W aux(C′ ← C) = uC′W (C′ ← C)u−1C (9)

where the uC are obtained by solving an eigenvalue equation for the operator W(s).
Specifically, 〈u| is the left eigenvector associated with the smallest eigenvalue of
−W(s):

〈u|(−W(s)) = ψ(s)〈u|. (10)

Here ψ(s) is a dynamical free energy, related to the dynamical partition function
by Z(s, tobs) ∼ e−tobsψ(s). The matrix −W(s) obeys the necessary conditions of the
Perron-Frobenius theorem, so the eigenvector 〈u| is unique and has strictly positive
elements (the original Markov process was assumed to be irreducible). We note the
connection of (9) to Doob’s h-transform [40], which is one of the earliest results
connecting rare events to auxiliary models of this kind. Similar results also appear in
other kinds of biased rare-event problems [29,34,41], and may also be generalised to
quantum systems [42].
Equation (9) motivates us to define an “effective potential”

ΔVC = −2 lnuC . (11)

With this definition, W aux(C′ ← C) = W (C′ ← C)e(ΔVC−ΔVC′ )/2, which can be inter-
preted as a modification of the original transition rates according to the change of
the effective potential in a transition. For type-A observables, the analogue of (9) is

W aux(C′ ← C) = uC′W (C′ ← C)e−sα(C
′←C)u−1C . (12)

To see the relation between W aux and W(s), we define an operator Waux whose off-
diagonal elements are the W aux(C′ ← C) and whose diagonal elements are −raux(C),
with escape rates raux(C) =

∑
C′W

aux(C′ ← C). If we also define û to be a diagonal
operator whose elements are the uC , it follows [30] that

W
aux = ûW(s)û−1 + ψ, (13)

which holds for both type-A and type-B observables. Denoting the elements of the
dominant right eigenvector of −W(s) by vC , one has that the steady-state distribution
of configurations in the auxiliary model is paux(C) ∝ uCvC [30].
With these definitions, the trajectory measure for the steady state of the auxiliary

model, P[C(t); aux], is related to the biased ensemble (6) as

P[C(t); s] = P[C(t); aux] · e
[ΔVC(tobs)−ΔVC(0)]/2

Zaux
· p0(C(0))
paux(C(0)) (14)

where Zaux is a normalisation constant, and the final factor on the rhs is the ratio of
the probability of the initial configuration C(0) in the original process [p0(C(0))], and
the probability of the same configuration in the steady state of the auxiliary process
[paux(C(0))]. (The Perron-Frobenius property of −W(s) ensures that paux(C) > 0
for all C so this ratio always exists.) Equation (14) is most easily derived via direct



2356 The European Physical Journal Special Topics

construction of the various P[C(t)]. For example, if the biasing obervable is of type A
then we have

P[C(t), s] =
[
K∏

k=1

e−(tk−tk−1)r(Ck−1)e−sα(Ck←Ck−1)W (Ck ← Ck−1)
]

×e−(tobs−tK)r(CK)p0(C0)
1

Z(s, tobs)
(15)

where the trajectory is composed of configurations C0, C1, . . . , CK , with configuration
changes at times t1, t2, . . . tK , we define t0 = 0, and p0(C) is the probability of finding
configuration C in the steady state of the original (unbiased) model. A similar con-
struction of the analogous probability density for the auxiliary process then yields
(14). For a detailed analysis, see [31], which also includes an analysis of models with
continuous state spaces.
Note that P[C(t); aux] in (14) is defined specifically as the steady-state probability

distribution over trajectories, while P[C(t); s] is defined in terms of a general distrib-
ution of initial conditions. The reason for this distinction is to emphasise that while
P[C(t); s] is defined in terms of the distribution p0, which specifies the initial condi-
tion C(0) for the unbiased process, the bias s affects the actual initial distribution
of C(0) in the biased ensemble. In fact, since the differences between the auxiliary
and biased ensembles in (14) depend only on the initial and final states, one expects
that for large tobs then Prob[C(t); s] and Prob[C(t); aux] will differ only through ini-
tial and final “transient” regimes. In this case, it may be seen from (14) that the
distribution of the initial configuration C(0) in the biased ensemble is proportional
to e−ΔVC(0)/2p0(C0), which does indeed depend on the bias s (through ΔVC(0)). The
initial and final transient regimes are discussed in more detail in [13] and also in [31],
where it was shown how a set of time-dependent auxiliary rates can lead to exact
correspondence between the auxiliary and biased processes.
It is useful to note that (for type-B observables)

u(C) ∝ lim
tobs→∞

〈e−sB+tobsψ(s)〉C,0 (16)

where the average is taken with respect to the unbiased dynamics, for a system
initialised in configuration C [27,28,30,61]. The term tobsψ(s) in the exponent ensures
that the average does not grow or decay exponentially in time, because from the
definition of Z and its link to the dynamical free energy one has

e−tobsψ(s) ∼ Z(s, tobs) = 〈e−sB〉0. (17)

2.5 Biased ensembles with time-reversal symmetry

In cases where the biased ensembles are symmetric under time-reversal, the eigen-
value problem (10) may be simplified: it reduces to finding the largest eigenvalue
of a symmetric matrix. The most common situation in which this occurs is when
the unbiased model obeys detailed balance, and the biasing observable is either of
type-B, or of type-A with α(C′ ← C) = α(C ← C′) for all C and C′. In this case one
has simply [13,30]

ψ = min
|x〉
〈x|eÊ/2(−W(s))e−Ê/2|x〉

〈x|x〉 (18)
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where Ê is a diagonal operator whose elements are the energies EC that appear in
the detailed balance relation (2), and the maximisation is over vectors with elements
xC . The maximum occurs when xC = uCe−EC/2 so this variational result allows direct
estimation of the effective interactions. Generalisations of this result to cases without
time-reversal symmetry will be discussed in Sect. 4 below.

3 Illustrative results from model systems

Having introduced the general features of biased ensembles of trajectories, we now
return to our original focus on complex systems with many interacting degrees of
freedom. In these cases, it is not usually possible to solve the eigenproblem (10) in
order to obtain the uC . Further, even if this eigenvector could be obtained exactly, it
typically has such a large dimensionality that it does not provide direct information
about the physical nature of effective interactions in the system. To illustrate these
physical ideas, we now recall some recent results on the physical features of effective
interactions in biased ensembles, for different model systems.

3.1 Glass-forming systems

Kinetically constrained models consist of interacting spins (or particles) in which local
rules mean that only a subset of spins are able to flip at any given time step [43,44]
These models provide simple descriptions of glass-forming liquids [45]. The “mobile”
subset of spins changes with time, and the system is ergodic on long time scales. The
dynamical motion in these systems can be complex and co-operative, even if their
static (thermodynamic) properties are very simple.
In these systems, it is typically possible to construct configurations in which the

subset of mobile spins remains finite in the limit of large system size. In this case, if one
considers the large deviations of the total number of spin flips in a trajectory (type-A
observable with all α = 1), it can be shown from (18) that (i) limN→∞ ψ/N ≤ 0 where
N is the system size, (ii) this bound is saturated for all s > 0, and (iii) the effective
interaction in this case drives the system into configurations with a finite number
of mobile spins. It follows that these systems have dynamical phase transitions at
s = 0 [12,13]. The dominant feature of the effective interactions for s > 0 is a
very strong suppression of mobile spins, although the detailed nature of the effective
interactions that produce this suppression is not known.
Similar phase transitions exist in fully-connected (“mean-field”) spin-glass models

with large numbers of metastable states [46], and there is also numerical evidence
for them in atomistic models of glass-forming liquids [14,15], but the nature of the
effective interactions again remains unclear. (In fact, even establishing the existence
of phase transitions from numerical simulations is very challenging, since it requires
a finite-size scaling analysis in which both system size and observation time tobs are
considered together [15,47]. The relevant analysis is not difficult in principle, but
obtaining accurate results over a sufficiently large range of length- and time-scales is
often difficult with current methods.)
A recent study of a particular kinetically constrained model (the East model [43])

highlights the complex effective interactions that can appear even in simple systems.
On biasing this model to low activity, one observes the dynamical phase transition
discussed above. However, if one biases instead to high activity, one observes a hier-
archy of responses that mirror the “aging” behaviour of the same model [48]. (Aging
behaviour occurs when the system is initialised at high temperature followed by
dynamical relaxation at low temperature.) The dominant features of these states
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are (i) effective interactions that are long-ranged even for weak biases s, and (ii) a
hierarchy of length scales associated with different relaxation processes within the
system.

3.2 Exclusion processes

There have been many studies of large deviations in exclusion processes, in which
particles move on a lattice, with at most one particle per site. Effective interactions
in biased ensembles have been considered in relatively few cases; two examples are
the limits of maximal dynamical activity or maximal current, where the effective
interactions can be found exactly [49]. These interactions are dominated by a long-
ranged repulsion between particles: the system can be mapped to a “one-component
plasma” of positively-changed particles interacting by Coulomb-like forces. The result
of these long-ranged forces is that the system becomes “hyperuniform” [50] – density
fluctuations on large length scales are strongly suppressed [51]. Such correlations occur
in a variety of non-equilbrium systems [52–54], but they are forbidden in equilibrium
systems with short-ranged forces.
Biasing exclusion processes to small activity can also result in phase transitions

into inhomogeneous states [23,39,55], although the effective interactions associated
with these states have not been investigated in detail. Similar behavior can occur in
simple models of heat conduction [56].

3.3 Numerical results

As well as these analytic results, there are several numerical methods that al-
low large deviations to be investigated. Briefly, transition path sampling [7] is a
computational method for sampling trajectories of systems according to general
path ensembles, including examples such as (6) [14,57]. The method is most easily
implemented for processes obeying detailed balance, although generalisations are pos-
sible [58]. Alternatively the cloning method was developed specifically to study large
deviations [19,59,60] and is not restricted to systems with time-reversal symmetry –
it involves many copies (“clones”) of the system evolving in parallel. Finally, a third
method was proposed recently by Nemoto and Sasa [61], which involves direct
estimation of the auxiliary rates in (12), in a manner reminiscent of thermodynamic
integration. We note that in a system of N spins (or particles), these methods all rely
on direct dynamical simulation of trajectories of the system, at a cost that scales
linearly with N and with the total time T to be simulated. The total time T required
to obtain accurate results is not known a priori : it depends on the system of
interest and the method used, but it also increases strongly as the bias strength
|s| increases. For large biases, the cost can quickly become prohibitive. Exact diago-
nalisation of the generator is also possible in principle: the time required is polynomial
in the number of states of the system, so exponential in N . Nevertheless, for small
systems and large biases, this method can sometimes be competitive [48].
Methods based on direct simulation have provided a number of interesting insights,

especially for models that are not tractable analytically. Examples include model
protein-folding systems [17], where biased ensembles are dominated by “misfolded”
states, reminiscent of the low-activity states discussed in Sect. 3.1. Similar results can
also be obtained in protein systems for which Markovian effective descriptions are
available – if the resulting state space is sufficiently small then large deviations can
be analysed by exact diagonalisation of the operator W(s) [16]. One again finds that
the effective interactions stabilise misfolded metastable states [18].
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Numerical methods have also been used to study the competition between chaotic
and periodic behaviour in dynamical systems [19,20]. In particular, even if a sys-
tem’s steady state is chaotic, its large deviations may be characterised by periodic
trajectories, which allow the system to avoid “equilibration” into an ergodic state.
We emphasise that the path sampling and cloning methods do not provide direct

information about effective interactions, and even the method of [61] typically requires
an approximate parameterisation of these interactions to be chosen before starting the
analysis. However, the methods do yield representative configurations of the biased
system, which at least provide qualitative insights into the underlying interactions.
We believe that further development of methods in this area is a useful direction for
further study.

3.4 General principles

We identify two general principles from the illustrative examples above. Firstly, biased
ensembles of trajectories often contain correlations that are very unusual in equilib-
rium systems. The hyperuniform states found in exclusion processes are stabilised
by long-ranged effective interactions [49,50] – these might not have been anticipated
given the simple local rules and the simple bias to high activity. Similarly, the long-
ranged correlated states found in the East model biased to high activity do not at
all resemble the equilibrium state of that system [48], and nor do the periodic (non-
chaotic) trajectories found in some dynamical systems [19,20]. We emphasise that
biased states are optimised with respect to global observables (A or B) that depend
on the whole system, integrated over a long period of time, so there is no general rea-
son to expect effective interactions to be the short-ranged forces that are familiar from
equilibrium settings. So one may expect to find new and unusual phenomena on in-
vestigating large deviations. Similarly, if one considers a trajectory of a d-dimensional
system as a (d+1)-dimensional object, and the biased distribution (6) as a Gibbs-like
distribution for this (d + 1)-dimensional system, one does not expect d-dimensional
cross-sections (layers) through the larger system to be described by a simple set of
short-ranged interactions [62].
Secondly, effective interactions are often linked with underlying metastable

states in a system – biasing to low activity often drives the system into “glassy”
metastable states, as found in kinetically-constrained models [12,13], atomistic glass-
formers [14,15], and proteins [16–18]. Given the variational principle (18), this may
not be suprising – the low-lying eigenvalues of the operator −W(0) are naturally
linked with metastable states and phase transitions, so weak perturbations can be
expected to lead to hybridisation of these states with the dominant eigenvector. How-
ever, the use of large deviation methods to further analyse dynamical metastability
and glassy behaviour seems promising. For example, recent work on biased ensembles
in quantum systems also highlights the importance of quiescent (inactive) states that
couple weakly to their environment [42].

4 Effective interactions without time-reversal symmetry

This section surveys some results, mostly from the mathematical physics litera-
ture, which provide variational methods for determining uC in systems without
time-reversal symmetry, so that (18) does not apply. For systems of practical
interest, we are proposing that these results could be useful for (i) analytic bounds on
dynamical free energies (for example, proving the existence of phase transitions in
non-equilibrium systems, following the analysis of the time-reversible case [12,13]);
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(ii) variational analyses of effective interactions, as used in [48]; (iii) improved numer-
ical procedures, for example obtaining an approximation to the auxiliary dynamics
in order to improve sampling within a computational scheme. Our purpose here is
to highlight these opportunities so we mostly quote relevant results, referring to the
literature for more detailed analysis and derivations.

4.1 Optimal control theory

We first state a general variational formula for the free energy ψ(s), which may be
viewed as a generalisation of (18) for systems lacking time-reversal symmetry. The
variation is over sets of transition rates, which should be chosen to reproduce the
auxiliary rates (9) as closely as possible. For type-B observables,

ψ(s) = lim
tobs→∞

⎡

⎣ min
{W var}

1

tobs

〈
sB +

∑

jumps C′←C

L(C′ ← C)
W var(C′ ← C)

〉

var

⎤

⎦ (19)

where the variational parameters are (non-negative) rates W var(C′ ← C), the average
is over a dynamical evolution under those rates starting from some arbitrary initial
state, and

L(C ← C′) =W var(C ← C′)
[
ln
W var(C ← C′)
W (C ← C′) − 1

]
+W (C ← C′). (20)

We note here an equivalent way of writing the objective function in (19) above. By
averaging over the number of jumps in any small time interval after time t, starting
from the current configuration C(t), one finds

ψ(s) = lim
tobs→∞

[
min
{W var}

1

tobs

∫ tobs

0

dt

〈
s b(C(t)) +

∑

C′
L(C′ ← C(t))

〉

var

]
(21)

where we have also written out B explicitly as a time integral. The minima in (19,21)
are obtained when the rates W var are equal to the auxiliary rates defined by (9).
A derivation of this result will be sketched in Sect. 4.2 below. We first give a brief
discussion of its interpretation and potential usefulness.
The variational principle (19) arises in “optimal control theory” [32–35]: the idea

is that W var is a “controlled dynamics” that should be optimised in order to realise
the rare event of interest. The content of (19) is that the controlled process should
minimise s〈B〉var, while deforming the original rates as little as possible. [Note that
L(C′ ← C) resembles a relative entropy between the sets of transition rates, with L = 0
if W var(C′ ← C) = W (C′ ← C). In fact the final term in (21) is exactly the small-Δt
limit of the relative entropy between the distributions of configurations reached from C
in a small time interval Δt, for systems with rates W andW var. For the rates W , this
distribution is PΔt(C′) = ΔtW (C′ ← C) for C′ �= C and PΔt(C) = 1−r(C)Δt otherwise;
the relevant expressions for the rates W var are analogous.] Since the maximum in
(19) is obtained when W var = W aux, we may restrict the maximisation to rates

W var(C′ ← C) = W (C′ ← C)e[ΔV var(C)−ΔV var(C′)]/2 of the same form as W aux. Then
ΔV var has the interpretation of an effective potential that pushes the system towards
the rare event of interest. In this context, (19) can be interpreted as an optimisation
over the “controlling field” ΔV var.
In the case of diffusive processes, (19) has a particularly simple form: consider a

model defined by a Langevin equation (or stochastic differential equation)

ẋ = K(x) + η (22)
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where K = K(x) is a force and η is a white noise. We then define a “controlled
process” ẋ = K − ∂xV var + η where V var = V var(x) is the controlling potential. The
idea is to discretize in time using a small time interval Δt. For x′ ≈ x, one has

L(x′ ← x)

W var(x′ ← x)
≈ (x′ − x)(−∂xV var) + exp((x′ − x)∂xV var)− 1. (23)

Then averaging over x′ with weight W var reduces this to Δt(∂xV
var)2/2 + O(Δt2).

Hence

ψ(s) = lim
tobs→∞

min
V var

1

tobs

∫ tobs

0

dt

〈
s b(x(t)) +

1

2
[∂xV

var(x(t))]2
〉

var

(24)

where one seeks to simultaneously minimise the average of sB and the magnitude
of the controlling force ∂xV

var. The relationships between optimal control and large
deviations for diffusive systems have been discussed in the physics literature [34,35],
but while the results (19,21) for Markov chains are known in the mathematical liter-
ature [63], they have not, to our knowledge, been applied very far in physics.
In terms of future applications, it is clear that (19) gives bounds on ψ and allows

variational estimates of W aux. In principle this enables variational analyses of large
deviations in non-equilibrium settings, similar to those described for time-reversible
systems in Sect. 3.1. However, there is an additional difficulty associated with (19),
which arises from the estimation of the average with respect to the variational
(controlled) dynamics. In the absence of detailed balance, these averages will typ-
ically need to be obtained by direct numerical simulation, in which case convergence
to the limit of large tobs may be non-trivial.
In the case of time-reversal symmetric ensembles, one can restrict to W var that

obey detailed balance, and (19) reduces to (18). To see this, replace the expectation
value in (21) by an average with respect to the steady state of the controlled dynamics
μvar(C) ∝ e−E(C)−ΔV (C). The key point is that the logarithmic term in L(C′ ← C)
yields

∑
C,C′W

var(C′ ← C)μvar(C)[ΔV (C) − ΔV (C′)]/2; using the detailed balance
relationW var(C′ ← C)μvar(C) =W var(C ← C′)μvar(C′) and interchanging the summa-
tion variables shows that this term vanishes. Finally using r(C) =

∑
C′W (C′ ← C),

Eq. (21) reduces to

ψ = min
{W var}

∑

C

[
sb(C) + r(C)−

∑

C′
W var(C′ ← C)

]
μvar(C) (25)

which can be shown to be the same as (18).
We highlight two other potential routes for application of (19). First, it can pro-

vide simple bounds on ψ by appropriate simple choices of W var. For example if one
biases by the total activity (number of spin flips), and the system has a configuration
with sub-extensive escape rate [there exists a sequence of configurations CN in systems
of increasing size N such that r(CN )/N → 0 as N →∞], then limN→∞ ψ(s)/N ≤ 0
and hence (given weak conditions on properties of the steady state) there must be
a dynamical phase transition at s = 0. This is a non-equilibrium analogue of results
proven for kinetically constrained models of the glass transition [12,13]. It is relevant
for exclusion processes, where the same result may be derived either by exact solu-
tion [39] or within fluctuating hydrodynamics [24,25]. But the method based on (19)
is both very simple and very general. Second, there should be possibilities of using
(19) in numerical schemes, for example by generalising the method of Nemoto and
Sasa [61]. This possibility remains to be explored.
Finally one could also consider finite-tobs analogues of (21). We define φ(C, tobs)

as the minimum value of the objective function on the r.h.s. of (21) when starting
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from a given configuration C. It is then not difficult to argue that φ(C, tobs) = ψ(s) +
ΔVC/(2tobs) for large tobs, up to corrections that decay exponentially with tobs. If one
allows the variational rates W var to depend on time then one can also obtain a closed
form for the evolution equation of the φ(C, tobs). Thus it may be possible to obtain
the effective interactions from the finite-tobs behaviour of the optimal cost φ(C, tobs)
in the control theory approach.

4.2 Large deviations at “level-2.5”

To understand the origin of the variational result (19), it is useful to consider the
large deviations of a very general set of observables [29]. For a given trajectory C(t),
we define the empirical current which is a set of numbers Q(C′ ← C), obtained by
counting the jumps (transitions) between each pair of configurations, and dividing
by tobs. Similarly, the empirical measure is a set of numbers μ(C) given by the frac-
tion of time that the trajectory spent in each configuration. Note that for a given
trajectory,

∑
C′ Q(C′ ← C)tobs is the total number of jumps that the systen makes

out of configuration C, and
∑
C′ Q(C ← C′)tobs is the total number of jumps into that

configuration. These two numbers must be exactly equal unless C is the initial or final
configuration, in which case they differ by at most unity. Dividing by tobs we find a
balance condition ∑

C′
Q(C′ ← C) =

∑

C
Q(C ← C′), (26)

which holds at the level of individual trajectories, up to corrections of at most ±1/tobs
which are negligible in the large-tobs limit.

4.2.1 Statement of the large deviation principle

The observables μ and Q are very high-dimensional objects if the state space is large,
but as long as there are a finite number of them they obey a large deviation principle
whose explicit rate function is known, for both biased and unbiased ensembles of
trajectories. We first state the result [36]: for sufficiently large tobs, one has p(μ,Q) ∼
e−tobsI(μ,Q) with

I(μ,Q) =
∑

C,C′

{
Q(C′ ← C)

[
log

Q(C′ ← C)
W (C′ ← C)μ(C) − 1

]
+W (C′ ← C)μ(C)

}
· (27)

In an ensemble biased by a type-B observable according to (6), all trajec-
tories with a given μ and Q are reweighted by the same factor e−sB =
exp(−s

∑
C b(C)μ(C)), so after including the normalization factor 1/e−tobsψ(s) one has

p(μ,Q) ∼ e−tobs[I(μ,Q,s)−ψ(s)] with

I(μ,Q, s) = I(μ,Q) + s
∑

C
b(C)μ(C). (28)

The result (27) is known as a “level-2.5” large deviation principle (LDP) since it is
intermediate between an LDP for the empirical measure (known as level 2) and a full
LDP for trajectories (known as level 3). A review of large deviations at level-2.5 is
given in [36], including results for diffusive processes [64,65], while rigorous analysis
of the case with countably infinite state spaces is given in [66–69], including a proof
of (27).
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4.2.2 Connection to the auxiliary process

The typical empirical measure and current within the biased ensemble of (6) can
be obtained by minimisation over μ and Q of the rate function I(μ,Q, s) in (27).
The key point for our purposes is that this allows a variational determination of the
auxiliary model of (9). We first cast the minimisation over μ,Q as a minimisation over
a “variational auxiliary model”: a model for which typical trajectories have current
Q and measure μ. The transition rates of this model then have to be

W var(C′ ← C) = Q(C′ ← C)/μ(C). (29)

As one would expect, the balance constraint (26) on Q then ensures that the steady
state of the process defined by the rates W var is μ.
We rewrite (27) as

I(μ,Q) =
∑

C,C′

{
W var(C′ ← C)

[
log

W var(C′ ← C)
W (C′ ← C) − 1

]
+W (C′ ← C)

}
μ(C). (30)

Including the bias term as in (28) gives the function I(μ,Q, s), which is minimised
by the (μ,Q) that are most likely within the biased ensemble: we denote their values
by (μ∗, Q∗). The variational rates W var at this minimum of I(μ,Q, s) define a model
for which typical trajectories have (μ,Q) = (μ∗, Q∗) so they must be exactly the
auxiliary rates W aux associated with the biased ensemble.
Moreover, the minimal value of I(μ,Q, s) itself is just the dynamical free energy:

ψ(s) = I(μ∗, Q∗, s). This follows from a contraction principle [9] because the observ-
able B = tobs

∑
C b(C)μ(C) is a simple function of the empirical measure: recall from

(17) that 〈e−sB〉0 ∼ e−tobsψ(s). Hence, decomposing the average into contributions
from all possible μ,Q, one has

〈e−sB〉 ∼ max
μ,Q

[
e−tobsI(μ,Q)e−stobs

∑
C b(C)μ(C)

]
∼ max

μ,Q
e−tobsI(μ,Q,s). (31)

Summarising the ingredients so far, we have ψ(s) = minμ,Q I(μ,Q, s) where the min-
imization can equivalently be done over the variational rates W var rather than μ and
Q. The final step in the argument is to realize that in the large tobs-limit, the average
over C(t) in the optimal control formulation (21) above becomes an average over the
stationary measure μ(C), making the penalty term L equal to I(μ,Q) as rewritten in
(30). Thus the variational principle (19) follows from the general level-2.5 result (27).

4.2.3 Derivation of (30)

A derivation of (30) for the case s = 0 is given in [29]. Here we outline their argument.
The empirical current and measure (μ,Q) are typical for the process W var, but they
are not typical for the original process W . For a given trajectory, one may obtain
an expression for the ratio P [C(t); 0]/P [C(t); var], using representations analogous to
(15). Then one writes the probability of observing an empirical current and measure
in the unbiased process as

e−tobsI(μ,Q) ∼
∑

C(t)|μ,Q
P [C(t); 0] =

∑

C(t)|μ,Q

P [C(t); 0]
P [C(t); var] P [C(t); var]

∼
〈

P [C(t); 0]
P [C(t); var]

〉

var

· (32)



2364 The European Physical Journal Special Topics

The summations in this equation should be interpreted as path integrals over all
trajectories that are compatible with an empirical current and measure (μ,Q). The
average on the r.h.s. is with respect to the W var process: the restriction to a given
(μ,Q) can be omitted here since this average is already dominated by such trajec-
tories, which are typical for that process. Using the explicit form of the ratio to be
averaged then yields (27). The analysis of [29] considered only the case s = 0, but the
general result of (28) follows immediately as explained above, because the effect of the
bias in (6) can be re-written as a bias that depends only on the empirical measure.

4.3 Large deviations at level-2

Finally, we recall a classical result of Donsker and Varadhan [26] for large deviations
of the empirical measure. Without bias, these satisfy p(μ) ∼ e−tobsJ(μ) with

J(μ) = max
ρ

⎧
⎨

⎩−
∑

C,C′
ρ(C′)W (C′ ← C)μ(C)

ρ(C) +
∑

C
r(C)μ(C)

⎫
⎬

⎭ (33)

where the maximisation is over a set of variational parameters ρ(C) > 0. In the
B-biased ensemble the relevant large deviation function just needs to add the effect
of the bias as before, giving p(μ) ∼ e−tobs[J(μ,s)−ψ(s)] with

J(μ, s) = J(μ) +
∑

C
s b(C)μ(C). (34)

The corresponding expression for ensembles biased by type-A observables is given
in [13, Appendix C]. Subsequent minimisation over μ yields the dynamical free energy
ψ, and the ρ(C) at the minimum are the u(C) associated with the auxiliary dynamics
of Eq. (9).
The result (33) can be obtained by minimisation of (27) over Q, subject to the

balance constraints (26). Calling the minimum value J(μ), we want to show that it
can be obtained alternatively from the maximisation problem (33). This can be done
using Lagrangian duality: the Lagrangian for the original minimisation is

L(μ,Q, λ) = I(μ,Q) +
∑

C,C′
λ(C)[Q(C′ ← C)−Q(C ← C′)]. (35)

The dual Lagrangian is then defined as L̃(μ, λ) = minQ L(μ,Q, λ). Since for any

Q satisfying (26) one has L(μ,Q, λ) = I(μ,Q), it follows that L̃(μ, λ) ≤ J(μ).
Since the equality holds for the optimal Q, one has the dual representation J(μ) =

maxλ L̃(μ, λ). Now setting the derivative of L(μ,Q, λ) to zero to find L̃(μ, λ) gives

log
Q(C′ ← C)

W (C′ ← C)μ(C) = λ(C
′)− λ(C). (36)

Substituting back into L(μ,Q, λ), the log term cancels with the Lagrange multiplier
contribution and one is left with

L̃(μ, λ) =
∑

C,C′

{
−W (C′ ← C)μ(C)eλ(C)−λ(C′) +W (C′ ← C)μ(C)

}
. (37)

Identifying ρ(C) = e−λ(C) and carrying out the sum over C′ in the second term then
gives (33) as desired.



Discussion and Debate: Scale-Bridging Techniques in Molecular Simulation 2365

To our knowledge, Eq. (34) has had limited application for estimation of ψ(s)
and the u(C). One obstacle is that this requires a maximisation over ρ, followed by
a minimisation over μ. For this reason, straightforward bounds on ψ are not directly
available, unlike the case of (27) where one minimises over both μ and Q.

5 Outlook

We have summarised a range of analytical and numerical results related to the effec-
tive potentials encoded by (11). Section 3 reviews some previous results where these
effective potentials have been estimated, mostly in time-reversal symmetric ensem-
bles. Section 4 shows how the effective potentials can be interpreted in terms of the
controlling forces that achieve rare events most efficiently, in the sense of the “objec-
tive function” L in (20). We have discussed how the variational results described in
Sects. 4.1 and 4.2 might be useful for generalising these kinds of method to systems
without detailed balance, and for developing new numerical methods, possibly follow-
ing Ref. [61]. The application of these results to biased ensembles for open quantum
systems [42] might also provide useful insights.
Another general challenge coming from biased ensembles is the description of

biased states that are inhomogeneous in space and time. The “addivity principle”
leads to some exact results in homogeneous systems, but an accurate description of
spatially inhomogeneous (phase-separated) states remains outstanding in some cases.
Biased ensembles also support “travelling-wave” states which are inhomogeneous in
both space and time [39,70]: it might be useful to investigate variational techniques
based on (27) in order to address these problems.
From a fundamental point of view, the relation between effective interactions

and the thermodynamic limit is also important. Biased ensembles in general will
be characterised by some stationary measure μ(C). Restricting for convenience to
systems with time-reversal symmetry one then expects that this has the form μ(C) ∝
μ0(C)e−ΔVC , where μ0 is the stationary distribution of the unbiased process, and ΔVC
an effective potential. However, in the thermodynamic limit, a question arises as to
whether the measure μ is “Gibbsian” [62,71]: that is, whether ΔV can be written as
a well-defined sum of interaction terms of increasing range. If such a description is
not possible, even the definition of effective interactions becomes problematic in the
thermodynamic limit. If one considers large deviations of the total energy (type-B) in
the Ising model, there is evidence that the resulting effective interactions may not be
Gibbsian [30]. It is also not clear whether the limits of large system size and large-tobs
should commute in such cases, and what consequences this might have. It would be
interesting to analyse these questions further in future work.

We thank Raphael Chétrite, Hugo Touchette, Carsten Hartmann, Vivien Lecomte, Fred van
Wijland, Juan Garrahan, and David Chandler for many useful discussions on the issues
discussed here. RLJ thanks the EPSRC for support through grant EP/I003797/1.
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34. C. Hartmann, C. Schütte, J. Stat. Mech., P11004 (2012)
35. V.Y. Chernyak, M. Chertkov, J. Bierkens, H.J. Kappen, J. Phys. A 47, 022001 (2013)
36. A.C. Barato, R. Chetrite [arXiv:1408.5033]
37. V. Lecomte, C. Appert-Roland, F. van Wijland, J. Stat. Phys. 127, 51 (2007)
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