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Abstract. To better understand the interaction of a free surface wave
motion with moving bluff bodies, a two-dimensional numerical study
of the forced streamwise oscillation of a circular cylinder beneath a
free surface is conducted based on a two-fluid model. Computations
are carried out at a Reynolds number of R = 200, a fixed displacement
amplitude, A = 0.13 and the forcing frequency-to-natural shedding
frequency ratios, f/f0 = 1.5, 2.5, 3.5. Finite volume discretization of
the special integral form of two-dimensional continuity and unsteady
Navier-Stokes equations (when a solid body is present) are performed
on a fixed Cartesian grid. Improved volume-of-fluid method is used to
discretize the free surface. The laminar asymmetric flow regimes in the
near wake region and the fluid forces are analyzed at a fixed Froude
number of Fr = 0.4 and for submergence depths at h = 0.25, 0.5, 0.75.
A comparison of the present results with the case in the absence of a
free surface is also included to illustrate the effects of inclusion of a free
surface. The code validation in special cases shows good comparisons
with previous numerical and experimental results. Flow regime analyses
include free surface physics-based analysis, and results confirm findings
of a recent work of Brøns et al. [25].

1 Introduction

Fluid flow of an infinite extent around oscillating bluff bodies has been studied previ-
ously in hundreds of papers owing mainly to its practical significance (see e.g., [1–6]
and book chapters in [7–11]). However, relatively few research has been undertaken
to investigate the interaction of a free surface wave motion with moving cylindrical
bodies (see e.g., [12–17]). Only few numerical studies investigated the interaction of
a viscous nonlinear free surface wave motion with moving cylindrical bodies [15–17].
This paper presents numerical results of flow past a streamwise oscillating cylinder

beneath a free surface based on a two-fluid model. This model involves the fluids in the
regions Ω1 and Ω2 with densities, ρ1, ρ2, and dynamic viscosities, μ1, μ2, entering into
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Fig. 1. Schematic of the problem.

the domain with uniform velocity U at the inlet and leaving through the outlet bound-
ary as shown in Fig. 1. The circular cylinder of radius, d, is submerged in the fluid
region, Ω2, at the distance h

∗ below the undisturbed free surface. Initially, an infinitely
long circular cylinder whose axis coincides with the z-axis is at rest, and then, at time
t = 0, the cylinder starts to perform streamwise oscillations about the x-axis. The
imposed oscillatory cylinder displacement is assigned by x(t) = A cos(2πft). The rel-
evant dimensionless parameters are the Reynolds number R2 = Ud/ν2 (R1 = Ud/ν1);
the forcing amplitude of the cylinder oscillations, A = A∗/d; the frequency ratio, f/f0,
with f = df∗/U and f0 = df∗0 /U being the dimensionless forcing frequency of the
cylinder oscillation and the natural vortex shedding frequency for the corresponding
stationary cylinder case in an unbounded medium; the cylinder submergence depth,
h = h∗/d, and the Froude number, Fr = U/

√
dg∗. Here, ν1 = μ1/ρ1, ν2 = μ2/ρ2

are the kinematic viscosities of the fluids in Ω1 and Ω2, respectively, f
∗ is the dimen-

sional forcing frequency of cylinder oscillation, f∗0 is the dimensional natural vortex
shedding frequency of a stationary cylinder, g∗ is the acceleration due to gravity,
g∗ = (0, g∗, 0), t∗ = td/U is the dimensional time, and t being the dimension-
less time. The dimensionless fluid pressure, p, is defined by p/ε = p∗/ρ2U2, where
ε = ρ1/ρ2 when x ∈ Ω1, and ε = 1 when x ∈ Ω2.
In order to achieve a fixed grid with respect to the cylinder, it is necessary to use

a non-inertial frame attached to the cylinder. The same coordinates and reference
frame as those employed by Mironova [16] and Bozkaya et al. [17], are used. Thus,
the governing equations and boundary conditions remain unaltered and will be sum-
marized briefly below. In the present two phase flow model governing equations are
the two-dimensional continuity and the Navier-Stokes equations given by
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where V and A are the fractional volume and area, respectively, open to flow within
the computational cell, V ; I is the length of the fluid-body interface open to flow;
u is the dimensionless velocity vector, where u = (u, v, 0); n is the outward unit
normal vector; S is the control volume boundary. These dimensionless quantities
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are defined in terms of their dimensional counterparts: x = x∗/d, y = y∗/d, u =
u∗/U, v = v∗/U ;V = V ∗/d2, S = S∗/d, V = V∗/d2, A = A∗/d, I = I∗/d. The
external force, F = (−a1, 1/Fr2 − a2, 0), is due to the dimensionless gravity force,
g = (0, 1/Fr2, 0), and the dimensionless acceleration of the non-inertial frame of
reference, (−a1, −a2, 0). The single set of governing Eqs. (1)–(3) are solved in the
flow part of the computational domain, Ω = Ω1∪Ω2, after setting the fluid properties
to ρ1/ρ2=1/100 and μ1/μ2=1/100 (or ν1/ν2=1) following the work of Reichl et al.
[15]. Therefore, the Reynolds numbers in the fluid regions Ω1 and Ω2 are the same
(R ≡ R1 = R2) which is varied by altering the viscosity.
The boundary conditions for the problem under consideration are no-slip of the

fluid on the cylinder surface, u = 0, v = 0; the uniform stream at the inflow, u =
U − v1, v = −v2; and the free slip conditions at the top and bottom boundaries
of the computational domain, ∂u/∂x = 0, v = −v2. The well-posed open boundary
conditions,

1

R

∂u

∂x
+
h̄

F r2
= p,

∂v

∂x
= 0 (4)

are enforced at the outflow boundary. Here, v1 and v2 are the x- and y-components
of the velocity of the non-inertial frame of reference, respectively, and h̄ is the height
of the fluid at the outflow boundary. The uniform flow is used as the initial condition.
It is assumed that at time t = 0, the free surface is undisturbed.

2 Method of solution and validation

The continuity and Navier-Stokes equations are discretized using a finite volume
approximation for two fluid regions Ω1 and Ω2 on a fixed Cartesian grid. This is
done based on the aggregated-fluid approach by describing the behaviour of both
fluids using one set of Eqs. (1)–(3). In this approach the free surface is no longer
the boundary of the calculation domain but just the interface between two fluids.
A second-order accurate central-difference scheme is used to discretize the governing
equations in space in conjunction with first-order explicit forward Euler scheme to
advance the numerical solution in time. A cell merging procedure is used to preserve
a global second-order accuracy of the spatial discretization. The present paper adopts
basically the same numerical method of solution as that used by Mironova [16] and
Bozkaya et al. [17], and only a brief description of points of direct relevance to the
computations will be provided here.
The main computational difficulty is solving the governing equations in an inertial

frame of reference which results in pressure spikes. When the cylinder moves through
the fixed staggered grid the pressure cell which belongs to the cylinder at the time
instant t1 may become the fluid cell at the next time instant t2 where the continuity
equation needs to be discretized. Since at the time instant t1 the velocities in the
pressure cell do not satisfy the continuity equation exactly, the pressure field has
to do extra work to restore mass balance in the pressure cell at the time instant
t2. This problem was unsuccessfully attempted to overcome in previous numerical
studies. This extra work reflects as a spike in the pressure. In the present study, this
problem is eliminated by employing a non-inertial frame of reference. The free surface
interface is discretized with the volume-of-fluid method due to Hirt and Nichols [18].
Its advection in time is performed based on the strictly mass conserving volume-
of-fluid advection method in two dimensional incompressible flows, due to Aulisa
et al. [19]. For the moving fluid-body interface the fractional area/volume obstacle
representation method due to Hirt and Sicilian [20], and the cut cell method due to
Gerrits [21] are employed.
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Fig. 2. Comparison of the vorticity field: flow visualization of Ongoren and Rockwell [1]
(left), present computation (middle), computation of Do et al. [5] (right) for the case of
streamwise oscillating cylinder (h =∞) at R = 855, A = 0.13 and f/f0 = 3.0.

The present unsteady flow calculations are carried out based on the grid system
L1(= 20) × L2(= 30) × L3(= 40) with 252 × 196 elements. The computational grid
geometry is defined with respect to the mean position of the cylinder and by specifying
the locations of inflow and outflow boundaries, L1 and L2, along the x-axis and the
location of the top and bottom boundaries, L3, along the y-axis. In the vicinity of
the mean cylinder position, the grid has fine resolution and is uniform. Outside of the
uniform grid region, the grid expands exponentially towards the four boundaries of the
computational domain. The computational domain size and the number of cells per
diameter are the same as that used by Mironova [16] and Bozkaya et al. [17]. Unless
otherwise stated, the computations for R = 200 are terminated at tmax = 100 and 150
(time step: Δt = 0.005), in the presence and absence of a free surface (symbolically
h =∞), respectively. The predicted natural vortex shedding frequency at R = 200 is
f0 = 0.198. The present numerical algorithm is validated for the cases of uniform flow
past a stationary cylinder and a streamwise oscillating cylinder. Tests are conducted
in the case of a stationary cylinder at R = 200 and using the numerical grid with L1 =
20, L2 = 30, L3 = 40; 60 cells per cylinder diameter and Δt = 0.0075; the predicted
natural shedding frequency, f0 = 0.197, and the predicted values of the mean drag

coefficient, ĈD = 1.331 and the maximum lift coefficient, CL,max = 0.681, are in good
agreement with the previous numerical and experimental studies by Poncet [22], and
Wen and Lin [23], respectively.
The predicted values of maximum lift coefficient CL,max = 0.92 and the mean

drag coefficient ĈD = 1.70, for the case of streamwise oscillating cylinder at R =
100 : A = 0.14, f/f0 = 2.0 are compared with the numerical results of Su et al.

[24] (CL,max = 0.97, ĈD = 1.70). The results show good agreement. Verification
of force coefficients is also made for the case of streamwise oscillating cylinder at

R = 175 : A = 0.14, f/f0 = 1.4. The present results (CL,rms = 0.659, ĈD = 1.354)

and the numerical results of Leontini [6] (CL,rms = 0.664, ĈD = 1.384) are in good
agreement. Figure 2 shows the comparison of the near-wake structure obtained in the
present study for the case of streamwise oscillating cylinder at R = 855, A = 0.13 and
f/f0 = 3.0 with the experimental visualization [1] and the computed wake structure
[5]. This figure shows good qualitative agreement between the present computed near-
wake structures and those obtained in [1] and [5].
In order to ensure that chosen values of L1, L2, L3 are sufficient to predict free

surface flow properties accurately, further tests are conducted for uniform flow past a
stationary cylinder in the presence of a free surface at R = 200 : Fr = 0.3, h = 0.55.
The flow is simulated up to t = 120 and is quasi-periodic over this interval of time.
The maximum and minimum local heights of the free surface, h|L,max and h|L,min;
the root mean square value of the lift coefficient, CL,rms; the root mean square value
of the drag coefficient, CD,rms; the natural vortex shedding frequency in the presence
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of a free surface, f |fs, are calculated using the grid with L1 = 20, L2 = 30, L3 = 40;
60 cells per cylinder diameter. The maximum and minimum local heights of the
free surface are measured at time when lift coefficient reaches its maximum. The
resulting values are accurate to maximum 3% error when compared to the reference
grid with the computational domain size 30 × 40 × 60. This level of accuracy is
assumed to be sufficient for the present study. The near-wake grid resolution tests are
conducted for uniform flow past a stationary cylinder in the presence of a free surface
at R = 200 : Fr = 0.3, h = 0.7 using three different grids with 90, 60, 40 cells per
diameter for the computational domain 20× 30× 40 and the time step, Δt = 0.005.
Results indicate that increasing the number of cells per cylinder diameter from 60 to
90 has a negligible effect on computed quantities f0, CL,max, CD,max and CD. The
grid resolution of 40 cells per diameter gives maximum 1% error in the computed
quantities when compared to those with grid resolution of 90 cells per diameter. The
grid resolution of 60 cells per diameter is chosen for the current investigation. The
sensitivity of the accuracy of computations to the value of the time step is tested using
the same grid for three different values of the time steps, Δt = 0.005, 0.0075, 0.01, for
the case of uniform flow past a stationary cylinder in the presence of a free surface
at R = 200: Fr = 0.3, h = 0.7. Results with grid resolutions of 40, 60, 90 indicates
that increasing the time step from Δt = 0.005 to Δt = 0.0075 to Δt = 0.01 has a
negligible effect (the maximum error is 0.6%) on the computed quantities (CL,rms,
CD,rms, f |fs) when compared to the results obtained with the time step Δt = 0.005:
(0.707, 1.564, 0.210) → (0.711, 1.564, 0.208) → (0.711, 1.564, 0.206).

3 Results

The effects of the free surface inclusion at h = 0.25, 0.5, 0.75 and f/f0 = 1.5, 2.5, 3.5 on
the flow regimes, vortex shedding modes and their periods, Tv are analyzed (R = 200,
A = 0.13, Fr = 0.4). Results are summarized in Table 1. Oscillation amplitude A
is maintained at 0.13 since flow structure in such cases for R = 200 is characterized
by the formation of vortex pairs which convect away from the body, in the absence
of a free surface, forming wakes. In general, the effect of the decrease of oscillation
amplitude is to reduce the size of the separated region. However, for sufficiently small
oscillation amplitude range, A 	 1, when no flow separation takes place, we have
the unexpected result that jets issue from the cylinder surface following a boundary-
layer collision for the case of purely translational oscillations of a cylinder placed in
a quiescent viscous flow. It is also noted that the Froude number, Fr, is (the square
root of) the ratio of inertia to gravity, and, since it compares a given characteristic
flow velocity to that of (long-wavelength) gravity waves, it directly relates to the
speed of a free-surface disturbance. In the present study, free-surface disturbance
effects are examined on the fluid forces at Fr = 0.4. The free surface deformations
at Froude number, Fr = 0.4, are considerably larger than the low Froude number
cases (0 < Fr < 0.3), and results in different vortex shedding modes than low Froude
number cases (see p. 346, present study: Table 1, Fr = 0.4 and p. 4794, [17]: Table 5,
Fr = 0.2). At Fr = 0.4, as h decreases to 0.25, the localized interface sharpening
and wave breaking occur unlike the low Froude number case, Fr = 0.2 (see p. 349,
present study: Fig. 4, Fr = 0.4 and p. 4793, [17]: Fig. 9, Fr = 0.2).
Table 1 shows that it is possible to generate distinctly different vortex formation

modes than that of the classical modes, observed by Williamson and Roshko [2].
These modes are the combination of the two and three 2S (or C(2S)) modes i.e., 4S
(or C(4S)) and C(6S) modes. In addition formation of C(2S) + S mode is observed.
The asymmetric 2S mode corresponds to the classical Kármán vortex street which is
characterized by single vortices being alternately shed from each side of the cylinder
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Table 1. The effect of the free surface inclusion on vortex shedding modes and their
periods, Tv, for the case Fr = 0.4 and h = 0.25, 0.5, 0.75, ∞ at R = 200: A = 0.13,
f/f0 = 1.5, 2.5, 3.5. The superscript “

∗” denotes quasi-locked-on modes.

h = 0.25 h = 0.5 h = 0.75 h =∞
f/f0 Mode Tv Mode Tv Mode Tv Mode Tv

1.5

[C(2S)+S]∗

12T ≤ t ≤ 18T ;
non-locked

19T ≤ t ≤ 29T ;

2T
–

4S∗
T ≤ t ≤ 20T ;
non-locked

21T ≤ t ≤ 29T ;

3T
-

4S∗
2T ≤ t ≤ 16T ;
non-locked

17T ≤ t ≤ 29T

3T
–

2P 2T

2.5

[C(2S)+S]∗

11T ≤ t ≤ 28T ;
non-locked

29T ≤ t ≤ 49T

3T
–

C(6S)∗
5T ≤ t ≤ 33T ;
non-locked

34T ≤ t ≤ 49T

7T
–

C(6S)∗
2T ≤ t ≤ 17T ;
non-locked

18T ≤ t ≤ 49T

7T
–

C(6S)∗ 8T

3.5

[C(2S)+S]∗

16T ≤ t ≤ 31T ;
non-locked

32T ≤ t ≤ 69T

5T
C(4S)∗

7T ≤ t ≤ 40T ;
non-locked

41T ≤ t ≤ 68T

7T
C(4S)∗

5T ≤ t ≤ 22T ;
non-locked

23T ≤ t ≤ 69T

7T
C(2S)∗

50 ≤ t ≤ 71T ;
non-locked

72T ≤ t ≤ 104T

4T

per cycle. The mode C(2S) + S is similar to C(2S) mode with an additional single
vortex, S, shed from the free surface: coalescence, C, between positive vortices from
lower side of the cylinder occurs and the development of positive vorticity near the
curved free surface is also observed. The mode C(2S) results from smaller vortices
coalesce directly behind the cylinder forming the 2S mode near the cylinder or the
2S mode forms in the near wake region, but further downstream smaller vortices
coalesce. Table 1 shows that the presence of the free surface at h = 0.25 seems to
cause a switchover in the vortex shedding modes when compared to reference case
h = ∞. That is, the vortex shedding, C(2S) + S, mode is observed at h = 0.25, per
2T , and, per 3T , when f/f0 = 1.5 and f/f0 = 2.5, respectively, whereas the locked-on
2P mode, per 2T , for f/f0 = 1.5 and the quasi-locked-on C(6S) mode, per 8T , for
f/f0 = 2.5 are seen in the absence of free surface (h =∞). In 2P mode two pairs of
vortices shed from both sides of the cylinder per cycle. Furthermore, at the highest
frequency ratio, f/f0 = 3.5, a switchover from the quasi-locked-on C(2S) mode, per
4T , to the quasi-locked-on C(2S) + S mode, per 5T , occurs as h decreases from ∞
to 0.25. As the cylinder submergence depth, h, increases the flow behaviour becomes
more complicated and hence different vortex shedding modes develop depending on
the frequency ratio, f/f0. A switchover in the vortex shedding modes occurs as the
frequency ratio increases from 1.5 to 3.5 in the presence of the free surface at h = 0.5,
0.75. It is important to note that flow becomes periodic (or quasi-periodic) over
several periods of cylinder oscillation, and then a transition into the non-periodic
state occurs. A switchover in the vortex shedding modes occurs when h = 0.5, 0.75,
∞ as the frequency ratio, f/f0, increases. However, an increase in h from 0.5 to 0.75
has no effect on the vortex shedding modes for each f/f0. Similar phenomena has
been reported in the experimental study by Cetiner and Rockwell [13] for the case
of cylinder subject to streamwise oscillations in uniform flow in the presence of the
free surface. Cetiner and Rockwell have shown that at certain Fr-h combinations,
the presence of the free surface causes a switching between the near wake states. This
study also reported that the vortex shedding exhibits locked-on (or quasi-locked-on)
states at least over several cycles of cylinder oscillations and then, the transition to
the non-locked-on state occurs.

The detailed analysis of the new vortex shedding mode, C(4S), per 3T will be
given only for the frequency ratio, f/f0 = 1.5, when h = 0.5. Figure 3 displays the
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Fig. 3. The equivorticity patterns (left) and the pressure contours (right) in the near wake
over three periods of cylinder oscillation, 3T , at R = 200: A=0.13, f/f0 = 1.5 when Fr = 0.4
and h = 0.5 [T ≈ 3.367, 26.936 ≤ t ≤ 37.037: (8T, 11T )]. The quasi-locked-on 4S mode, per
3T , is observed (t ≤ 20T ).
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equivorticity and the pressure contours in the near wake over three periods of cylin-
der oscillation, 3T , for the case Fr = 0.4, h = 0.5, when f/f0 = 1.5 (quasi-periodic
state). In the equivorticity plots, red colours correspond to positive (counterclockwise
rotation) and blue colours indicate negative (clockwise rotation) vortices. The vortex
shedding mode is the quasi-locked-on 4S mode, per 3T , within 20T . This mode is the
combination of the two classical 2S modes. The flow becomes non-periodic within
21T ≤ t ≤ 29T . The cylinder sheds alternately positive and negative vortices (devel-
oped in the previous vortex shedding cycle) from lower and upper sides at t ≈ T/2
and t ≈ T , respectively. At t = 3T/2, the positive vortex (lower side of the cylin-
der) attaches to the elongated positive vortex from the free surface, and envelops the
negative vortex (upper side of the cylinder). The cylinder then sheds the positive
vortex and the elongated negative vortex at t ≈ 2T and t ≈ 3T , from the upper and
lower sides of the cylinder, respectively; the positive surface vorticity separates into
the flow. The cylinder velocity is at its maximum in each of snapshot of the flow
shown in Fig. 3. Snapshots at t = 0T, 3T/2, 3T represent the situation at the begin-
ning, middle and end of the vortex shedding cycle, Tv(= 3T ). In Fig. 3, the pressure
plots with red colors correspond the high pressure region, and blue colors indicate
low pressure region. At t = 0T , the lowest pressure region occurs behind the cylinder
and the region below the cylinder; and then it switches to the right side of the region
directly above the cylinder when the free surface falls down sufficiently in this region
(t=5T/2). The high speed, low pressure fluid that flows through the gap between the
cylinder and the free surface induces circulation at the free surface interface of sign
opposite to that in the separating layer. The surface also deflects downwards towards
the low pressure region (at t = T/2, 5T/2) before curving up towards its original
height downstream (t = 2T and 4T (not shown here)). When the negative vortices
are shed from the upper side of the cylinder at t ≈ T and t ≈ 3T , a local free surface
rising with positive curvature is observed. This is clearly associated with the signifi-
cant amount of positive vorticity formation at the free surface interface. The positive
surface vorticity separates into the flow (t ≈ 2T ), leading to rapid cross-annihilation
of vorticity shed from the cylinder as well as rapid “disappearance” of the surface
vorticity as the free surface reaches its original height downstream (t = 2T and 4T
(not shown here)). Thus, the loss in the fluid region of negative vorticity shed from
the cylinder is precisely balanced by the change in the vorticity stored in the inter-
face vortex sheet. Curvature of the free surface is essential for rapid onset separation
from it and causes very rapid distortion of the flow pattern, involving a sharp drop
in the magnitude of the velocity along the surface. This results in substantial flux of
vorticity into the region of fluid downstream. The averaged flux of vorticity in the
layer from the free surface must be the same as from the surface of the cylinder i.e.,
local curvature of the free surface near separation must adjust to a value such that
the vorticity flux from the free surface matches to that from the cylinder, which has
a fixed curvature (see e.g., Sheridan et al. [12]).
The effects of the free surface inclusion at h = 0.25, 0.5, 0.75,∞ and f/f0 = 1.5,

2.5, 3.5 on the flow regimes, are summarized in Fig. 4. At the smallest frequency ratio,
f/f0 = 1.5, the lower vortex shedding layer shows a similar behaviour irrespective
of the presence of a free surface. On the other hand, inclusion of the free surface
seems to cause a change in the vortex formation from the upper side of the cylinder:
the shed negative vortex is lifted upward toward the free surface for each h = 0.25,
0.5, 0.75; and attaches to the free surface at h = 0.25, at the same frequency ratio,
f/f0 = 1.5. For the higher frequency ratios, f/f0 = 2.5, 3.5, the near wake shows a
quite similar behaviour at h = 0.5, 0.75, when compared to that at h = ∞. At the
smallest cylinder submergence depth, h = 0.25, the near wake is dissimilar to the
cases at h = 0.5, 0.75, especially for f/f0 = 3.5. At h = 0.25, downstream at the free
surface interface, negative vorticity is stored which provides balance of vorticity to
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Fig. 4. The effect of the cylinder submergence depth, h, and the frequency ratio, f/f0, on
the equivorticity patterns at R = 200: A=0.13, Fr = 0.4.

that in the fluid region for all f/f0. At higher cylinder submergence depths, h = 0.5,
0.75, significant amount of vorticity is generated at the curved interface, leading to
separation of interface vorticity into the fluid region and rapid cross-annihilation of
the negative vortex shed from the cylinder as f/f0 increases. As the cylinder submer-
gence depth, h, decreases from ∞ to 0.25, the near wake becomes more dominated
by positive vortex structures and it seems to be more skew symmetric. The vortex
formation length remains almost the same as h decreases from∞ to 0.25, for all f/f0,
except the case when h = 0.25, f/f0 = 3.5. On the other hand, an increase in the
frequency ratio, f/f0, from 1.5 to 3.5 results in an increase in the vortex formation
length (maximum by 65.9%) for the cylinder submergence depths, h = 0.5, 0.75,
∞. The unsteady development of the fully separated vorticity layer from the free
surface occurs relatively independently of the neigbouring layer of opposite vorticity
generated from the top surface of the cylinder when the cylinder is at relatively large
depths of submergence and a substantial region of irrotational flow exists between
two types of layers. In addition, there is a close relationship between the unsteady
development of each of the two vorticity layers when the cylinder is relatively close
to the free surface. The evolution of small-scale concentrations of vorticity in each
of them occurs in a coupled fashion. Numerical experiments at R = 200, A = 0.13:
f/f0 = 1.5, 2.5, 3.5 show that transcritical flow above the cylinder occurs at h ≈ 2.5
when Fr = 0.4.
The time evaluation of the fluctuating lift force, CL, and the Lissajous patterns,

CL(x), are presented in Figs. 5, 6 for the frequency ratio f/f0 = 1.5 in the absence of
the free surface (h =∞) and the presence of the free surface at h = 0.5 (0 ≤ t ≤ 200),
respectively. For the frequency ratio, f/f0 = 1.5 at the submergence depth, h = 0.5,
the transition of the flow regime from the quasi-periodic state into the non-periodic
state is observed, which is also consistent with the time-dependent behaviour of lift
coefficient. The traces of the lift coefficient are almost periodic over three periods
of cylinder oscillation, 3T , within first twenty periods of cylinder oscillation, 20T ,
(quasi-periodic state: T ≤ t ≤ 20T ); and then they become non-persistent when the
switching time is reached at approximately t = 67.34; whereas in the reference case
h = ∞ the traces of CL show repeatable patterns over 2T . This observation is also
suggested by the corresponding Lissajous patterns. That is, the repeatability of the
Lissajous trajectories of CL in the absence of free surface indicates lock-on between
the cylinder motion and the fluctuating CL. In the presence of free surface at h = 0.5,
although the Lissajous trajectories of CL at f/f0 = 1.5 are well-defined, there is a loss
of phase-locking confirming that the fluctuating lift coefficient is quasi-phase-locked
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Fig. 5. The time variation of the lift coefficient, CL, (black) and the streamwise displace-
ment, x(t), (gray); Lissajous patterns of CL at R = 200: A=0.13, f/f0 = 1.5 when h =∞.

Fig. 6. The time variation of the lift coefficient, CL, (black) and the in-line displacement,
x(t), (gray); Lissajous patterns of CL at R = 200: A=0.13, f/f0 = 1.5 when Fr = 0.4 and
h = 0.5.

Fig. 7. The time variation of the drag coefficient, CD, (black) and the in-line displacement,
x(t), (gray); Lissajous patterns of CD at R = 200: A=0.13, f/f0 = 1.5 when h =∞.

Fig. 8. The time variation of the drag coefficient, CD, (black) and the in-line displacement,
x(t), (gray); Lissajous patterns of CD at R = 200: A = 0.13, f/f0 = 1.5 when Fr = 0.4 and
h = 0.5.

to the cylinder motion (in the quasi-periodic state). In addition, the hysteresis loops
are mostly confined in the lower half plane at h = 0.5, which shows that the presence
of the free surface breaks the symmetry observed in the case when h =∞.
The time history of the drag coefficient, CD, and the Lissajous patterns of CD are

displayed in Figs. 7, 8 in the absence and the presence of a free surface at h = 0.5,
respectively. The traces of CD are non-periodic in the presence of free surface at
h = 0.5 (0 ≤ t ≤ 200), whereas they show a periodic behaviour in the reference case
when h = ∞. This is also consistent with the behaviour of the Lissajous patterns
of CD both in the absence and presence of a free surface. Comparison of Fig. 8
with the corresponding ones in Fig. 6 indicates that Lissajous patterns of CL are
consistent with flow behaviour unlike the Lissajous patterns of CD. That is, the lift
coefficient, CL, has more effect on flow behaviour than the drag coefficient, CD, when
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Table 2. The effect of the free surface inclusion on the mean lift coefficient, ̂CL, for the
cases Fr = 0.4, h = 0.25, 0.5, 0.75, ∞ at R = 200: A = 0.13, f/f0 = 1.5, 2.5, 3.5.
f/f0 / h 0.25 0.5 0.75 ∞
1.5 −0.739→ −0.858 −0.321→ −0.408 −0.212→ −0.212 −0.000
2.5 −0.820→ −0.970 −0.410→ −0.398 −0.201→ −0.290 −0.001
3.5 −0.918→ −0.961 −0.390→ −0.478 −0.198→ −0.324 −0.008→ 0.025

Table 3. The effect of the free surface inclusion on the mean drag coefficient, ̂CD, for the
cases Fr = 0.4, h = 0.25, 0.5, 0.75, ∞ at R = 200: A = 0.13, f/f0 = 1.5, 2.5, 3.5.

f/f0/h 0.25 0.5 0.75 ∞
1.5 1.447→ 1.530 1.557→ 1.698 1.609→ 1.596 1.438
2.5 1.452→ 1.512 1.606→ 1.670 1.682→ 1.662 1.373
3.5 1.422→ 1.545 1.576→ 1.563 1.620→1.701 1.349→ 1.385

h = 0.5, f/f0 = 1.5. It is also seen that the hysteresis loops are mostly confined
in the upper half plane with a counterclockwise direction, indicating that there is a
mechanical energy transfer from the cylinder to the fluid regardless of a presence of
a free surface. The area enclosed by Lissajous trajectories of CD at h = 0.5 is smaller
than that at h =∞, which emphasizes a decrease in the amount of the energy transfer
from cylinder to fluid in the presence of free surface at h = 0.5.

Tables 2–5 show the effect of the free surface inclusion on the values of the mean lift
and drag coefficients, ĈL and ĈD, and the root-mean-square lift and drag coefficients,
CL,rms and CD,rms, for the cases Fr = 0.4: h = 0.25, 0.5 and 0.75. Tables 2 and 3
indicate that the presence of the free surface has important consequences for the

values of the mean lift and drag coefficients, ĈL and ĈD. Comparison of the results
shown in these tables indicates that for h = 0.25, 0.5, 0.75 and all values of f/f0,

the values of the mean lift coefficient, ĈL, are decreased significantly when compared

to that at h = ∞ in both quasi-periodic and non-periodic states. The ĈL varies in
the interval between −0.970 and −0.198 when the free surface is present whereas the
values of ĈL are nearly zero at h = ∞, as expected. As the cylinder submergence
depth, h, decreases from 0.75 to 0.25, the mean lift coefficient, ĈL, decreases (by a
maximum factor of 4.64) for all frequency ratios, f/f0 = 1.5, 2.5, 3.5.

Table 2 also suggests that the values of ĈL change slightly as the transition of
the flow from the quasi-periodic state to the non-periodic state occurs. Furthermore,

as f/f0 increases from 1.5 to 2.5, ĈL seems to decrease (by a maximum factor of
1.37), except for the cases f/f0 = 1.5, h = 0.5 (non-periodic state) and f/f0 = 1.5,

h = 0.75 (quasi-periodic state). As f/f0 increases from 2.5 to 3.5, ĈL also decreases
(by a maximum factor of 1.30), except for the cases f/f0 = 2.5 when h = 0.5 (quasi-
periodic state), h = 0.75 (quasi-periodic state) and h = 0.25 (non-periodic state). On
the other hand, Table 3 suggests that the presence of the free surface has a slight

effect on the values of the mean drag coefficient, ĈD, for all the values of the cylinder
submergence depth, h = 0.25, 0.5, 0.75 and the frequency ratio, f/f0 = 1.5, 2.5, 3.5.

More precisely, the values of ĈD increase by a maximum factor of 1.23 when compared
to those at h = ∞. On the other hand, as h decreases from 0.75 to 0.25, the values
of ĈD decrease except for the cases f/f0 = 1.5 and 2.5, h = 0.5 (non-periodic state).

At the cylinder submergence depths, h = 0.25 and h = 0.5, the values of ĈD seem
to increase slightly as the transition of the flow from the quasi-periodic state to the
non-periodic state occurs, except the case f/f0 = 3.5, h = 0.5. In contrast, for the
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Table 4. The effect of the free surface inclusion on the root-mean-square lift coefficient,
CL,rms, for the cases Fr = 0.4, h = 0.25, 0.5, 0.75, ∞ at R = 200: A = 0.13, f/f0 =
1.5, 2.5, 3.5.

f/f0/h 0.25 0.5 0.75 ∞
1.5 0.924→ 1.114 0.710→ 0.861 0.744→ 0.727 0.790
2.5 1.014→ 1.215 0.741→ 0.832 0.758→ 0.751 0.454
3.5 1.015→ 1.138 0.665→ 0.729 0.648→ 0.716 0.427→ 0.476

Table 5. The effect of the free surface inclusion on the root-mean-square drag coefficient,
CD,rms, for the cases Fr = 0.4, h = 0.25, 0.5, 0.75, ∞ at R = 200: A = 0.13, f/f0 =
1.5, 2.5, 3.5.

f/f0/h 0.25 0.5 0.75 ∞
1.5 1.595→ 1.673 1.621→ 1.829 1.666→ 1.697 1.521
2.5 1.797→ 1.882 2.00→ 2.071 2.116→ 2.112 2.036
3.5 2.543→ 2.657 2.960→ 2.970 3.155→ 3.174 3.370→ 3.383

largest cylinder submergence depths, h = 0.75 the values of ĈD are decreased slightly

in non-periodic state. For all cylinder submergence depths, h, ĈD seems to increase
as f/f0 increases from 1.5 to 2.5 and to decrease as f/f0 increases from 2.5 to 3.5
(quasi-periodic state).
Table 4 indicates that the presence of the free surface seems to increase the values

of the root-mean-square lift coefficient, CL,rms, by a maximum factor of 2.39 except
the case f/f0 = 1.5, h = 0.5 and 0.75 (quasi-periodic state). Decreasing the cylin-
der submergence depth, h, from 0.75 to 0.25 seems to increase CL,rms for the cases
f/f0 = 1.5, 2.5, 3.5, except f/f0 = 1.5, 2.5 and h = 0.5 (quasi-periodic state). It
is noted that at h = 0.25, 0.5, the values of CL,rms seem to increase slightly as the
transition of the flow from the quasi-periodic state to the non-periodic state occurs.
However, at h = 0.75 the value of CL,rms decrease when the flow is in the non-periodic
state for frequency ratios, f/f0 = 1.5, 2.5. The increase in the frequency ratio, f/f0,
from 1.5 to 2.5 seems to increase CL,rms in the presence of the free surface except
for the case f/f0 = 2.5 and h = 0.5 (non-periodic state). As f/f0 increases from
2.5 to 3.5 CL,rms decreases for all the values of the cylinder submergence depth, h,
in the presence of the free surface. On the other hand, as f/f0 increases the value
of CL,rms decreases when h = ∞. Furthermore, taking an overview of Table 5, it is
evident that at h = 0.25, 0.5, 0.75 and f/f0 = 1.5 the values of the root-mean-square
drag coefficient, CD,rms, are increased when compared to those at h =∞. However,
for f/f0 = 2.5 and 3.5, CD,rms seems to decrease when compared to that at h =∞,
except the case when f/f0 = 2.5 and h = 0.75 (quasi-periodic state). Decreasing the
cylinder submergence depth, h, from 0.75 to 0.25 leads to the decrease in CD,rms for
each frequency ratios, f/f0. Table 5 also suggests that the values of CD,rms increase
slightly as the transition of the flow from the quasi-periodic state to the non-periodic
state occurs, except for the case f/f0 = 2.5, h = 0.75. Finally, it is evident that
increasing the frequency ratio, f/f0, seems to increase the root-mean-square drag
coefficient, CD,rms for each cylinder submergence depth, h, shown in Table 5.

4 Conclusion

Two-dimensional flow past a circular cylinder subject to forced streamwise oscillations
beneath a free surface is investigated numerically based on a two fluid model. The
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numerical simulations are carried out at the Reynolds number of R = 200: A = 0.13
for three half-integer frequency values, f/f0 = 1.5, 2.5, 3.5. The flow characteristics are
examined for Froude number of Fr = 0.4 and for the depths of cylinder submergence
h = 0.25, 0.5, 0.75, ∞. The variations in the cylinder submergence depth, h, and
the frequency ratio, f/f0, have significant effects on flow regimes, vortex shedding
modes and fluid forces acting on the cylinder surface. The results show two different
flow regimes in the presence of free surface at different combinations of h and f/f0.
Flow becomes periodic (or quasi-periodic) over several periods of cylinder oscillation,
and then a transition into the non-periodic state occurs. That is, the inclusion of
the free surface seems to stabilize the flow for a short period of time such that the
near wake vorticity produces quasi-locked-on modes of vortex shedding and then, the
transition of the near wake to the non-periodic state is observed. A similar phenomena
has been reported in the experimental study by Cetiner and Rockwell [13] for the
case of cylinder subject to streamwise oscillations in uniform flow in the presence of
the free surface. On the other hand, in the absence of free surface the flow shows
either non-periodic or periodic/quasi-periodic behaviour over the whole time interval
after the initial transition period for all f/f0, except f/f0 = 3.5 in which two flow
regimes occur. The resulting new modes are the combination of the two and three 2S
(or C(2S)) classical modes i.e., 4S (or C(4S)) and C(6S) modes. In addition, the
mode C(2S) + S, which is similar to C(2S) mode with an additional single vortex
S shed from the free surface, is observed. Flow regime analyses include free surface
physics-based analysis, and results of the present study confirm theoretical findings
by Brøns et al. [25]. The analysis of the mean and root-mean-square lift and drag
coefficient displays that the free surface inclusion has a significant effect on the mean

lift coefficient. The values of ĈL significantly decreases at h = 0.25, 0.5, 0.75 when
compared to h = ∞ for which the values are almost zero as expected. On the other
hand, the free surface presence slightly changes the values of mean drag coefficient

ĈD for all f/f0 when compared to those for h = ∞. It is interesting to note that
irrespective of the values h and f/f0, the total mechanical energy transfer is negative,
indicating the energy transfer from cylinder to fluid unlike the transverse oscillation
case. It is important to note that findings of this study are restricted to the parameter
range used in this study.
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