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Abstract. Modeling the dynamics of a confined, semiflexible polymer is
a challenging problem, owing to the complicated interplay between the
configurations of the chain, which are strongly affected by the length
scale for the confinement relative to the persistence length of the chain,
and the polymer-wall hydrodynamic interactions. At the same time, un-
derstanding these dynamics are crucial to the advancement of emerg-
ing genomic technologies that use confinement to stretch out DNA and
“read” a genomic signature. In this mini-review, we begin by consider-
ing what is known experimentally and theoretically about the friction of
a wormlike chain such as DNA confined in a slit or a channel. We then
discuss how to estimate the friction coefficient of such a chain, either
with dynamic simulations or via Monte Carlo sampling and the
Kirkwood pre-averaging approximation. We then review our recent
work on computing the diffusivity of DNA in nanoslits and nanochan-
nels, and conclude with some promising avenues for future work and
caveats about our approach.

1 Introduction

The properties of DNA molecules confined in either a slit or a channel have received
substantial attention in recent years [1–3], combining a seemingly straightforward
polymer physics problem with important applications in biotechnology. In this mini-
review, we focus on two results that were discussed at the 2014 Max-Planck Workshop
on Brownian Motion in Confined Geometries, one solely from our group [4] and an-
other [5] from a collaboration with Patrick Doyle at MIT. These results concern the
friction (or, equivalently, the diffusivity) of a long molecule of confined DNA. We par-
ticularly emphasize the connection between the configuration of the confined chain,
which is affected by the degree of confinement, and the hydrodynamic interactions
between segments of the chain and between the chain and the wall. We also take the
opportunity to provide the reader with some of the relevant background on DNA in
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Fig. 1. Typical length scales for the backbone width, effective width, persistence length,
radius of gyration, and contour length of λ-DNA and linearized E. coli DNA in a high ionic
strength buffer. The slits and channel length scales typically range from sub-persistence
length (strong confinement, 30 nm) to the radius of gyration (weak confinement, 1000 nm
for λ-DNA).

confinement, the experimental data that motivated our studies, and the methodology
for computing the diffusion coefficient of a confined DNA molecule.

The challenge in describing the dynamic properties of a confined wormlike chain
like DNA lies in the length scales characterizing the problem, illustrated in Fig. 1.
While the backbone of the DNA has a bare width of around 2 nm, DNA is highly
charged in solution due to dissociation of protons from the phosphate groups. Most
DNA experiments take place in a reasonably high ionic strength buffer, equivalent
to around 100 mM of monovalent salt, where electrostatic interactions are screened
over long distances. In such circumstances we typically refer to an “effective width”
w of the backbone that maps the interactions between charged segments of DNA to
an equivalent neutral polymer. Using the theory by Stigter [6,7], we find this width is
approximately 5 nm in a high ionic strength buffer [8–10]. The persistence length of
double stranded DNA in a high ionic strength buffer, lp = 50 nm [11], is an order of
magnitude higher than the effective width. One often also refers to the Kuhn length,
b = 2lp, as a typical length scale for bending.

We can treat the ratio of the Kuhn length to effective width, b/w, as a mea-
sure of the monomer anisotropy at a length scale where we view the coarse-grained
“monomers” of the chain as the amount of polymer comprising a Kuhn length [10].
DNA is weakly anisotropic; while flexible synthetic polymers such as polyethylene
have ratios b/w ≈ 1, other wormlike polymers such as actin have b/w � 1. Per-
haps the best example of a highly anisotropic wormlike macromolecule is a carbon
nanotube, where the persistence length is tens of microns and the width is less than
a nanometer [12]. The weak monomer anisotropy of DNA substantially complicates
efforts to model its properties in confinement – DNA is sufficiently anisotropic that
we need to be concerned about its stiffness, but it is not so stiff that we can treat it
locally like a rod. Both the persistence length [13] and the effective width [7] are af-
fected by electrostatic interactions, which can be tuned by changing the ionic strength
of the buffer. Note that both quantities vary differently with ionic strength, with the
rather counter-intuitive effect that DNA becomes more isotropic (decreasing b/w) as
it becomes stiffer (increasing b) [10].

We are interested here only in rather long molecules of DNA containing many
persistence lengths, which introduces two more length scales much larger than lp:
(i) the radius of gyration, Rg, of the coiled polymer in free solution and (ii) its
contour length, L. The “hydrogen atom” of single molecule DNA biophysics is the
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λ-phage virus genome, often simply called λ-DNA. This molecule has 48,502 base
pairs and it is readily available at high concentrations, making it easy for intrepid
physicists to adopt for their own work. The radius of gyration, Rg, of λ-DNA is
around 700 nm [14], although the assumptions underlying this analysis have been
called into question recently [10,15]. When λ-DNA is stained with a fluorescent dye
for visualization, its contour length L is approximately 20μm. Note that the actual
contour length of stained DNA depends on the dye:base pair ratio and the sample
preparation [16].
One of the most attractive features of DNA, aside from its easy visualization by

fluorescence microscopy, is its availability in a vast range of molecular weights, all of
which are monodisperse due to their biological origin. This means that the possible
values of Rg and L span a very wide range, provided the DNA can be handled without
breakage [17,18]. For example, let us consider a linearized form of the E. coli genome
and extrapolate from the aforementioned estimates for λ-DNA using excluded volume
scaling for the radius of gyration, Rg ∼ Nνbp, and linear scaling for the contour length,
L ∼ Nbp, where Nbp is the number of base pairs and ν = 3/5 is the classical value of
the Flory exponent. As illustrated in Fig. 1, we thus expect the free solution coil of
E. coli DNA to be around 10 μm in radius and the entire, stained chain to be 1.5mm
long. In what follows, we will use the classical value of the Flory exponent to keep the
mathematics simple, but we should note that the most accurate value of the Flory
exponent to date is ν = 0.587597(7) [19].
The extent of confinement is generally expressed as a ratio of the channel size

or slit height relative to the length scales in Fig. 1. Let us rather liberally define a
nanochannel or nanoslit as any device with a confining length scale H below 1 μm
and focus on the case of λ-DNA. On the upper end of the range of channel sizes in
Fig. 1, we have a weak confinement regime, H ≈ Rg. DNA injected into such a chan-
nel will be somewhat deformed into either a pancake shape (in a slit) or a cigar shape
(in a channel), as described by de Gennes [20,21], but the overall size of the chain is
not substantially larger than in the bulk. However, as the confinement increases, the
chain becomes increasingly stretched in the unconfined directions. For slit-like con-
finement, the stretching of the chain is measured by the in-plane radius of gyration or
the in-plane end-to-end distance. For channel confinement, the stretching is measured
by the fractional extension, X/L. In very strong confinement, where H � lp, Odijk’s
theory [22] predicts almost complete extension of the chain in a channel, X/L ≈ 1.
For slit-like confinement, the chain configuration in the Odijk regime corresponds to
a random walk of deflection segments whose root-mean square end-to-end distance is
described by a modification of the two-dimensional Kratky-Porod model to account
for the dependence on the slit height [23]. Since the persistence length and the ef-
fective width are controlled, in part, by the ionic strength of the medium, low ionic
strength buffers lead to increased stretching of confined DNA for the same value of
H [8,24–26].
The strong stretching of DNA in confinement provides a useful approach for ge-

nomic mapping, a biological method for obtaining large-scale genomic information. As
seen in Fig. 2, this method [25,30–32] involves inserting sequence specific probes into
long pieces of DNA, typically in the hundreds of kilobase pair range, where the probe
density is approximately one probe per 5 kilobase pairs. The resulting DNA mole-
cule is sometimes referred to as “barcoded” since the locations of these probes are a
unique signature of the genetic information. Injecting the barcoded DNA into a small
channel stretches it out from the coiled conformation, allowing the physical distance
between probes to be read by fluorescence microscopy. If we also know the fractional
extension caused by the confinement, we can convert the physical distance into a
genomic distance between barcodes, which is the desired information. There are now
a number of reports of genome mapping using nanochannel confinement [27,33–35],
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Fig. 2. Principle of genome mapping in nanochannels [25,27]. Long genomic DNA fragments,
in the hundreds of kilobase pair range, are decorated with sequence specific probes. As seen
in the inset, the nick extension protocol [27] inserts fluorescently labeled nucleotides imme-
diately downstream from the bolded sequence. The DNA is then injected into a nanochannel
and stretches along the channel axis. The figure only shows a small (≈750 nm) section of
the nanochannel. The fluorophores on the labeled nucleotides are excited by laser-induced
fluorescence and detected. In practice, the backbone is also fluorescently labeled with a sec-
ond color (e.g., green) [25,27] to provide a more accurate measurement of the number of
base pairs between the fluorescent labels. The measurement of the fluorescence intensity
along the nanochannel provides the distance Xi between each of the barcodes. Obtaining
multiple measurements on the fluctuating chain reduces the error in the average distance
[28]. The linear distances are converted to genomic distances, providing the DNA barcode.
Many overlapping DNA barcodes are obtained from different fragments of genomic DNA.
The barcodes are then aligned onto the genome, providing the genomic map. In this partic-
ular example, the genome size is typical for E. coli, but genome mapping has been used for
many organisms [3] including humans [27,29].

and readers interested in a better understanding of the biotechnology are referred to
several excellent, recent reviews on the topic by Ebenstein and coworkers [31,32].
The hydrodynamics of confined DNA play a critical role in genome mapping tech-

nology. The data for genome mapping are acquired by fluorescence microscopy. When
we take an image of the chain, we would like to have an accurate measure of the loca-
tion of each barcode in the channel. However, the chain is fluctuating under thermal
energy. For a dumbbell model, the time scale characterizing these fluctuations of
parts of the chain, known as the relaxation time, is given by the ratio of the friction
coefficient to the effective spring constant [36]. The effective spring constant is a ther-
modynamic quantity, which is (relatively) easily obtained through Monte Carlo sim-
ulations of the chain configurations. The friction coefficient is a considerably harder
quantity to estimate, given that it depends on both the chain configuration and the
hydrodynamics in a confined geometry. This harder problem is the subject of our
mini-review.
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2 Experimental tests of blob theory

With the advances in microfabrication technologies, it is now possible to fabricate
channels and slits with well defined geometries and characteristic dimensions ranging
from hundreds of nanometers down to the 50 nm length scale corresponding to the
persistence length of DNA. This has allowed a direct visualization of confined DNA
using epifluorescence microscopy and to investigate the ability of theories to accu-
rately predict the properties of polymers under confinement. As such, the focus of
this section will be to cover what is known experimentally about the dynamic proper-
ties in nanoslit and nanochannel confinement [37–48] and how these results compare
to the classic theory for the dynamics of a confined chain [49].
In order to put our discussion into focus, we first need to recall the blob theory re-

sults from Brochard and de Gennes [49]. We denote by H the size of the confinement,
either the slit height or the channel width. For both slit and channel confinement,
the Brochard and de Gennes blob theory comprises of the following assumptions: (i)
The blob size is equal to the confinement size, H, where the conformation of the
chain inside a blob is given by that of a three-dimensional, self-avoiding coil in good
solvent conditions such that the blob size is H ∼ Nνblob, where Nblob is the number
of persistence lengths inside the blob; (ii) Each blob is a hydrodynamically isolated
object such that total friction on each blob is ζblob ∼ ηH, where η is the viscosity of
the fluid; (iii) The blobs themselves form 2D and 1D self-avoiding walks in slits and
channels respectively. In other words, the chain is renormalized into a series of blobs
that undergo a self-avoiding random walk in a particular dimension. Although the
1D walk implies that this “chain of blobs” is fully extended in a channel, each blob
consists of a coiled portion of the original chain. As a result, the polymer itself is not
fully extended. The theory applies for relatively weak confinement for channel sizes
larger than H � l2p/w [50].
The theoretical analysis proceeds by first computing the number of persistence

lengths in a blob,

Nblob ∼ H5/3w−1/3l−4/3p , (1)

where we use the classical Flory exponent ν = 3/5 for convenience and add the
standard corrections for a wormlike chain [51]. The total number of blobs nblob =
N/Nblob, where N = L/lp is the number of persistence lengths in a chain of contour
length L. The total friction on the chain is given by the sum of the friction on all the
blobs,

ζ � nblobζblob ∼ ηL
(
wlp

H2

)1/3
· (2)

The in-plane (slit) and axial (channel) diffusion coefficient of a long chain is thus
given by

D ≡ kBT

ζ
∼ kBT

ηL

(
H2

wlp

)1/3
, (3)

where kB is the Boltzmann constant and T is the absolute temperature. Thus, the
scaling of the diffusion coefficient of confined chains in both slits and channels in the
de Gennes regime is identical. Note, however, that the scaling of the size of the chain
is different in the two cases [21] since the size of a 2D self-avoiding walk of blobs in
a slit is different than the size of the 1D self-avoiding walk in a channel. In slits, the
in-plane end-to-end distance can be written as

R � (nblob)3/4H ∼ L3/4
(
wlp

H

)1/4
, (4)
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while the extension in channels is given by

X � (nblob)H ∼ L
(
wlp

H2

)1/3
. (5)

The size of a confined DNA chain, at least in the range of confinement satisfying the
blob model, is now a relatively settled question. In slits, the scaling in Eq. (4) was
first demonstrated experimentally [44] for λ-DNA using slit heights 2 < Rg/H < 8.4
and subsequently confirmed by a number of studies [45,47,48]. Note that Ref. [44]
also reports a sharp transition in the extension at H ≈ lp, which has been repeat-
edly criticized [46]. In nanochannels, the seminal experiments on DNA confinement
in nanochannels by Reisner et al. [38] used one channel size in the strong confinement
limit (H < lp) and six channel sizes in the weak confinement limit (lp < H < Rg). The
experimental extension data in the weak confinement limit were fit by X ∼ H−0.85,
a stronger dependence on H than originally anticipated by Eq. (5). The origin of this
unexpected behavior is now understood to be due to the presence of a broad transi-
tion regime between the limiting cases of weak and strong confinement [9,10,50,52].
The situation surrounding the diffusivity in Eq. (3) is considerably less clear.

The earliest studies for DNA diffusion in slits [37,39] probed this scaling result by
measuring the diffusivity of a number of different chains of size L in channels of dif-
ferent size H. If the chains are sufficiently long, then their diffusivity in the bulk
should be Zimm-like and thus scale inversely with their hydrodynamic radius. The
latter quantity is usually assumed to be proportional to the radius of gyration, lead-
ing to Dbulk ∼ R−1g . If blob theory is correct, then a plot of D/Dbulk vs. Rg/H
should yield a universal curve, independent of molecular weight, with a scaling expo-
nent of −2/3 [37,39]. These early experimental studies [37,39] indeed found a good
collapse of the data obtained from different molecular weights with the expected scal-
ing exponent. However, a closer look at the data [40] revealed that the spread of
the band of the collapsed data is larger than the uncertainty in the experimental
measurements.
The origin of this discrepancy was not clear. One possibility is that the blob theory

is incorrect or even that the free solution diffusivity does not scale inversely with the
radius of gyration for these DNA sizes, which may be a distinct possibility [10,15].
Alternatively, there may be a systematic deviation in the experimental data. The
limitations of the blob theory became more clear by measuring D as a function of
chain length L for fixed values of the slit height H from 190 nm to 545 nm [40]. These
experiments revealed a scaling exponent ranging from L−0.85 to L−0.95 [40] indicating
that the blobs might not be hydrodynamically isolated and interact at a length scale
larger than H [40–43]. However, the scaling of D with H was found to be slightly
weaker than the expected result D ∼ H2/3 from blob theory. The experimental data
for λ-DNA were fit by D ∼ H0.55 [40], D ∼ H0.48 [41], D ∼ H0.49 [46] and D ∼ H0.56
[48] for the slit height range 2lp < H < Rg. Additionally, the scaling D ∼ H0.52

[43,46] extended down to slit heights lower than lp indicating that the onset of the
Odijk regime is gradual. The origin of this weaker dependence of D on H will be the
focus of the discussion in Sect. 4.1.
No experimental data exist for the axial diffusion coefficient of a DNA molecule

in nanochannels. However, measuring the relaxation time provides an indirect tool to
analyze the hydrodynamics of a channel-confined chain. Reisner et al. [38] observed a
sharp non-monotonic transition in the relaxation time τ for a channel size H ≈ 2lp.
Section 4.2 will be directed towards elucidating this sharp transition of τ in the chan-
nel size of the order of 2lp through a deeper understanding of the friction in these
channel sizes.
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Fig. 3. Schematic of hydrodynamic interactions for a discrete polymer chain. A point force
is applied to one of the beads and the resulting flow field affects the dynamics of the rest of
the chain.

3 Hydrodynamic interactions

It has been our contention that the simplistic treatment of hydrodynamic interactions
in blob theory is the reason for the discrepancy between theory and experiments
in slits [5], and even more important if we want to understand DNA diffusion in
nanochannels [4]. To be more precise, the movement of polymer segments in a fluid
affect the velocities of other segments through fast diffusive momentum transport.
These hydrodynamic interactions (HI) play a vital role in the dynamics of polymer
solutions [53]. Figure 3 depicts the role of HI on the collective dynamics of the chain.
Here, one part of the chain is perturbed by a force F and induces a flow in the solvent.
This flow is long-ranged and entrains other parts of the chain by an induced drag force.
Thus, HI are solvent mediated intrachain interactions between distal segments of the
chain and are the dynamic analogue of excluded volume. The HI is long-ranged in
free solution. However, it changes dramatically in confined domains owing to the need
to satisfy no-slip and no-penetration at the channel walls, resulting in a significant
change in the polymer dynamics [54–59].
The underlying assumption in blob theory is that there are sufficient hydro-

dynamic interactions inside a blob to lead to non-draining behavior, whereupon
ζblob ∼ ηH, but that the walls completely screen any hydrodynamic interactions
between blobs. We [4,5] are not the first to express concern about these hydro-
dynamic approximations [37,40,46,54,60,61], as the concept of screening is more
subtle than it was initially perceived [49]. For channels, the HI is known to decay
exponentially [62–64]. However, the decay in slits is only algebraic [5,62,65]. There-
fore it is not entirely obvious that hydrodynamic screening leads to ζ ∼ L1 in slits.
Doyle and coworkers argued that it is the coupling between the configuration and the
hydrodynamic interactions in the long-chain limit that determines the scaling of ζ
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with L [40,66]. In fact, their analysis showed that ζ ∼ L(lnL)−1 for ideal chains in
slits, indicating partial draining of blobs [40]. This result was later substantiated the-
oretically via the pre-averaging approximation [67]. Nonetheless, Doyle and coworkers
[40] found that, for slit-confined polymers in good solvent conditions, ζ is indeed pro-
portional to L, in agreement with the somewhat fortuitously obtained outcome of
blob theory, where the hydrodynamic interactions were assumed to decay exponen-
tially outside of a distance H for both channels and slits [49].
For channels, Harden and Doi [60] estimated the prefactor for the scaling of D in

Eq. (3) for flexible polymers. By using a combination of the Kirkwood approximation
and self-consistent field theory, they claimed that D ∼ H0.61, slightly weaker than
the scaling in Eq. (3). However, it remains to be seen whether this prediction is
correct, considering that mean-field theory overestimates the effect of self-avoidance
on monomer distribution in channel confinement [68].
To address the role of hydrodynamic interactions, amongst other things, Kirkwood

and Riseman developed a formalism treating the solvent as an implicit continuum,
leaving only the polymer degrees of freedom [69–72]. These degrees of freedom are
expressed in terms of the coordinates ri of the Nb beads that are used to represent
the polymer chain. The Kirkwood-Riseman approach can be expressed quite generally
as a Fokker–Planck equation for the time evolution of the probability density of the
chain configuration [53],

∂ψ

∂t
=

Nb∑
i=1

Nb∑
j=1

∂

∂ri
·Dij ·

[
∂ψ

∂rj
+

ψ

kBT

∂H

∂rj

]
, (6)

where Dij is a 3 × 3 diffusion tensor and H is the Hamiltonian describing the
configuration-dependent potential field acting on the chain. One of the distinguishing
features of Eq. (6) is its capacity to incorporate hydrodynamic interactions, which
are a crucial part of correctly modeling polymer dynamics. However, it is important
to recognize that HI are a dynamic effect only. Because the time-averaged force on
the polymer from the solvent is zero, HI do not alter ψ in the long time limit.
Hydrodynamic interactions enter Eq. (6) through the diffusion tensor. To find this

tensor, consider the change in velocity of the solvent, vi, from a quiescent state, due
to the drag Fi acting on a given segment i of the chain. The velocity is thus the
disturbance flow caused by all Nb of these forces,

vi =

Nb∑
j=1

Ωij · Fj , (7)

where the hydrodynamic interaction tensor Ωij accounts for the flow at bead i caused
by the force acting on each bead j �= i. This quantity is the Green’s function of the
Stokes equation, and it depends on the boundary conditions. We will discuss how to
calculate the hydrodynamic interaction tensor at length in Sect. 3.1. For the moment,
we simply assume that it is a computable quantity. The drag force is given by the
product of the bead friction coefficient, ζ, and the difference between the bead velocity
ui and the solvent velocity,

Fi = ζ (ui − vi) . (8)

Substituting Eq. (7) into Eq. (8) gives

Fi = ζui − ζ
Nb∑
j=1

Ωij · Fj , (9)
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which is a self-consistent equation for the drag force in terms of the bead velocities and
the hydrodynamic tensor. Defining the diffusion tensor according to the fluctuation-
dissipation theorem

ui =
1

kBT

Nb∑
j=1

Dij · Fj (10)

and rearranging Eq. (9) yields the sought-after expression

Dij = kBT

(
δij

ζ
I+ (1− δij)Ωij

)
, (11)

where δij is the Kronecker delta function. It is worth noting that in the general
formulation of the Kirkwood–Riseman theory, Eq. (11) is not exact when constraints
on the system (e.g. rigid bond angles) are included [73]. In this case, Eq. (11) only
represents the first two terms in an expansion in the strength of the hydrodynamic
interactions [74].

3.1 Computing the hydrodynamic interaction tensor

In free solution, the hydrodynamic interaction tensor Ωij is the 3× 3 Oseen–Burgers
tensor from the solution of the Stokes equation due to a point force perturbation [53],

Ωij =
1

8πηrij

(
I+
rijrij
r2ij

)
for i �= j. (12)

In Eq. (12), rij is the distance vector rj − ri, the magnitude of this distance vector
is rij and η is the solvent viscosity. The Oseen–Burgers tensor becomes non-positive
definite for overlapping particles. In the context of the touching bead model of DNA,
which we use frequently for dynamics studies [4,10,75], each hard bead has a size
equal to the effective width of the DNA. The rod connecting two beads represents a
small amount of polymer and thus has a small hydrodynamic radius, so bead-bead
hydrodynamic overlap is not possible. For bead-spring models, where the bead-bead
interaction potentials are soft and each spring represents a substantial amount of
polymer and thus has a larger hydrodynamic radius than a touching bead, the bead
overlap is a potential problem. This problem is overcome in bead-spring models by
replacing the Oseen-Burgers tensor by the Rotne-Prager-Yamakawa (RPY) tensor,
which is a regularized version of the Oseen–Burgers tensor [76–79].
The need to satisfy no-slip and no-penetration at the channel walls substantially

increases the difficulty in obtaining Ωij for a confined chain. Jendrejack et al. [54]
developed a numerical scheme to calculate the HI tensor Ω by splitting it into two
parts,

Ω = ΩF +ΩW, (13)

where ΩF is the free-space HI tensor and ΩW is a correction tensor that accounts for
the presence of the walls through no-slip conditions. The velocity perturbation due to
a point force acting at rj is u = Ω(r, rj) · F(rj), which is also the summation of the
velocity perturbations due to ΩF and ΩW, respectively. The velocity perturbation

uW = Ω
W(r, rj) · F(rj) (14)
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Fig. 4. Velocity profile generated due to a point particle located at ri = (0, 0, 0) exerting
a point force fi in the y-direction on the solvent in a channel of aspect ratio Lx/Ly = 10.
Here, Lx is the length and Ly is the width of the simulation cell.

due to the wall correction part is obtained by solving the incompressible Stokes
equation

−∇p+ η∇2uW = 0, (15)

∇ · uW = 0
subject to the no-slip boundary condition

uF + uW = 0 at the walls, (16)

where uF = Ω
F(r, rj) · F(rj) is the velocity perturbation due to ΩF. An example of

the flow generated by a point force is shown in Fig. 4.
The calculation of ΩF is straightforward as analytical expressions are known, such

as the Oseen-Burgers tensor in Eq. (12). However, calculating the tensor ΩW is not
trivial. It was first calculated by Jendrejack et al. [54] using the finite-element method.
First, a free-solution velocity perturbation field uF(r− rj) is calculated at the walls
by considering a point particle at rj which acts in x-direction with a point force f1.
Using numerical values of uF(r − rj) at the walls, we solve Eq. (15) numerically to
obtain uW(r, rj). The first column of Ω

W is then obtained by

⎛
⎜⎜⎝
ΩW11

ΩW21

ΩW31

⎞
⎟⎟⎠ = 1f1uW. (17)

The second and third columns of Ωij are obtained similarly by applying the point
forces in the y and z-directions, respectively. Finally, Ωij is calculated using

Ωij = Ω
W(ri, rj) + (1− δij)ΩF(ri − rj). (18)

It is important to note that Ωij is nonzero for i = j in confinement, while in free-
solution it is zero.
In order to solve the Stokes equation, and hence to calculate ΩW(ri, rj), a grid is

generated in a predefined geometry. At first glance, it would appear that we need to
compute ΩW(rp, rq) for all pairs of p and q, where p and q are grid indices. However,
we can perform such calculations in an efficient manner by making use of the fact that
hydrodynamic interactions decay rapidly in confined geometries. In other words, we
can calculate ΩW(rp, rq) for only those pairs of p, q such that |rpq| < rc, where |rpq|
is distance between grid points p and q, and rc is the cutoff distance which depends
on the size of the channel or height of the slit. Since we have a grid, an interpolation
procedure is used on the grid to obtain ΩW(ri, rj) for real particle locations. We can
further reduce the size of the calculation by taking advantage of any symmetries in
the channel geometry.
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3.2 Brownian dynamics

In principle, once we know how to compute Dij , we could solve Eq. (6) directly for the
center of mass diffusion coefficient. Unfortunately, this is an intractable problem for
a chain with so many degrees of freedom [36,80]. Accordingly, a number of approxi-
mations are commonly made to arrive at a concrete prediction for the diffusivity. The
most mild of these involves a straightforward numerical solution. The numerical calcu-
lations are performed by reformulating Eq. (6) in terms of a set of coupled stochastic
differential equations and integrating in time akin to Molecular Dynamics [79,80].
Such calculations are commonly referred to as Brownian Dynamics simulations (with
hydrodynamics) and can be computationally quite expensive.
In Brownian Dynamics (BD), the explicit solvent particles are replaced by stochas-

tic forces. The BD method is based on a large separation of time scales between the
rapid motion of solvent particles and the more sluggish motion of polymer segments,
making it useful for problems where the details of the structure of the polymer, but
not the fluid, are of interest. The idea is to make an analogy between a Fokker-Planck
equation for the probability density of random variables and Ito stochastic differential
equations (SDE) for these random variables [80]. For a bead-spring chain consisting
of Nb beads and Ns = Nb − 1 springs, the dynamics are described by an Ito-Euler
stochastic differential equation

dr =

[
1

kBT
D · F+ ∂

∂r
·D
]
dt+

√
2B · dW, (19)

where r is a vector containing the 3Nb coordinates of the beads that constitute the
polymer chain, with ri denoting the Cartesian coordinates of bead i. The vector F is
the sum of non-Brownian and non-hydrodynamic forces, which has length 3Nb, with
Fi denoting the force acting on bead i. The components of the Gaussian noise dW
are obtained from a real-valued Gaussian distribution with zero mean and variance
dt. The quantity B is a tensor whose presence leads to multiplicative noise [80]. Its
evaluation requires the decomposition of the diffusion tensor using the fluctuation-
dissipation theorem, D = B · BT .
Apart from calculating the HI tensor, which appears in Eq. (19) through Eq. (11),

there are two more terms in Eq. (19) that are difficult to calculate, namely the stochas-
tic term B · dW and the divergence term ∂/∂r ·D, which is non-zero in confinement
due to the HI. For the stochastic term, the Chebyshev polynomial approximation
[81] or the Krylov subspace method [82] can be used. A recent paper by Saadat and
Khomami [83] compares different methods to compute the stochastic term. The di-
vergence term can be handled efficiently by using the mid-point algorithm [84,85].
The BD algorithm from Jendrejack et al. [54,79] carries out the calculation of both
terms in a matrix free manner proposed by Fixman [81], which results in a O (N2.25b

)
CPU time scaling. While this approach is useful for relatively small systems and has a
favorable prefactor, the Nb scaling eventually becomes unfavorable for a large number
of beads.
The method described above is but one approach to calculate the hydrodynamic

interactions in BD simulations of polymers in confinement. A method developed by
Mucha et al. [86] was generalized by Hernández-Ortiz et al. [87] to calculate the veloc-
ity perturbations due to point particles. The computational time of this method scales
as O (N1.66b

)
, where Nb is the number of beads in the polymer model, which exert

point forces on the solvent. However, it is restricted to slit geometries only. In order
to have a better scaling and solve problems with arbitrary geometries, Hernández-
Ortiz et al. [88] developed a method called the General Geometry Ewald-like Method
(GGEM). In GGEM, the point force density is split into two parts: (i) the local force
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density and (ii) the global force density. The local force density drives a local velocity
field, which is solved analytically by assuming an unbounded domain. The global force
density causes a global velocity field, which is calculated through suitable numerical
approaches. For example, for slit geometries, where one direction is in confinement
and the other two directions are considered to be periodic, O (Nb logNb) scaling is
obtained by using fast Fourier transform (FFT) in the periodic directions [88]. For
channels, and other geometries in which more than one direction is non-periodic, FFT
cannot be used in those directions, and rather finite difference, finite volume or finite
element methods can be used [89,90] to solve the global velocity field problem. While
the scaling for GGEM is very good, the prefactor can be large.

3.3 Kirkwood pre-averaging approximation

As an alternative to an expensive Brownian Dynamics calculation, we could follow
Kirkwood and Riseman in making a so-called pre-averaging approximation for the
center of mass diffusivity [69,74]. The center of mass diffusion tensor Dcm is defined
implicitly as

ucm =
1

kBT
Dcm · Fcm, (20)

where

ucm =
1

Nb

Nb∑
i=1

〈ui〉 (21)

and

Fcm =

Nb∑
i=1

〈Fi〉 . (22)

In the latter equations, 〈· · · 〉 is the ensemble average operator. Summing Eq. (10)
over i, dividing by Nb and taking the ensemble average gives

ucm =
1

NbkBT

Nb∑
i=1

Nb∑
j=1

〈Dij · Fj〉 , (23)

which is as far as we can progress without an approximation. The pre-averaging
approximation consists in separating Fj from Dij in the ensemble average

ucm =
1

NbkBT

Nb∑
i=1

Nb∑
j=1

〈Dij〉 · 〈Fj〉 , (24)

resulting in the well-known Kirkwood double-sum formula [70]

Dcm =
1

N2b

Nb∑
i=1

Nb∑
j=1

〈Dij〉 . (25)

The pre-averaging approximation in Eq. (24) is essentially a hydrodynamic mean-field
approximation, where a chain segment feels the average HI at every point in time.
Accordingly, the approximation neglects the dynamic correlations that exist between
the intramolecular hydrodynamic interactions at different points in time [91,92].
Because these correlations are also small at short times, the Kirkwood diffusivity
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in Eq. (25) can be thought of as a short-time diffusion coefficient. Using linear re-
sponse theory, Fixman [91] showed that dynamic intramolecular correlations always
decrease the diffusivity, making the Kirkwood estimate an upper bound to the true
diffusivity [92].
An alternative technique called the rigid-body approximation has been tried in

an attempt to overcome the limitations of pre-averaging. In this approach, one nu-
merically solves Eq. (23) using the expression for the drag forces in Eq. (9) before
performing the ensemble average using Monte Carlo data [93]. This technique does
indeed circumvent the pre-averaging, but instead assumes that the dynamic corre-
lations are between “rigid” conformations of the polymer. This approach has been
questioned theoretically [94], and numerical results yield errors similar or worse than
the pre-averaging approximation [95].

4 Kirkwood approximation results for the diffusivity of DNA

Having completed our review of the literature, we now proceed to discuss two results
obtained by our group for DNA in nanoslits [5] (with Patrick Doyle) and nanochannels
[4]. In both of these studies, we used a Monte Carlo sampling of the pre-averaged
Kirkwood approximation in Eq. (25). The DNA chain consists of touching beads of
size w with a bending energy [96] to enforce the desired persistence length lp. We
further assumed that the DNA-DNA excluded volume interactions and DNA-wall
excluded volume interactions were the same, using a hard core potential of size w.
Although we have since developed more sophisticated approaches for computing the
chain configurations out to hundreds of thousands of beads [10,97,98], the data we will
discuss below were obtained using a Metropolis Monte Carlo algorithm consisting of
reptation, crankshaft and pivot moves [9] for around 2000 beads. For slit confinement,
the hydrodynamic interactions were obtained from the method of reflections solution
[65]. For channel confinement, we obtained the hydrodynamic interaction tensor from
the grid-based method of Jendrejack et al. [54], using finite differences to compute
the wall contribution to the flow.

4.1 Nanoslits (Based on Ref. [5])

As we noted in our discussion of the experimental data, the in-plane size of a DNA
molecule contained in a slit of height H exhibits the expected scaling with respect to
the slit height, R ∼ H1/4. However, as we can see in Fig. 5a, the simulation data for
the diffusivity agree with the trends seen in experiments [40,43,46] and, as a result,
do not exhibit classical blob theory scaling D ∼ H2/3. In this figure, the quantity

D0 =
kBT

6πηL
(26)

is the Rouse diffusivity for a chain of length L, which just serves as a convenient
normalization factor.
To be more quantitative in the comparison between scaling theory and our sim-

ulations, we estimated the apparent power law over the range 2lp < H < Rg, which
corresponds to the filled symbols in Fig. 5a. This analysis led to D ∼ H0.523, which is
quite similar to the power laws reported in previous experimental studies [40,43,46].
Note that, for the largest channel sizes in Fig. 5a, the confinement becomes weak
and the diffusion coefficient is transitioning to its bulk value. This transition can be
shifted to ever larger values of the channel size by increasing the molecular weight of
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Fig. 5. (a) DNA diffusivity as a function of slit height. The filled circles correspond to
the range 2lp < H < Rg. The dashed line is Eq. (3). The solid (red) line is Eq. (31).
The slit height H in this panel is the amount of the channel available to the hard beads.
(b) Comparison between the modified blob theory and experimental data. The symbols are
from experiments by Balducci et al. [40] for both λ-DNA and 1/2 λ-DNA. The two lines are
calculated from Eq. (31). The triangle indicates the scaling in Eq. (3). The slit height Hreal
in this panel is the full height of the slit. Adapted with permission from Ref. [5].

the polymer, but such an analysis requires moving from a Metropolis Monte Carlo
approach to a more sophisticated method [10,97].
Given that the simulations and experiments were in reasonable agreement, it seems

natural to question the theoretical result. To do this, we noted that the pre-averaged
Kirkwood approximation in Eq. (25) could instead be written as [20]

D =
kBT

L

∫ H/2
0

h(r)Ω(r)dr, (27)

where h(r) ≡ 4πr2lpg(r) is a dimensionless form of the pair correlation function and,
as an approximation, we could average over the confined hydrodynamic mobility ten-
sor to obtain a form Ω(r) that only depends on the radial distance between segments.
If we go back to the discussion of Sect. 2 and review it in the context of Eq. (27), we
see that the classical blob theory makes two assumptions. First, the hydrodynamic
interactions are assumed to be the same as those in free solution for r < H. In other
words, we can average over Eq. (12) to get

Ω(r) =
1

6πrη
for r < H. (28)

Outside the hydrodynamic screening distance H, there are assumed to be no hydro-
dynamic interactions, which sets the upper bound in the integral in Eq. (27). Second,
the classic blob theory assumes that the pair correlation function is equivalent to a
flexible polymer in a good solvent inside the blob volume H3,

h(r) ∼ r2/3. (29)

Using these two assumptions in Eq. (27) yields D ∼ H2/3, which is the result we got
from blob theory in Eq. (3).
The shortcoming of the classical blob theory is the assumption in Eq. (29) that

there are no correlations between the segments of the chain inside a blob. Since DNA
is a wormlike chain, the orientation of nearby segments along the chain backbone are
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strongly correlated with one another, only losing the correlations at a contour length
r ≈ lp. We thus proposed [5] a modified form of the pair correlation function

h(r) =

⎧⎨
⎩
2 for r < lp/2

2.8

(
r2

lpw

)1/3
for r ≥ lp/2 (30)

that crudely accounts for the correlations over short distances and reduces to the
classical blob theory for distances larger than the persistence length. The prefactor of
2.8 for longer distances was obtained by computing the contour length per blob from
the simulations and fitting these data to the resulting prediction from Eq. (30).
If we use the modified pair correlation function in Eq. (30) in the expression for

the diffusivity in Eq. (27), we obtain a diffusion coefficient

D

D0
= 1.68

[(
H2

lpw

)1/3
−
(
lp

w

)1/3]
+ 2 ln

(
lp

a

)
(31)

where, in our comparison to experiments in this paper [5], we used a = 1.38 nm as the
hydrodynamic radius of the beads. We retained an O(1) prefactor for the first term
to allow us to approximately correct for the assumptions in the pre-averaging; the
best fit curve seen in Fig. 5a corresponds to the prefactor 1.68. When we use realistic
values for the persistence length, contour length, and effective width [5], Eq. (31)
leads to excellent agreement with the experimental data in Fig. 5b.

4.2 Nanochannels (Based on Ref. [5])

The statics and dynamics of DNA in a nanochannel are qualitatively different than
these properties in a slit. In the latter case, the DNA is confined in one direction
and thus executes a two-dimensional, self-avoiding random walk of blobs (in the case
of weak confinement) or deflection segments (in the case of strong confinement).
As we have focused for the most part on the de Gennes blob regime in this mini-
review, we should point out that many experiments of DNA confined in nanochannels
employ channels whose size is comparable to the persistence length of the molecule
[1,24,28,38,99,100]. The predictions of blob theory are no longer valid in this limit.
For narrower channels corresponding to the Odijk regime (H � lp), the diffusion
coefficient can be estimated using the expression for motion of a single semiflexible
polymer in a tube given by [2,101]

D � kBT

2πηX
ln

(
H

2a

)
, (32)

where a is the hydrodynamic radius of the DNA. The extension of the chain in the
Odijk regime [22] also differs from Eq. (5), having the form

X = L

[
1− 0.18274

(
H

lp

)2/3]
, (33)

where the prefactor comes from the calculation by Burkhardt et al. [102]. Since the
chain is almost at full extension, it is common to replace the extension with the con-
tour length in Eq. (32).
In a nanochannel, the DNA is confined in two dimensions and thus executes a self-

avoiding walk in one dimension, again corresponding to blobs or deflection segments
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Fig. 6. Hydrodynamic mobility, made dimensionless with the Rouse mobility, as a func-
tion of fractional extension of the chain. All simulations correspond to an effective width
w = 4.6 nm, hydrodynamic radius a = 1.38 nm and L = 9.42μm (Nb = 2048 beads). The
data correspond to three different persistence lengths: 53 nm (red circles), 26 nm (green tri-
angles), and 5 nm (blue squares) The dotted line is the scaling of Eq. (3). The solid lines are
the approximation in Eq. (32) with X = L. The shaded regions of the plot, along with the
corresponding schematics, represent different regimes of confinement. Adapted with permis-
sion from Ref. [4].

depending on the nature of the confinement. In both nanoslits and nanochannels,
there must be a transition from deflection segments to blobs. The interesting fea-
ture of DNA in nanochannel confinement is that the weak monomer anisotropy of
DNA leads to this so-called transition regime occupying almost the entire range of
measurable extensions in experiments [97], from around 20% to 85% fractional exten-
sion. Thus, although the theories for the hydrodynamic friction for the Odijk and de
Gennes regimes are well established, they are of little use for describing most experi-
ments involving DNA in nanochannels.
To understand exactly how the flexibility of a polymer affects its hydrodynamic

mobility μ ≡ D/kBT in confinement, we fixed the effective width at w = 4.6 nm and
simulated chains with persistence lengths of 53 nm, which corresponds to DNA, and
5 nm, which is a flexible chain [4]. As we see in Fig. 6, the flexible chain exhibits the
scaling predicted by Brochard and de Gennes [49] up to almost complete extension.
Thus, we can conclude that a flexible chain is a hydrodynamically non-draining ob-
ject, where the friction of the chain (inverse of the mobility) is proportional to its
size, X. Only when the channel size is almost equal to the width of the chain does
this flexible molecule exhibit the lubrication result that we would expect in the Odijk
regime. The solid lines in Fig. 6 are Eq. (32) for the Odijk regime with X = L,
which is an excellent approximation to the simulation data. In contrast, our simula-
tion of a DNA-like model exhibits a broad plateau in the mobility for a wide range
of fractional extensions. In this figure, we have made the hydrodynamic mobility μ
dimensionless with the characteristic value μR ∼ (ηL)−1 of a freely draining (Rouse)
chain [53], independent of the extension X. In a freely draining chain, each monomer
acts as its own friction center and there are no hydrodynamic interactions. Thus,
for most channel sizes where there is a sensible extension of the DNA compared to
its bulk conformation, the hydrodynamic interactions between segments of the chain
are almost completely screened. It is only at the smallest fractional extensions where
we see the DNA hydrodynamic mobility approach the prediction from Brochard and
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de Gennes [49]. At the highest extensions, we again see a shift to the prediction for the
Odijk regime, where the DNA-wall hydrodynamic interactions dominate. To confirm
that the freely draining behavior at intermediate extensions is a result of semiflexibil-
ity, we also simulated a chain with an intermediate monomer anisotropy (lp = 26nm)
[4]. As we can see in Fig. 6, the trend in the hydrodynamic mobility for lp = 26nm
is between the result for a flexible chain and DNA.
Similar to what we saw for the slit confinement, the trend in the hydrodynamic

mobility for channel-confined DNA reflects the coupling between the conformations
of the chain and the hydrodynamic interactions, both polymer-polymer and polymer-
wall. There are thus two factors that we need to analyze: (i) the density of polymer
inside the hydrodynamic screening volume H3 and (ii) the typical distance between
the polymer and the wall, given by the ratio of the hydrodynamic radius of the beads
to the channel size, a/H. In the de Gennes regime, the monomer density is high be-
cause the channel size H is big enough to permit backfolding of the chain, thereby
enabling the formation of 3D self-avoiding walks within the hydrodynamic screen-
ing volume. Moreover, the channel is much larger than the typical hydrodynamic
size of the monomers. As a result, we have strong polymer-polymer hydrodynamic
interactions and weak polymer-wall interactions, leading to the non-draining hydro-
dynamic mobility [49]. As the channel size decreases to the transition between the de
Gennes and Odijk regimes, which corresponds to H ≈ lp, the monomer density inside
the hydrodynamic screening volume decreases because the relatively narrow channel
suppresses (but does not eliminate) backfolding of the chain. However, since the per-
sistence length is much larger than the hydrodynamic radius, the chain still tends
to be far enough from the wall to avoid lubrication-like flows. We thus have efficient
screening of polymer-polymer hydrodynamic interactions by the walls accompanied
by weak polymer-wall hydrodynamic interactions. This leads to the case where the
hydrodynamic friction is, at best, a very weak function of the extension of the chain.
Finally, as the channel size becomes much smaller than the persistence length, we
reach a case where the walls strongly screen polymer-polymer hydrodynamic inter-
actions but also enforce strong polymer-wall hydrodynamic interactions. This is the
lubrication-like Odijk limit.
To date, there are no experimental data for the diffusion of DNA in a nanochannel

as a function of the channel size that we can use to test the predictions in Fig. 6.
However, we mentioned in our review of the literature that Reisner et al. [38] provided
relaxation time data for λ-DNA in seven channel sizes ranging from 35 nm to 400 nm.
We used these hydrodynamic data, in conjunction with calculations of the variance
in the mean extension, to compute the relaxation time using a dumbbell model pa-
rameterized by the detailed simulations [75]. Using an O (1) prefactor, we were able
to obtain agreement with the experimental data, which supports the picture of the
hydrodynamics we described here.
Before leaving this subject, it is worthwhile to compare the case of DNA friction

inside a nanochannel to the frictional force experienced by a DNA molecule during
translocation through a nanopore [103–105]. The most relevant comparison is in the
Odijk regime, where Eq. (32) indicates that the friction in a channel is governed by
the lubrication friction between the DNA and the walls. The friction of a DNA mole-
cule in a nanopore is also governed by lubrication flow, assuming that the dominant
contribution to the friction is the chain inside the pore and not the coiled segments
on either side. Thus, we would expect these two frictions to be congruent when the
nanochannel approaches the �10 nm range used for nanopore friction experiments
[103,104]. However, it is extraordinarily difficult to operate such small nanochannels
[106]. At the moment, channel widths of 45 nm seem to be the lower bound for robust
routine operation [27], ableit in a commercial setting. Our results indicate that 45 nm
channels are closer to the case where the hydrodynamic friction is, at best, a very
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weak function of the extension of the chain. Thus, the friction is qualitatively differ-
ent than the lubrication limit embodied by the nanopore. Naturally, as the channel
size increases further and we enter the blob regimes, the congruence between the
nanopore friction and the channel friction is lost since the friction is dominated by
polymer-polymer hydrodynamic interactions rather than polymer-wall hydrodynamic
interactions.

5 Outlook

In this mini-review, we have focused on two results from our group pertaining to
the hydrodynamics of confined DNA. Our work with Patrick Doyle [5] seems to re-
solve the apparent contradiction between experiments and de Gennes’ blob theory for
DNA in a nanoslit, where both approaches agree for the in-plane size of the confined
chain but disagree for the diffusion coefficient. Indeed, extrapolating our results to
higher molecular weights suggest that a Brochard-de Gennes diffusion regime with
the scaling D ∼ H2/3 should be realized for DNA in the megabase pair range and
micron-sized slits. The fabrication of this experimental system is much simpler than
making a nanoslit, but handling such large DNA without any breakage is challenging.
With respect to the nanochannel simulations [4], we think it is fair to say that the
comparison between our results and experiments thus far look promising [75]. The
prediction of a freely draining regime over a wide range of experiments is a strong
one, running counter to the extant theories for flexible chains. However, the agree-
ment between our simulations for the longest relaxation time of a DNA molecule in a
nanochannel and experimental data [75] lend confidence to the hydrodynamic mod-
eling. We are also optimistic that experimental data for the diffusion coefficients of
channel-confined DNA will soon become available to test our predictions.
There are two natural areas of concern about our work. First, we have assumed

that the pre-averaged Kirkwood approximation is a satisfactory one for a confined
wormlike chain. Previous work by Jendrejack et al. [54] for weakly confined chains
indicate that the Kirkwood pre-averaged approximation is in good agreement with
the center-of-mass diffusion coefficients produced by Brownian dynamics simulations,
but it remains to be seen whether this agreement holds true over the entire range
of extension or for the more finely discretized models of DNA that are required for
stronger confinement. Second, the results presented here are for relatively short chains,
up to around 10μm in contour length, that may not yet have reached the asymptotic
limit of a long chain [98]. Thus, the data reviewed here [4,5] may exhibit some finite
length effects. We are presently working on assessing both of these open questions.
In our discussion of simulation methods, we have focused exclusively on Brown-

ian Dynamics with hydrodynamic interactions. This is not the only possibility, and
every method has intrinsic advantages and shortcomings. An alternate approach while
maintaining an implicit solvent is coupling a lattice Boltzmann (LB) solution for the
fluid flow to the polymer model [48,107–112], where random fluctuations are added
to the stress tensor directly [113] to introduce Brownian fluctuations. As this method
solves the Boltzmann equation rather than the Stokes equation, it leads to some
approximations. A rather different approach is to use discrete fluid models, which
can be useful for simulating more complicated geometries where the solution to the
flow field in an implicit solvent becomes difficult. We do not think that molecular
dynamics (MD) approaches [114,115] are likely to be useful here, owing to the small
time steps required to capture the motion of the fluid and transmit hydrodynamics.
However, it may be possible to make progress using mesoscopic, explicit fluid algo-
rithms for confined systems, such as Dissipative Particle Dynamics (DPD) [116–118]



Brownian Motion in Confined Geometries 3197

or Multi-Particle Collision Dynamics (MPCD) [119]. Both methods have been used
for modeling confined polymers [56,120–122].
Regardless of the modeling approach, we believe that the problem of DNA dy-

namics in nanochannels remains a fertile area for further exploration, with important
applications in biotechnology. While we have presented some preliminary ideas about
the friction of a DNA chain in a square channel, most practical applications entail the
use of rectangular channels due to fabrication limitations. We recently showed that the
spring constant of channel-confined DNA depends in a non-trivial way on the aspect
ratio of the channel [100], and it is reasonable to assume that hydrodynamic inter-
actions may also exhibit similarly peculiar behavior. It would also be worthwhile to
consider other ways that the channel shape can affect the hydrodynamic interactions,
either using circular channels to eliminate the corner flows or using triangular chan-
nels [123,124] to enhance the importance of these flows. Such simulations for circular
confinement are driven more by curiosity, since fabrication of transparent circular
nanochannels suitable for fluorescence microscopy is challenging but possible [125].
In contrast, triangular channels are easily fabricated [123,124] and provide a stronger
extension than a square channel for a given cross-sectional area [126,127]. Moreover,
hydrodynamic interactions may play a crucial role for the strong stretching found in
“normally closed” triangular nanochannels [124]. The techniques for exploring these
types of systems are now well developed and waiting to be exploited.
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116. P. Español, P. Warren, Europhys. Lett. 30, 191 (1995)
117. R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423 (1997)
118. M. Ripoll, M.H. Ernst, P. Español, J. Chem. Phys. 115, 7271 (2001)
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