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Cardenal Herrera, San Bartolomé 55, 46115 Alfara del Patriarca – Valencia, Spain

Received 11 August 2014 / Received in final form 17 October 2014
Published online 10 December 2014

Abstract. We present and review results on the continuation and bifur-
cation of periodic solutions in conservative, reversible and Hamiltonian
systems in the presence of symmetries. In particular we show how two-
point boundary value problem continuation software can be used to
compute families of periodic solutions of symmetric Hamiltonian sys-
tems. The technique is introduced with a very simple model example
(the mathematical pendulum), justified with a theoretical continuation
result and then applied to two non trivial examples: the non integrable
spring pendulum and the continuation of the figure eight solution of
the three body problem.

1 Introduction

It is well known that the bifurcation of periodic orbits constitute the backbone of a
Hamiltonian system. If we succeed in analyzing the branching and stability behavior
of these solutions as the parameters or the energy are varied, we can hope to under-
stand and predict the general evolution of systems with symmetries and conserved
quantities.
Nature, at its most basic level, has decided to be Hamiltonian; non-Hamiltonian

systems come up in Physics only as phenomenological models for the more compli-
cated underlying processes. However, Hamiltonian systems are non generic dynamical
systems with remarkable properties, in particular with respect to periodic orbits. The
role of periodic solutions in Hamiltonian systems and their importance in modern
physics was first recognized by Poincaré [1]; and nowadays they are at the basis of
both classical and quantum mechanics [2]. Poincaré conjectured that periodic orbits,
i.e. solutions which return to their initial conditions after some finite time, are densely
distributed among all possible bounded classical trajectories; and he suggested that
the study of periodic orbits would provide the clue to the overall behavior of any
mechanical system.
In this paper we review some results on the continuation and bifurcation of peri-

odic orbits in conservative systems and show how two-point boundary value problem
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continuation software can help us to disclose the fortress Poincaré was talking about
in his Methodes Novelles, by providing an efficient tool to compute families of peri-
odic orbits in Hamiltonian systems and to discover numerically how these families
bifurcate and connect. We will in particular pay attention to symmetric Hamiltonian
systems, where the symmetries and the associated first integrals typically increase
the dimension of these families.
The work is organized as follows. In Sect. 2 we discuss several aspects of periodic

orbits in Hamiltonian systems, in particular how they are organized in families and
how one can approach the numerical calculation of these families. In Sect. 3 we give an
outline of theoretical continuation results for periodic orbits and relative equilibria;
these results include a set-up for the equations which can be used for numerical
computations. In Sect. 4 the method is illustrated with a paradigmatic toy example;
the mathematical pendulum. In Sect. 5 we present the first non trivial application of
our continuation results for a non integrable spring pendulum. In Sect. 6 we present
continuation results for the three-body problem, starting from the figure eight for the
case with equal masses, and using one of the masses as (an external) continuation
parameter; we show that the starting solutions can be continuously connected to a
periodic solution of the restricted three-body problem. We finish with some general
conclusions.

2 Periodic solutions in Hamiltonian systems

It is well known that general (dissipative) and Hamiltonian (or more generally con-
servative) systems behave quite differently with respect to periodic orbits, their con-
tinuation and their bifurcations. In dissipative systems periodic orbits are generically
isolated (limit cycles), and therefore an external parameter is required in order to be
able to continue such periodic orbits. For Hamiltonian systems there is the celebrated
cylinder theorem (see [3] or [8] and Fig. 1) which says that periodic orbits appear in
one- or more-parameter families, and that under appropriate non-degeneracy condi-
tions these families are persistent under small Hamiltonian perturbations.
In Fig. 1 we plot a schematic representation of the cylinder theorem and the

reduction technique. The initial value p generates a periodic orbit (in blue) that
belongs to a family that can be parameterized by the conserved quantity F (usually
the energy) which is schematically represented by the orange surface which locally
resembles a cylinder. We can study the dynamic around the solution by fixing the
value of F (magenta plane) or if want to vary the F with a hyperplane transversal
to the orbit along the cylinder (green plane π). In both cases we can reduce the
dimension of the problem.
The computational problem of finding a periodic orbit can be formulated as a

boundary value (or shooting) problem with the period as an additional parameter.
In order to avoid phase shifts and to ensure uniqueness one has to introduce an
appropriate phase condition which can be either a boundary condition (Poincaré
type condition) or an integral version of it (see [5] for more details). In dissipative
systems this problem is generically well determined: the periodicity condition together
with the phase condition give n + 1 equations (n = dimension of the phase space)
for the n components of the initial point, the period and the external parameter;
generically these equations can be solved by the Implicit Function Theorem, giving a
one-dimensional solution curve which can be parametrized by the external parameter.
This scheme no longer works for Hamiltonian systems or, more generally, for sys-

tems having a first integral. (Also time-reversible systems are exceptional, but we will
not consider those in detail since they require different arguments). In conservative
systems periodic orbits typically belong to one parameter families, parametrized by
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Fig. 1. Schematic representation of the cylinder theorem and the reduction technique.
The initial value p generates a periodic orbit (in blue) that belongs to a family that can
be parameterized by the conserved quantity F which is schematically represented by the
orange surface which locally resembles a cylinder. We can study the dynamic around the
solution by fixing the value of F (magenta plane) or if want to vary the F with a hyperplane
transversal to the orbit along the cylinder (green plane π).

the value of the first integral (the energy in the Hamiltonian case). This “internal” or
“natural” parameter is not explicitly available in the equations, at least not directly,
and this makes the standard continuation scheme to fail. Additional complications
arise for Hamiltonian systems having several independent constants of motion (sym-
metries according to Noether theorem [8]): here periodic orbits belong to families
having the dimension of the number of independent integrals, and further “phase
conditions” are required in order to uniquely identify members of such family. In the
next subsection we describe how one can handle this difficulty.

3 Continuation of periodic orbits in conservative systems

A straightforward approach for the continuation is to use the conserved quantity (the
energy, in the Hamiltonian case), to eliminate one of the variables; then we choose a
suitable Poincaré section for the flow, and look for fixed points of the corresponding
Poincaré map. This scheme usually based on shooting methods can be extended to the
case of several constants of motion and has been extensively used in the literature, see,
for example, [6]. It requires numerical integration of the differential equations, which
can give errors in case of very stiff equations for very unstable orbits. The section
must be adapted at each step in the continuation process to ensure transversality.
This approach also makes it difficult to use integral phase constraints which have often
significant computational advantages over the classical Poincaré phase condition. The
idea underlying this scheme is that of the reduction of the dimension of the problem by
making use of the conserved quantities and/or the symmetries; it is a direct translation
of the standard theoretical treatment of the problem. A classical example is the
N -body problem (see e.g. [7]) that will be discussed later in this paper.
The approach which we propose here increases the dimension rather than reduc-

ing it, and reformulates the problem in a form where boundary value continuation
methods can be applied directly. Our formulation not only allows to prove and extend
some basic continuation results for periodic orbits in Hamiltonian systems – such as
the “cylinder theorem” of [8] – but can also be implemented directly for the numerical
calculation of branches of periodic orbits.
Our starting point will be a generalization of some continuation results of Sepul-

chre and MacKay for periodic orbits of systems having a first integral; in [9] these
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authors introduce the concept of a normal periodic orbit and show that such normal
periodic orbits belong to one-parameter families of normal periodic orbits. The key
idea of their approach is to embed the conservative equation in a one-parameter fam-
ily of dissipative systems by adding a small gradient perturbation term to the vector
field in such a way that a periodic orbit of the perturbed system can only exist when
the perturbation is zero. Properly speaking the added term acts more as an unfold-
ing term than as a perturbation. Under the normality condition one can invoke the
Implicit Function Theorem to obtain a continuation result for periodic orbits of the
extended system; because of the just mentioned property of the perturbation this
means that in fact one has a continuation result for the unperturbed conservative
system.
The idea of adding a dissipative term which allows periodic orbits only when the

dissipation is zero is not new; it is for example used in one of the classical proofs
of the Lyapunov Center Theorem, where this theorem is shown to correspond to a
vertical Hopf bifurcation (see e.g. [10]). Numerically the idea has been used in, for
example, the thesis of Zufiŕıa [11], the paper [12] by Aronson et al., and several other
papers.
To be more precise, consider a smooth n-dimensional vector field g : Rn → Rn,

and assume that the corresponding system

u̇ = g(u) (1)

has a nontrivial first integral F : Rn → R, i.e. each orbit of (1) is contained in a
level set of F , and consequently ∇F (u) · g(u) ≡ 0. Let u0(t) be a periodic solution
of (1), with initial point p0 := u0(0), minimal period T0 > 0, and monodromy matrix
M (this monodromy matrix is given by M = V (T0), where V : R → L(Rn) is the
transition matrix for the variational equation v̇ = Dg(u0(t)) · v; the eigenvalues of M
are the multipliers of the periodic solution u0(t)). Assuming that ∇F (p0) �= 0 one can
show that 1 is an eigenvalue of M with geometric multiplicity mg ≥ 1 and algebraic
multiplicity ma ≥ 2 (full proofs are in [13]). In order to continue the periodic solution
u0(t) we replace the Eq. (1) by the extended equation

u̇ = T [g(u) + α∇F (u)] , (2)

which depends on two (real) parameters T and α. We will look for 1-periodic solutions
u(t) of (2), with (u(0), T, α) near (p0, T0, 0). The basic remark is that such solution
can only exist for α = 0, since

0 = F (u(1))− F (u(0)) =
∫ 1
0

∇F (u(t)) · u̇(t) dt = αT
∫ 1
0

‖∇F (u(t))‖2 dt;

the integral at the right hand side is different from zero (∇F (u(0)) is close to
∇F (p0) �= 0), and hence α must be zero. We conclude that a 1-periodic solution of (2)
corresponds (after an appropriate time rescaling) to a T -periodic solution of (1).
Denote the flow of (2) by ũ(t; p, T, α) (p ∈ Rn is the initial value). To find the

1-periodic solutions we are looking for we must impose the periodicity condition
ũ(1; p, T, α) = p; to avoid phase shifts we must also impose a phase condition. There-
fore we define a mapping G : Rn × R× R→ Rn × R by

G(p, T, α) := (ũ(1; p, T, α)− p, 〈g(p0), p− p0〉), (3)

(〈·, ·〉 is any scalar product on Rn); by hypothesis we have G(p0, T0, 0) = 0, and we
look for zeros (p, T, α) of G near (p0, T0, 0). Using the implicit function theorem in
combination with the remark above one can then prove the following.
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Theorem 1. Let u0(t) be a periodic solution of the conservative Eq. (1), with initial
point p0 = u0(0), minimal period T0 > 0 and monodromy matrix M . Assume that
∇F (p0) �= 0 and that 1 is an eigenvalue of M with geometric multiplicity mg = 1.
Then the solution set of the equation G(p, T, α) = 0 consists locally near (p0, T0, 0)
of a unique smooth curve along which α ≡ 0. More precisely, this solution curve can
be written in the form {(p∗(T ), T, 0) | T near T0} for some smooth p∗ : R→ Rn such
that p∗(T0) = p0.

This theorem is essentially a restatement of the cylinder theorem for conservative
systems (see [8]) in a form which is adapted to numerical implementation; it forms
the simplest case of a more general continuation result for conservative systems which
can be found in [13].
The condition mg = 1 of Theorem 1 can not be satisfied in case the Eq. (1) has

several independent first integrals; then the more general theory of [13] is required.
This is in particular the case for continuation in the N -body problem, where next
to the Hamiltonian also the components of the total linear momentum and the total
angular momentum are first integrals; we refer to Sect. 6 for examples.
It is worth to mention that the theorem can be extended in two directions:

– Further simplifications both in the theory and in the implementation can be
achieved if reversibilities are present [14] and [15]. In this case only a portion
of the orbit has to be considered and the emanating branches can be selected by
imposing the appropriate boundary conditions according to the reversibility (see
Sect. 5 for an example).

– For the case of k independent conserved quantities (see Sect. 6 for an application).

For the numerical implementation of Theorem 1 (or similar results) the periodicity
condition ũ(1; p, T, α) = p is usually replaced by a boundary value problem for the
full solution u(t) (0 ≤ t ≤ 1), and the Poincaré type phase condition is replaced
by an integral version. Setting ũ0(t) := ũ(t; p0, T0, 0) = u0(T0t) this leads then to a
boundary value problem of the following form:

– (CON-1)Find (u(t), T, α) near (ũ0(t), T0, 0) such that

⎧⎪⎨
⎪⎩
u̇(t) = T [g(u(t)) + α∇F (u(t))] ,
u(1) = u(0),∫ 1
0
〈 ˙̃u0(t)), u(t)− ũ0(t)〉 dt = 0.

(4)

4 A model example: The mathematical pendulum

In this section we show for illustration some results of the numerical implementation
of the foregoing approach to a particular simple example, namely the mathematical
pendulum. While discussing this example we put some emphasis on several numerical
issues related to such numerical implementation.
The dimensionless mathematical pendulum θ̈ + sin θ = 0, that can be written a

first order ODE systems as:
ẋ1 = x2,
ẋ2 = − sin(x1). (5)

It is a one degree of freedom Hamiltonian system, corresponding to the Hamiltonian
H(x1, x2) =

1
2x
2
2 + 1− cos(x1). The variable x1 represents the angular displacement

from the vertical axis (θ) (so x1 ∈ S1 = R/2πZ), and x2 the angular velocity (θ̇); the
Hamiltonian has been chosen such that the equilibrium at the origin, corresponding
to the stable hanging solution, has zero energy.
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It is well known that this equation has a family of periodic orbits, originating
at the origin and terminating at a homoclinic orbit to the saddle point (π, 0), and
corresponding to librations of the pendulum; Fig. 2 (upper right) shows some repre-
sentative orbits. This family can be parametrized by either the energy, or the period
(which increases monotonically from 2π to infinity), or the maximal angular displace-
ment; however, neither one of these quantities is explicitly available in the Eq. (5). As
we have observed before, such behaviour (which is non-generic for general, dissipative
systems) is typical for Hamiltonian (or more generally, conservative) systems. Beyond

this homoclinic solutions there exist non periodic solutions (in the θ, θ̇ variables) that
correspond to rotations around the suspension point.
In order to calculate the family of librating periodic solutions we follow the ap-

proach outlined in the previous subsection and replace (5) by (a time rescaled version
of) the system

ẋ1 = x2 + α sin(x1),
ẋ2 = − sin(x1) + αx2. (6)

This system still has two equilibria, the origin which is a stable or an unstable focus
depending on the sign of α, and the saddle (π, 0). For all non-equilibrium solutions
(x1(t), x2(t)) the function h(t) := H(x1(t), x2(t)) is strictly decreasing if α < 0 or
strictly increasing if α > 0; this excludes periodic solutions for α �= 0, which agrees
with the theoretical results and is also confirmed by a phase plane analysis of (6). So
periodic solutions are only possible for α = 0 in which case (6) coincides with (5) and
we have the family of periodic orbits mentionned before. The bifurcation diagram for
periodic orbits of (6) therefore looks as in the top left panel of Fig. 2; this diagram
very much ressembles that of a classical Hopf bifurcation, except that in this case the
bifurcating branch is completely vertical. It is also clear that α can not be used to
parametrize the family of periodic orbits.
Computationally the Eq. (6) has the desired form, with one external parameter.

Starting the computation from, for example, α = −1 and with initial point (x1, x2) =
(0, 0), a software package such as Auto ([16,17]) will locate (α, x1, x2) = (0, 0, 0)
as a Hopf bifurcation point from the trivial solution and, after switching branches,
compute the “vertical branch” of periodic orbits. Along this branch the value of α,
computed as part of the solution for each continuation step, appears to be zero (up
to numerical precision). The results of such computation are illustrated in Fig. 2; in
particular, the center and bottom left panels of this figure illustrate the fact that the
“internal parameter” H (the energy) or the period can be used to parametrize the
family of periodic orbits.
Some further remarks on the numerical implementation are in order.

– In the pseudo-arclength continuation technique used by Auto there is no “dis-
tinguished parameter”; in our particular example α is just one of the quantities
which have to be computed at each continuation step. This allows (for exam-
ple) the computation along folds and, as illustrated by the current example, the
continuation of vertical solution branches.

– Orthogonal collocation with adaptive mesh selection is used to solve the boundary
value problem at each continuation step. In Fig. 2 bottom right we show how
the time step varies along the orbit: it shrinks at places where the solution varies
rapidly whereas it remains large at slowly varying parts of the orbit. This allows to
compute the family up to orbits with large period, i.e. very close to the homoclinic
orbit that terminates the branch (see Fig. 2 center left).

– The integral phase condition keeps the regions of rapid variation of the solution
component x2 at practically the same location when the period becomes large,
as can be seen in Fig. 2 (centre right). This allows bigger continuation steps to



Advanced Computational and Experimental Techniques in Nonlinear Dynamics 2711

Fig. 2. Continuation results for the mathematical pendulum. The bifurcation diagram ob-
tained by sweeping the parameter α across zero corresponds to a “vertical Hopf bifurcation”
(top left). The phase portrait in the top right panel shows 10 different periodic orbits from
the one-parameter family. The origin is a center and the unstable equilibria (saddle points)
correspond to the inverted pendulum. Center left and bottom left we plot the period and the
L2-norm of the solutions versus the energy; the period is plotted in a logarithmic scale and
goes up to above 103 using moderate time meshes (∼100 mesh points). The L2 norm goes
from zero to π, which is the value corresponding to the homoclinic solution. In the center
right panels we plot the time evolution of the x1 and x2 variables. Observe that the use of
an integral phase condition results in “freezing” the positions of the “dips” in the solutions.
The bottom right panel shows the evolution of the time step along the orbit for a solution
“far” from the homoclinic solution (orbit number 5 counting from the origin in the phase
portrait), and a second one “very close” to the homoclinic connection. Note how the time
step adapts itself to the variations of the solution.

be taken compared to phase conditions that allow the dip to move. For further
details on this particular aspect of the computations see [18] and [5].

5 First application: The spring pendulum

As a first non trivial mechanical example we apply the previous method to the spring
pendulum of Fig. 3 where we make use of cartesian coordinates q1 and q2. A mass
(bob) which can move in a plane under the action of gravity is hanging from a weight-
less elastic spring (shaft) with one of its ends fixed at the origin. The generic motion
is a combination of libration or rotation for the pendulum and elastic oscillation for
the spring (depending on the energy which depends on the initial condition). A ce-
lestial mechanics approach to the elastic pendulum can be found in [19], whereas an
extensive numerical treatment of the problem and references can be found in [20].
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Fig. 3. Spring Pendulum in cartesial coordinates q1 and q2. A mass (the red bob) which can
move in a plane under the action of gravity is hanging from a weightless elastic spring (the
black shaft) with one of its ends fixed at the origin. The generic motion is a combination of
libration or rotation for the pendulum and elastic oscillation for the spring.

It is surprising how two integrable systems with very simple behavior considered
separately may exhibit extremely complex behavior when they are able to interact and
exchange energy among the modes. One of the sub-systems (the spring) is isochronous
whereas the other (pendulum) is known to have a increasing period of oscillation
(see previous section). In fact we may expect to find resonances between the modes
as either the parameters or the energy (internal parameter) are varied. The role of
resonances and energy transfer for this problem can be found in [21].
The correct modeling of the spring pendulum requires the inclusion of the rest

length L0 of the spring which represents the length at which the spring is neither
compressed nor extended. In fact, it can be shown [22] that the most convenient
adimensional parameter is precisely λ = L0k

mg
.

The dimensionless Hamiltonian (energy) of the system is

H =
p21
2
+
p22
2
+
1

2
(
√
q21 + q

2
2 − λ)2 + q2 + λ+

1

2
,

where the potential energy is a sum of the elastic term (with the square root) and
gravity (q2) the final constant term has been chosen so that the hanging solution is a
zero energy for all values of λ. There is a single explicit continuation parameter λ.
The equations of motion can be derived as usually in Hamiltonian dynamics and

involve a denominator that will vanish at the origin. This fact is due to the singularity
that reflects the fact that a spring cannot compressed to zero length and has not been
always considered in the literature. It is worth to mention that the problem becomes
trivial for the case λ = 0 because it is linear. This happens exactly at the 1 : 1
resonance.
The system exhibits two equilibria for q1 = 0, q2 = −λ− 1 (the hanging position)

which is stable and present for all values of λ, and q1 = 0, q2 = −λ−1 which is always
unstable and present only for λ > 1 that corresponds to the case in which the spring
is strong enough to support the weight of the bob it the upright position. The energy
is the only conserved quantity of the two degrees of freedom problem and the non
integrability of the system has been proven by using the Morales-Ramis theory [23].
An interesting and illuminating numerical exercise is to directly implement the

reduction technique to produce the so called Poincaré section for a given value of the
energy. We need to define a plane transversal to the trajectories, integrate the system
starting from a large number of initial conditions and detect all the intersections of
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Fig. 4. Poncaré section of the dynamics of a set of initial conditions corresponding to
a fixed value of the energy. The horizontal direction is the q2 axis and the vertical axis
is q̇2. The green curve surrounding the whole cloud is the border of the allowed set of
initial conditions compatible with the energy level. We have fixed the energy at a high value
and three regions of “concentric” curves are visible, that represent tori. The middle one
corresponds to the solutions around the stable hanging equilibrium and the two exterior
ones to rotating solutions. The unstructured cloud of points around those tori correspond
to chaotic trajectories and the origin is avoided in agreement with its singular character.

the trajectories with the chosen plane in a preselected direction for the same level
of energy. As the original system lives in a four dimensional space and we elimi-
nate one variable (q̇1) from the energy condition and another from the intersection
with the plane (q1 = 0), the dynamics is reduced to a set of points in a plane. An
example is shown in Fig. 4, where the horizontal direction corresponds to the q2 axis
and the vertical axis is q̇2. A different scaling for the Hamiltonian was used in this
computations [20]. The green curve surrounding the whole cloud is the border of the
allowed set of initial conditions compatible with the energy level. In this case we have
fixed the value of the energy at a high value and three regions of “concentric” curves
are visible, that represent tori. The middle one corresponds to the solutions around
the stable hanging equilibrium and the two exterior ones to rotating solutions. The
unstructured cloud of points around those tori correspond to chaotic trajectories and
the origin is avoided in agreement with its singular character. The expected KAM
structure with elliptic and hyperbolic solutions is also present.
This diagrams should be computed for many initial conditions and many values of

the energy with high accuracy to illustrate the dynamics of the system. Fortunately,
it is an embarrassingly parallelizable problem that can be efficiently computed using
Taylor methods with machine precision accuracy and event location [24–26]. An ani-
mation of the evolution of the Poincaré section can be found in [27].
The theoretical and numerical scheme presented in 3 can be directly applied to

the stable hanging pendulum solution. The Lyapunov Center Theorem [8], under non
resonant conditions provide two families of stable periodic solution with known pe-
riod related to the imaginary part of the eigenvalues of the linearization around the
equilibrium point.
Along any of this family we can compute the characteristic multipliers that control

the stability and bifurcation behavior as shown in Fig. 5. The upper left panel is the
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Fig. 5. Characterist or Floquet multiplier as a function of the value of the energy for a
splitting Period Doubling bifurcation. The upper left panel is the complex argument of
the multipliers as a function of the energy (Hamiltonian value) whereas the lower left panel
displays the log of the modulus of the multipliers; a vanishing value implies that the multiplier
is on the unit circle (elliptic solution). The right panel shows the path of the multiplier
in the complex plane with the unit circle as a guide to the eye.

Fig. 6. Schematic bifurcation diagram of the family of periodic solution originated at the
vertical solution of the spring pendulum. The horizontal axis is the energy and the vertical is
a scalar measure of the solution (the L2 norm). DP stands for period doubling whereas BP
is a branching point. A solid line represents a stable branch (elliptic) whereas a dashed line
corresponds to an unstable one (hyperbollic). The main branch corresponds to the harmonic
oscillator solution with q1 = q̇1 = 0 which is stable until a period doubling occurs. The
emanating branch exhibits a rich and complex behavior with several bifurcating branches.

complex argument of the multipliers as a function of the energy (Hamiltonian value)
whereas the lower left panel displays the log of the modulus of the multipliers; a van-
ishing value implies that the multiplier is on the unit circle (elliptic solution). The
right panel shows the path of the multiplier in the complex plane with the unit circle
as a guide to the eye. In this case, we present a splitting Period Doubling bifurcation
where a pair of Floquet multipliers move on the unit circle, meet at −1, and depart
at the unit circle. It could also remain on the unit circle (passing period doubling).
It is well known [8] that if μ is a multiplier then 1/μ is also a multiplier. This explain
the symmetry of the figure.
The schematic bifurcation diagram is presented in Fig. 6 where splitting and

passing period doubling and branching point are observed. A solid line represents
an elliptic branch whereas the dashed denotes a hyperbolic (unstable) branch. More
details can be found in [22].
The spring pendulum has two reversibilities; the natural one (R1 : p1 → −p1,

p2 → −p2 and t→ −t) and the combination with the Z2 symmetry (R2 : q1 → −q1,
p2 → −p2 and t → −t), and both can be used to continue reversible periodic
solutions.
In Figs. 7 and 8 we present the continuation results when the reversibility is in-

cluded in the boundary value formulation (see [15] and [22] for the details). Only a
portion of the periodic solution need to be computed since the rest is recovered by
applying the corresponding reversibility. The plane where the families are drawn is
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Fixed Plane of R2

q1 = p2 = 0

p1

q2

q2
1 + p2

2

Fig. 7. Representation of the continuation of reversible periodic solutions as a boundary
value problem on the fixed plane of the reversibility (p1 − q2). The vertical axis is a scalar
measure of the solution. Along the continuation only a portion of the orbit has to be con-
sidered (the blue curve). A reversible solution intersects twice with the fixed plane of the
reversibility and the different bifurcating families of reversible solutions represented by this
double intersections draw a symmetric plot in the horizontal plane.

the fixed plane of the reversibility and allows an appealing way to follow and classify
the families. Note that a reversible periodic solution intersects twice the fixed plane.
In particular Fig. 8 is the R2 reversible continuation of the periodic solution

emanating form the equilibrium. The red curves are the normal modes and the blue
curves are associated to bifurcating solutions. The connections between the differ-
ent branches and the limiting cases correspond to the periodic solutions that were
identified in the Poincaré sections for varying values of the energy. The non periodic
(quasi periodic or chaotic) are not represented in this bifurcation diagram but can
be anticipated by a combined study with characteristic multipliers. Both approaches
(Poincaré section and bifurcation diagrams) are complementary and should be un-
dertaken simultaneously.

6 Second application: Continuation of the figure eight solution

Celestial Mechanics has been at the origin of the theory of dynamical systems and
many of the techniques from that theory were developed to analyze the fascinating
behavior of a group of massive bodies under the influence of their mutual gravitational
interaction.
In this section we apply our continuation scheme to a very particular solution of

the Three Body Problem (3BP). Part of these results were obtained in collaboration
with A. Vanderbauwhede and E.J. Doedel and were published in [28,29].
The spectacular discovery by Chenciner and Montgomery [30] of the existence of

a new solution of the 3BP with equal masses in which all three bodies follow the
same planar curve with the shape of a “figure eight” has brought great excitement
to the dynamical systems community; the origin of the name of the orbit becomes
apparent from a real space representation such as in Fig. 10 (top). This solution was
first discovered (numerically) by Moore [31] in the context of a study of possible braid
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Fig. 8. Continuation of R2 reversible families of periodic solutions emanating form the ori-
gin for λ = 1. The curves emanating form (−2,0) are the normal modes (vertical harmonic
oscillations and the pendular librations) and the rest of the curves are associated to bifur-
cating solutions. This way of plotting the families provides an organized and appealing way
to represent the rich and complex bifurcating behavior of the periodic solutions in the spring
pendulum.

types associated to the planar N -body problem. The method of proof by Chenciner
and Montgomery is based on variational arguments; after some reductions the action
integral is minimized on a restricted set of symmetric arcs to prove the existence of a
solution in which the three bodies of equal masses chase each other following a closed
trajectory. However, the variational proof is unable to decide about the stability of
the solution.
Simó [32] computed this remarkable solution numerically with great accuracy

and announced elliptic stability; i.e. the nontrivial characteristic multipliers of the
periodic orbit are on the unit circle. The precise values of the nontrivial characteristic
multipliers (those which are different from one) are given by μj = exp(2πiνj) (j =
1, 2), with ν1 = 0.00842272 and ν2 = 0.29809253. Note that the smallness of ν1
indicates that the Fig. 8 solution is close to a bifurcation. Simó [33] also discovered
many (hundreds) other similar “choreographic solutions” for three equal bodies, and
forN equal bodies with 3 < N < 799 ([32]); the defining property of such choreography
is that all bodies follow a single closed curve in phase space, with a fixed delay between
each of the bodies.
From the historical point of view the solution found by Lagrange in 1772, in

which the three bodies form the vertices of an equilateral triangle which rotates
with constant angular velocity around its midpoint, can be considered as the first
choreography. It has taken more than two hundred years to find the second one.
Our original motivation to study this problem was a conjecture by Joe and Herb

Keller on the possibility to connect these two simple choreographies (Lagrange and
Figure Eight) in a continuous way only following periodic orbits. In fact, Marchal [34]
has found a family of periodic orbits in a rotating frame connecting these two highly
symmetrical solutions.
A further reason for trying to connect the Lagrange and Figure Eight choreogra-

phies has to do with some controversy about the stability properties of the solution
corresponding to the absolute minimizer of the action over certain homotopy classes
of loops in configuration space. In Hamiltonian systems with two degrees of freedom,
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such minimizing orbits are always unstable [35]; however, for higher dimensional sys-
tems there are counterexamples.
The stable Fig. 8 orbit was obtained by minimizing the action over all loops with

a particular symmetry (see [30]); assuming that the property “minimizing orbits are
unstable” also holds for equal mass 3BP there must exist some other unstable periodic
orbit which is in the homotopy class of the Fig. 8 but which has a lower action.
Could this orbit be the equilateral Lagrange choreography?
It is unstable, and its action value (3π32/3 ≈ 19.60436 when the period equals

2π) is lower than that of the figure-8 (≈24.37197); but we do not know whether it
is in the homotopy class of the figure-8. If it is not (as suggested by Offin [36]) then
the minimizer over this homotopy class has to be some other unstable periodic orbit
which will then probably not be a choreography. Finding some connection between
the figure-8 and the Lagrange orbit could at least give some partial answers to this
general question.
We have applied the general continuation scheme of Sect. 3 using the numerically

computed figure-8 orbit as starting solution. The equations of motion of three bodies
with masses m1, m2 and m3 under mutual gravitational attraction take the form

ẍ1 = −m2 x1 − x2|x1 − x2|3 −m3
x1 − x3
|x1 − x3|3 ,

ẍ2 = −m1 x2 − x1|x1 − x2|3 −m3
x2 − x3
|x2 − x3|3 ,

ẍ3 = −m1 x3 − x1|x1 − x3|3 −m2
x3 − x2
|x3 − x2|3 ;

(7)

xi = (xi, yi, zi) ∈ R3 denotes the position of the i-th body (i = 1, 2, 3), and the
universal gravitational constant has been set equal to 1. This system can be rewritten
as a first order system of dimension eighteen. There are seven independent conserved
quantities: the total energy, the three components of the total linear momentum
P =

∑3
i=1miẋi, and the three components of the total angular momentum L =∑3

i=1mixi∧ẋi; these are an immediate consequence of the invariance of the equations
under time shifts, translations and rotations.
Additionally, the equations are invariant under the transformation (t,x) �→

(c
3
2 t, cx), with c > 0 an arbitrary constant (see [7]). Due to this scaling property
there is a trivial continuation of periodic orbits in the period: arbitrary close to any
periodic orbits there is another one with slightly different period obtained from the
first one by rescaling and obviously with the same stability properties. In order to
avoid this trivial continuation we fix the period (say to 2π) and use instead the mass
m1 of the first body as an external continuation parameter; both other masses are
kept equal to 1. It is not difficult to check numerically that the figure-8 orbit (cor-
responding to m1 = 1) is normal (we have mg = k = 7), and hence we can apply
Theorem 1, with λ = m1. As already discussed before, when setting up the continua-
tion algorithm the phase conditions are replaced by integral versions; for the detailed
computational formulation we refer to [28].
The calculations were done using Auto ([16] and [17]). While following a one-

parameter family of periodic orbits we also monitor the stability of these orbits and
the appearance of new branches at bifurcation points; at such bifurcation pointsAuto
allows to switch branches and start a new continuation process. This combination of
local stability and bifurcation analysis with global path following forms a valuable
approach, complementary to numerical simulations.
Starting at the figure-8 solution for m1 = 1 the first output of our continuation

algorithm are the non-trivial characteristic multipliers of this figure-8 solution; we
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Fig. 9. Local bifurcation diagram near the figure-8 solution under variation of the mass m1.
Solutions on the full part of the curve are stable, those on dashed curves unstable. Stable
solutions appear in a narrow window between a pitchfork bifurcation (BP) and a limit point
(LP). There are two orbits for the Three Body Problem with equal masses (m1 = 1): label A
indicates the stable Chenciner-Montgomery figure-8 solution shown in the upper panel of
Fig. 10, label B corresponds to the unstable “satellite” figure-8 shown in the lower panel of
Fig. 10.

obtain μj = exp(2πiνj) (j = 1, 2), with ν1 = 0.0084227 and ν2 = 0.2980925. The
agreement with the results of Simó [32] forms a good test for our method.
The results of the continuation of the figure-8 in a small mass interval around

m1 = 1 is shown in Fig. 9 where the L2-norm of the solution is plotted against m1.
The solution labelled A is the starting point of our calculation (the Moore-Chenciner-
Montgomery figure-8); this planar orbit is plotted in real space in the upper panel of
Fig. 10. Decreasing m1 from m1 = 1 we obtain a single solution branch which shows
a pitchfork bifurcation at (BP), while increasing m1 gives a solution branch which
reaches a limit point (LP) and then continues in the direction of decreasing values of
m1. All solutions along the branch are unstable (hyperbolic), except those on the part
of the branch between the bifurcation point (BP) and the limit point (LP), where
the solutions are stable (elliptic); this stable part of the branch corresponds to a very
narrow mass (m1) interval of the order 10

−5. Continuing the branch beyond the limit
point we come back to a situation where all three masses are equal (m1 = 1). The
corresponding solution, labeled B in Fig. 9, is hyperbolic and by construction in the
same homotopy class as the figure-8; however, it has less symmetry and is no longer
a choreography: as shown in the lower panel of Fig. 10 the three bodies follow three
slightly different figure-8 paths. This “satellite figure-8” solutions was also computed
numerically by Simó [33].
At the bifurcation point (BP) there is a pitchfork bifurcation at which the in-

terchange symmetry of the 2nd and 3rd body (which both have the same mass
m2 = m3 = 1) is broken; at the bifurcation two symmetry related branches are born
which are represented by a single line in Fig. 9. Along these branches the solutions
are hyperbolic and the mass m1 increases. Also along these branches one finds a spe-
cial point where m1 = 1 and which therefore corresponds to three equal masses; the
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Fig. 10. Real space representation of the figure-8 solution (A) and the other unstable
solution (B) for the Three Body Problem with equal masses.

corresponding solutions are the same as the solution B described before and shown
in the lower panel of Fig. 10, however with a different labelling of the three bodies.
The intersection of the three branches at B is only apparent and an artifact of the
chosen representation.
It is clear from (7) that by choosing appropriate units one can always assume

that m3 = 1, leaving m1 and m2 as (dimensionless) parameters. Since the figure-8
solution (corresponding to m1 = m2 = 1) is normal it can be continued in both these
parameters, using a multi-parameter version of Theorem 1. When this is done and
the stability of the orbits on the continuation is studied (numerically) one obtains a
picture as shown in Fig. 11. The shaded triangular region forms the stability region
in the (m1,m2)-plane, i.e. for mass values (m1,m2) in this shaded region the contin-
uation of the figure-8 orbit is elliptic; the point labelled A in the center corresponds
to the figure-8. Along the border of this stability region (the solid line) the continua-
tion manifold exhibits a fold (limit point); the two points labelled BP correspond to
branch (bifurcation) points. The diagram is obviously symmetric with respect to the
diagonal m1 = m2; this is a consequence of the invariance of the equations under the
symmetry (x1,x2,m1,m2) �→ (x2,x1,m2,m1).
In principle one could try to continue the figure-8 solution into a solution of the

restricted three body problem by going along the diagonal and increasing the value
of m1 = m2; in practice one finds that as the two equal masses become larger the
bodies collide. The results is shown in Fig. 12 where the global bifurcation diagram of
the family of periodic solutions emanating from the figure 8 solution. Several primary
(BP or PD) bifurcation are necessary to connect the solution to the m1 = 0 limit
(RTBP). The family of relative equilibria emanating from the equilateral Lagrange
solution (the lateral pointing triangles) is also displayed.
There is one further remarkable point which came out of our calculations.

Chenciner and Montgomery [30] obtained the figure-8 orbit A by minimizing the
action over a class of loops with some particular symmetry properties; the satellite



2720 The European Physical Journal Special Topics

0.9998 0.9999 1.0000 1.0001
m1

0.9999

1.0000

1.0001

m
2

BP

BP

A
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Fig. 12. Global bifurcation diagram of the family of periodic solutions emanating from the
Fig. 8 solution. Several primary (BP or PD) bifurcation are necessary to connect the solution
to the m1 = 0 limit (RTBP). The family of relative equilibria emanating from the equilateral
Lagrange solution (the lateral pointing triangles) is also displayed.
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figure-8 solution B minimizes the action over a much larger class of paths. Therefore,
the action corresponding to solution B should be less than or equal to the action
corresponding to solution A. This is indeed the case, but in a rather unexpected way:
within the precision of our calculations both solutions have the same action. Using the
standard definition of the action and making the necessary normalisations the value
of the action integral is for both solutions found to be equal to S = 24.37197. This
surprising result reveals a degeneracy which deserves further analysis.

7 Conclusions

We have shown that continuation of solutions provides valuable information con-
cerning the stability and bifurcation behavior of Hamiltonian systems. We have also
established how two-point boundary value problem continuation software can be used
to compute families of periodic solutions of symmetric Hamiltonian systems. The the-
ory and the numerical implementations are well developed but not complete. Further
work is necessary on the continuation of (1) relative equilibria in the non abelian case
and (2) relative periodic orbits (see [37] for some progress in this direction). Also the
use of reversibility properties in combination with the Hamiltonian structure needs
further attention (see [38] and [15]).

The authors are very much indebted to E.J. Doedel, A. Vanderbauwhede for related work.
Most of the material of this paper is the result of an ongoing collaboration over the last
10 years. This work has been partially supported by the Spanish Ministry of Education
through the grant MTM2009-07849 and Junta de Andalućıa grant P12-FQM-1658.
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2. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer Verlag,
New York, 1990)

3. K.R. Meyer, J. Differ. Eqns. 39, 2 (1981)
4. K.R. Meyer, G.R. Hall, Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem. Applied Mathematical Sciences 90 (Springer Verlag, New York, 1992)

5. B. Krauskop, H. Osinga, J. Galán-Vioque, Numerical Continuation Methods for
Dynamical Systems: Path following and boundary value problems (Springer Verlag,
Berlin, 2007)
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