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Abstract. The science of granular matter has expanded from an activ-
ity for specialised engineering applications to a fundamental field in its
own right. This has been accompanied by an explosion of research and
literature, which cannot be reviewed in one paper. A key to progress in
this field is the formulation of a statistical mechanical formalism that
could help develop equations of state and constitutive relations. This
paper aims at reviewing some milestones in this direction. An essential
basic step toward the development of any static and quasi-static theory
of granular matter is a systematic and useful method to quantify the
grain-scale structure and we start with a review of such a method. We
then review and discuss the ongoing attempt to construct a statistical
mechanical theory of granular systems. Along the way, we will clarify
a number of misconceptions in the field, as well as highlight several
outstanding problems.

1 Introduction

Grains and particulates constitute the second most ubiquitous form of matter on
Earth after water. On other planets and stellar objects it is most likely the most
prevalent form. Correspondingly, granular materials play a major role in our lives
and in human society. The sand around us, the powders we use, the cereals we con-
sume and transport and the snow powder we ski on. Understanding the physics and
behaviour of granular matter is essential to a wide range of industries since almost
all industrial materials pass, at some stage of their processing, through a particu-
late form. Consequently, efficient transportation and processing of particulates and
powders is essential in our society.

The significance of this form of matter has been realised early on in human history
and much scientific and engineering attention focused on it for millennia. In most
relevant cases, the modelling of a collection of many grains is an exercise in coarse-
graining. This is because the default scientific description of any large system is
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via continuum models. The problem with treating granular systems (GS) discretely
occurred already to Joseph son of Jacob: “And Joseph gathered corn as the sand of
the sea, very much, until he left numbering; for it was without number” (Genesis
41:49). Arguably, he was the first documented person to anticipate the necessity of
descriptions of many-body systems beyond the discrete. Historically, the study of
these materials was by engineers and technologists, due to the significance to the
industry and commerce. However, the last two decades saw a burst of research on
these systems by physicists, due to the rich and often unusual behaviours of these
materials, combined with the fundamental theoretical challenges that their modelling
present.

Since most interesting granular assemblies consist of large collections of particles,
there have been a number of attempts to model these systems statistically [1-6],
including by Hans Herrmann, whom this volume honours [7]. In 1989, Edwards and
collaborators [8-10] proposed a statistical mechanical formalism to describe them in
much the same way that is done for thermal systems. A complete statistical mechanics
formalism should be the main route to derivation of equations of state and constitutive
properties. Here we describe our perspective on the attempts to formulate such a
theory. We review the construction process, describe the insights and understanding
that have been gained along the way, and point out some misconceptions that linger
in the field.

2 The foundations of granular statistical mechanics (GSM)

Particulate matter is said to be a granular material if the particles are sufficiently large
to make thermal fluctuations irrelevant. Under Earth’s gravity this criterion translate
to the condition that the thermal energy kg7 at temperatures around T =~ 25°C is
much smaller than the potential energy it takes to move the particle by its own size
l, kT < mgl. One implication of this is that, unless agitated externally, granular
materials are effectively at zero temperature. As a result, once a granular assembly
reaches mechanical equilibrium, it is in a particular metastable state. This has a sig-
nificant implication for the theory of GSM — it means that ergodicity does not hold.
Ergodicity in thermal systems constitutes of the assumption that the statistics of an
ensemble of systems at a given time is the same as the statistics of one system at
different moments in time. This assumption is well justified in thermal systems, which
are never really static — during any experimental measurements almost all particles
would have changed position and momentum many times. Using this assumption, we
can predict dynamic properties from ensemble statistics and use insight from dynam-
ics to infer static properties and constitutive relations. In contrast, granular systems
are generically either stuck in a given configuration or they explore a very limited
number of configurations, unless externally excited. It is then irrelevant to consider
their statistics at different moments. It follows that GSM is ensemble statistics only.

The presumption that a statistical mechanical approach should work for granular
systems at all is based on the apparent reproducibility of the macroscopic behaviour
of these systems in a wide range of situations. It is such reproducibility that allows us
to walk confidently on the beach without the fear of the underlying sand turning to be
quicksand, or to build skyscrapers on soils and occupy them without too much fear for
their stability, or to trust the hourglass to clock almost exactly three minutes every
time it is turned. That the behaviour of granular matter is reproducible is not only an
assumption underlying attempts to construct a predictive theory but it also suggests
that, in spite of the astronomical number of possible configurations, there is a typical
behaviour and therefore that the grain-scale seeming randomness is underpinned by
limit statistics. However, this does not mean granular matter is in equilibrium like
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thermal systems; it only means that it reaches well defined steady states. We presume
that these steady states can be described by a statistical mechanical formalism.

Since energy is hardly relevant to many of the fundamental issues of static gran-
ular matter, the suggestion in [8-10] was to construct GSM, based on entropy alone.
A particular configuration of the granular system is then regarded as a micro-state
and the entropy is the logarithm of the number of all possible configurations. This
immediately highlights another departure from thermal statistical mechanics.
Conventionally, we assume a uniform measure, namely, that during the duration of
any relevant experiment, the system is shuffled through so many micro-states that it
samples a typical portion of the phase space. But in granular systems the micro-states
cannot be accessed dynamically and it is therefore unclear how transferrable this as-
sumption is to GSM. Without this assumption, we also need a model for the different
probabilities of micro-states, which makes the formalism less general and much more
difficult to apply. Several numerical and experimental tests of the uniform measure
assumption have been carried out on small systems [11-13], but due to the astronom-
ically large number of possible configurations, it is impossible to sample sufficiently
many systems to resolve this issue conclusively. Nevertheless, since ergodicity does
not apply anyway in most of the systems of interest, then the most practical approach
is to ignore the dynamics by which the phase space is explored, assume a uniform
measure in the ensemble statistics and then test the resulting predictions against
experimental measurements.

As in thermal systems, GSM is based on degrees of freedom (DFs), which are a set
of independent variables that describe all the possible micro-states. As we shall see
below, these are both structural and stress DFs. The DFs define the phase space. The
partition function in thermal systems is a normalisation factor, where the probability
of every micro-state to occur is proportional to a Boltzmann factor that depends on its
energy €, e~ </*8T_This energy is determined by a global function — the Hamiltonian
— which gives the total energy of the system, given the configuration of the DFs in
any particular micro-state. In the original GSM [8-10], the Hamiltonian is replaced
by a volume function, W, which gives the total volume of the system. Later on it
was realised that stress micro-states need also to be included [8-10,14] and that the
volume and stress ensembles are coupled [17]. The substitution of the Hamiltonian
by other functions necessitated also different measures of the fluctuations, which in
thermal systems are parameterised by the temperature. For the volume function the
analogue parameter is a scalar “compactivity” Xy and for the stress ensemble it is a
tensor called “angoricity”, whose components are X;; (see below). These parameters,
which can be derived as Lagrange multipliers, like the temperature in thermal statis-
tical mechanics, are defined as the derivatives of the relevant expectation values with
respect to the entropy S, which is the logarithm of the total number of configurational
and stress micro-states that the system can assume,

_ 0{¢
T=">g (1)
Xo = % =5 (2)
Xij = 0Fi) = (By)"" (3)

where F;; is the force moment function, whose volume density is the stress.
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The partition function consists of both the volume and stress contribution as
follows [17]

Z = /e_W/XO_Tr{g'}—}D{structural DFs}D{stress DFs}. (4)

An important decision is the choice of the ensemble, i.e. the collection of systems,
whose statistics are studied. Traditionally, one considers the micro-canonical,
the canonical and the grand-canonical ensembles. For GSM this choice is doubled
because there are two phase sub-spaces, the volume and the stress. This offers more
possibilities, e.g. a canonical ensemble in the volume and a micro-canonical ensemble
in the stress.

The micro-canonical volume ensemble

This ensemble consists of all the configurations (micro-states) of exact volume V that
N grains, of a given shape and size distribution, can assume. The entropy of this
ensemble, S(V), is defined as

S()=tm|c [ a1 () - Viafu) 5)

where C' is a system size dependent constant that makes the integral non-dimensional
(analogous to the factor 1/N!h3N in conventional statistical mechanics), {u} is the
set of all the structural DFs, and W is a volume function that depends on these DFs.
This expression already assumes that the micro-states satisfy the constraints on the
ensemble, e.g. that the total number of particles is fixed, that they are in mechanical
equilibrium, that rattlers are excluded and so on. Alternatively, one can introduce
into the integral in (5) a function ©, consisting of a set of J-functions that ensure
that these constraints are indeed satisfied [8-10].

Any macroscopic structural feature of the system, A, can be expressed as an
expectation value of these statistics

(A) = JA{u})d W ({u}) — V]d{u}
J oW [({u}) = V]d{u}
where the left hand side is a measurable macroscopic quantity and the integrals on

the right hand side involve microscopic variables only. The denominator of (6) is the
partition function and acts as a normalisation factor.

(6)

The canonical volume ensemble

The canonical ensemble is often more useful than the micro-canonical due to the fluc-
tuations in the volume in real experiments. These are analogous to the fluctuations in
the energy of thermal systems when coupled to a heat reservoir. The entire granular
system can then be regarded as a reservoir (providing volume fluctuations) plus the
pack on which measurements are carried out. Assuming that the occurrence prob-
ability of a system n, p,, is proportional to a Boltzmann-factor-like term with the
volume replacing the energy, we have the same result as in conventional statistical
mechanics,

Pn = e X (7)
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where Z, is known as the structural (or volume) partition function, v, the volume
of the nth assembly (or structural configuration) and X is the “compactivity” —
a scalar factor that characterises volume fluctuations analogously to the way that
the temperature quantifies thermal fluctuations. The compactivity is defined as the
derivative of the mean volume of an ensemble of such systems, (V') with respect to the
entropy, X = 9(V')/9S. This is exactly analogous to the definition of the temperature
in thermal systems, T = O(F)/0S. The partition function is then

7, = /e— 2 gNey 8)

where u is a vector of all the N, structural DFs. Any structural feature, A, can then
be obtained as an expectation value over this partition function,

— 5 [Awe v 9)

Particular examples are the mean volume and volume fluctuations, which are, respec-
tively

ZV “Vo/X _ a(lln/f() (10)
210 7,
V) =V =~ (11)

and are the direct analogues of the mean energy and energy fluctuations in conven-
tional thermal systems.

3 Structural description of granular systems

Essential to the GSM is an explicit identification of the structural DFs. However, to
do this we first need a quantitative description of disordered granular structures in
general. To this end, we use the quadron construction [18-20], to be described below.
This method, proposed first for 2D assemblies [18,19] and extended later to 3D [20],
is especially useful to the above formalism.

In fact, a local quantitative structural description of disordered granular materials
is the starting point for any theory of granular matter, whether statistical mechanics,
rheology or mechanics. It is only by coarse-graining from the discrete “micro” struc-
ture to the continuum that rigorous and useful prediction can be made. Without a
local quantitative description, any discussion of the structure remains abstract, qual-
itative and phenomenological at best. Many so-called structural descriptors consist
of averages over specific structural quantities, such as density-density correlations,
diffraction spectra, the mean coordination number, and a host of other correlation
functions. Common to all these descriptions is that they constitute volume aver-
ages of local structural quantities either over the entire system or over large parts
of it.

For a proper theory, the descriptor needs to be local and unambiguous, namely,
it must quantify the structure at any arbitrary point within the granular system.
A number of works in the literature have attempted to address the structural and
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Fig. 1. The contact network of a 2D granular assembly in mechanical equilibrium is a
directed graph made of vector edges rqg4.

statistical characteristics of granular packings [21-23]. The quadron method, to be
described next, appears to us to be superior in its usefulness for a number of aspects
of granular science. The method is conceptually the same both in 2D and in 3D and
we start by describing it in 2D [18,19] and then show the extension to 3D [20]. The
method is based on three conceptual steps.

1. Construction of a connnectivity network: the network is a graph, whose nodes
are the inter-granular contact points for rigid particles, or the centroids of
contact surfaces for compliant particles. The edges of the graph form polygons
(in 2D) and polyhedra (in 3D) around every grain. We focus here on convex
grains, in which case these polygons and polyhedra are enclosed inside the space
occupied by the grain.

2. Tessellation of the connnectivity graph into elementary volumes — the quadrons
— which are generically quadrilaterals in 2D and (non-convex) octahedra in 3D.

3. Quantification of the shape of every quadron by a tensor.

This procedure allows us to quantify the basic structure unambiguously at a sub-
granular scale, namely, with volume elements that are smaller than the particles.
These volume elements are called quadrons. Every grain shares a number of quadrons
with the cells surrounding it. While there are other ways to tessellate the space
occupied by a granular system, the quadron description has several advantages, which
we shall detail below. We review the 2D construction in detail and the 3D one will
be described more sketchily. The interested reader can find a detailed description of
the latter in the literature [20]. For simplicity, we confine ourselves to description of
packs of convex grains, but small non-convexities should not affect the description
much [19,24,25].

Quantitative local structural description in 2D

To construct the connectivity network we connect all the contact points around a
grain to make a polygon, as shown in Fig. 1. Since the particles are, at most, only
slightly non-convex then so are the polygons. The edges of the polygon are then
assigned directions, rotating clockwise around a grain. Doing this around every grain
generates a directed graph — this is the contact network. In grains with only two
contacts the polygon has only two edges, degenerating into two directed lines on top
of one another. These directed edges enclose loops around the voids (or cells) in the
structure, rotating in the anti-clockwise direction around every loop. Every directed
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Fig. 3. A quadron ¢ (shaded) is a quadrilateral, whose diagonals are Rq(= Rcy) and

rg(= reg)-

edge is then described by a vector r.4, uniquely indexed by the grain g, whose contacts
it connects, and the cell ¢ that it borders with.

Next we introduce several definitions. For every grain we define a centroid as the
mean position vector of the contact points around it,

1 &
Pg = o Z Pgg’ (12)
g g'=1

where z4 is the number of contacts (the coordination number) of grain g and the sum is
over all the grains ¢’ that are in contact with it. We also define the centroid of each cell,
Pe, as the mean position vector of the contact points between the grains that surround
it. Next, we define a vector R4, extending from the centroid of g to the centroid of c,
R., = p. — pg- The graph formed by the vectors R is conjugate (or dual) to the graph
formed by the vectors r, namely, every r., has one and only one corresponding vector
R.,. Here we focus on granular systems in mechanical equilibrium under no external
fields, so that there are no body forces — the intergranular forces are generated only
by compressive boundary forces. Under these conditions, the polygons around cells
must be convex. This, in turn, means that the vectors r., and R., must cross one
another (see Fig. 2).

In Fig. 3 we show a quadrilateral ¢ (shaded), whose diagonals are the vectors
r.g =ry and Ry = Ry. Such a quadrilateral can be constructed for every dual pair
r, and R,. The quadrilaterals tile the plane perfectly, without overlaps or gaps, and
are the basic volume elements of the structure of the granular assembly. These volume
elements play key roles both in GSM and in the stress theory of granular systems
and we call them quadrons. While generically a quadron is a quadrilateral, for grains
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with only two contacts, the quadrilaterals degenerate into triangles. Nevertheless, the
quantification described below is not affected by this degeneracy.
We now quantify the shape of every quadron by a local tensor — its shape (or
structure) tensor:
C,=1r,®R,. (13)

The structure of the granular space associated with grain g is the superposition of
the structures of the z, quadrons that belong to it,

Cy=> Cq (14)
q€yg

The volume (area) of quadron q is
1 01
i(Cq—C;F):qu; 65(1()) (15)

where Cg stands for the transposed of Cy. It is useful to cast the volume as a trace,

by rotating r, as this form is dimensionally independent and will generalise to 3D,
Cq = (e-1y) @ Ry. (16)

In terms of this tensor the quadron volume is

v, = %Tr {¢.}. (17)

The volume associated with every grain is then the sum of the volumes of its quadrons

ngiTT{ég}:;TT{ZC’q}- (18)

q€9g

In fact, the volume of any region I' within the granular system, irrespective of
how large, is simply the superposition of the quadron volumes that it comprises,
V=3 cr Vo= 4er Vg The structure tensor of I' is Cr=3} Cy=

ZgEF Zqu éq = ZqEF Cq'

Quantitative local structural description in 3D

To construct the 3D quadrons, we follow the same procedure. The granular space is
first tessellated into basic volume elements, which we also call quadrons. This is done
using the procedure shown in Fig. 4 and explained in great detail in [20]. The 3D
quadrons are generically non-convex octahedra, except when a grain has only three
contacts, in which case a quadron degenerates into a hexahedron. The structure of
every quadron is then quantified by the following 3D shape tensor

C=(¢xr)®R (19)
where the vectors £, r and R are shown in Fig. 4, £ xr is a cross product and ® in (19)

denotes an outer product. We have seen in 2D that grains with two contacts give rise
to degenerate quadrons. Such a degeneracy occurs in general dimension d, whenever
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Fig. 4. The quadron description in 3D [20]: unless the grain is under-coordinated with fewer
than d + 1 contacts in d dimensions, the quadron is generically a non-convex octahedron.
The quadron’s shape is characterised by the structure tensor (19).

a grain has fewer contacts than d+ 1. In 3D this means that grains that have only two
or three contact points would give rise to quadrons that are not octahedra but rather
either hexahedra (when the number of contacts is 3) or triangles of zero volume when
they have only two contacts. Nevertheless, the definition of C' remains unambiguous
even in these special cases. The 3D volume of the quadron has a similar expression
to the 2D version (17),

V= %Tr {c} . (20)

Advantages of the quadron description

Evidently, it is possible to tessellate the granular space with other methods, the most
common of which are the various Voronoi and Delaunay tessellations [26-28]. How-
ever, the quadron description has a number of advantages over the traditional meth-
ods. The first advantage is that it makes it possible to characterise the basic volume
elements non-arbitrarily and unambiguously by the local tensors C. The ambiguity
in Voronoi-based methods is that each volume element is a different type of polytope.
For example, it would be difficult to quantify the shape and volume of a collection
of octahedra, hexahedra, dodecahedra, etc., with one structure tensor without intro-
ducing arbitrariness into the definition. In contrast, all quadrons, whether degenerate
or not, can be described with C. This, however, is also achieved by certain Delaunay
and the Bagi tessellation [26-28]. The second advantage is that, unlike conventional
methods, the quadrons construction is based on the network of intergranular con-
tacts. Consequently, it takes account of the physical connectivity of the assembly. In
contrast, most Voronoi-based tessellations are based only on the proximity of grains.
This aspect is essential to theories that aim to model physical properties that de-
pend on the connectivity. Examples are fluid transport through the porous granular
material, adsorption, catalysis and stress transmission. To our knowledge, no other
tessellation has this advantage combined with the first advantage above. The third
advantage is that the quadrons are the natural “quasi-particles” of the GSM. This is
because there are fewer grains than structural DF's in the system, but there are more
than enough quadrons. To this end, the shape tensor provides an explicit form for
the volume function in the partition function

Wy = % > Tr{cy} (21)

all q



2198 The European Physical Journal Special Topics

where d = 2, 3 denotes the dimensionality of the system. This aspect and its usefulness
to the GSM will be discussed further below. Another advantage is that the tensor C'
provides a common description to GSM and mechanics of granular materials. It was
shown that, at least in 2D, the shape tensor C plays a key role in a first-principles
theory of stress transmission in isostatic granular materials. Specifically, its compo-
nents couple to the continuous stress field, providing a structure-stress constitutive
relation that closes the stress field equations [18].

It should be commented that the quadron method describes only the topology of
the granular structure, namely, the connectivity of the graph made by the contact
points. This is only one aspect of the structure; another aspect involves all the possible
shapes of grains that can be fitted into a given contacts graph. The shapes of the
grains can be characterised by an independent set of parameters, which we call the
geometric DF's. Consequently, the phase space of structural DFs consists of two almost
entirely independent subspaces — the topological and the geometric. In the following
we focus only on the topological ensemble, but the inclusion of the geometric one is
straightforward and will be discussed elsewhere.

4 Quadron statistical mechanics
The topological degrees of freedom

The topological DFs (TDFs) are the independent spatial variables that determine
topology, or connectivity, of the packing. To identify these DFs we consider the inter-
granular point contacts. We stress again that reducing the contacts to points does
not affect the generality of the analysis — in assemblies of compliant grains these
points are the centroids of the contact surfaces. Significantly, it also does not affect
the application to stressed assemblies, as shown in [29] The volume of the granular
assembly is related to the topology, or connectivity, of the structure, i.e. the inter-
granular contact positions.

The choice of the statistical ensemble is the first step to doing statistical mechanics
and any ensemble is defined by the constraints on it. For the purpose of this discussion,
the ensemble consists of all the possible configurations that a given collection of N
(>>1) grains can pack into under specified boundary compressive forces. The systems
are postulated to be in mechanical equilibrium under these boundary loads. By a
given collection of grains, we mean given distributions of grain shapes and sizes, as
well as given physical properties of each and every one of them. Examples of physical
properties are their inter-granular friction coefficients, their elastic moduli, etc. These
properties need not be the same for all grains within a specific system, but all the
systems in the ensemble involve exactly the same collection of grains. Specifying the
frictional properties is important in that it affects the final structure to some extent
(although not some universal properties of the structure topology, as was shown in
[30,31]). Another important constraint is that all the members of the ensemble are
generated by an identical packing procedure. This is important because the packing
process affects the structural organisation and different generation processes lead to
different structural statistical characteristics. Finally, to focus the discussion on the
canonical ensemble, we constrain all the systems to have the same mean coordination
number Z. We comment in passing that relaxing this constraint would necessitate
using a grand-canonical ensemble.

Let us consider the topology of the connectivity network. Since IV is very large
we neglect boundary effects. Alternatively, we can either consider in the following
analysis the assembly to live on a d + 1 hypersphere or impose periodic boundary
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conditions to eliminate boundary corrections. Fundamentally, the TDF's are the po-
sition vectors from an arbitrary origin to every inter-granular contact point, pgg.
Having constrained the mean coordination number to z, the number of contacts is
Neont = NZ/2 and the number of independent variables is therefore Nzd/2. Rigid
translation and rotation of the packing do not affect its statistics. With d axes of
translation and d(d — 1)/2 axes of rotation in d dimensions, the number of TDFs in
d dimensions is

Nzd d(d+1) Nzd
2 2 2
Since the vectors py, depend on the origin, it is more convenient to consider the
differences between nearest neighbour py4’s, specifically, the vectors rg, described in
Sect. 3, which extend between neighbouring grain contacts. These vectors have many
more components than DFs — twice as many in 2D and three to five times as many in
3D. Of these one can choose many sets of independent vectors as the TDF's. The only
requirement on each such choice is that the vectors form a “spanning tree” on the
connectivity network [32]. We observe that Nygs is either equal to (in 2D) or smaller
than (in 3D) the number of quadrons and that it is always larger than the number of

grains. We will return to the significance of this observation below.

To identify the natural quasi-particles of the volume ensemble we first need to
return to the partition function (8). A more in the community is treating the grain
volumes as the structural DFs (SDF). Doing this raises a conceptual problem

Ntdf = (22)

Quadrons — the quasi-particles of the volume ensemble

We recall that in thermal statistical mechanics there are also particles, or quasi-
particles, whose energies are determined by the state of their degrees of freedom.
Examples of such entities could be real particles possessing potential, interaction and
kinetic energies, or they could be energy-carrying quasi-particles — spins, frequencies,
photons, phonons and a variety of excitons. The question is what plays the role of the
quasi-particles in GSM. One could argue that the natural choice would be the grains.
This is based mainly on the fact that the grains are the smallest moving entities and
Newton’s conditions of mechanical equilibrium is applied to each individual grain.
However, in view of the above discussion we see that this is somewhat misguided.
The main property that the fundamental quasi-particles should possess is volume,
since dynamics is immaterial to the partition function of static packs. Since grain
volumes are made of the volumes of smaller volume elements — the quadrons — then
it has been proposed that these are more fundamental and fit the bill better [20,34].
The relation of the quadrons to the grains parallels the relations of the quarks to
elementary particles and the relations of internal DF's to larger-scale integrated DFs.
Furthermore, to clinch the identity of the natural quasi-particles of the volume
ensemble, let us consider again the partition function (8). This reveals an even
more important misconception, i.e. that the grain volumes themselves can be re-
garded as the structural DFs (SDF). This view is conceptually problematic since
the number of grains is smaller than the number of SDF we have identified above,
N < Ngpr=NZzd/2. In contrast, there are sufficiently many quadrons. As shown
above, in 2D, their number equals exactly that of the SDF and in 3D Ny > Ngpr. In
2D this means that we can integrate directly on their volumes, albeit with inclusion of
an analogue of the “density of states” (see below). In 3D this means that we can pick
and choose a subset of the quadrons to be the quasi-particles of the GSM description.
The partition function can then be written as an integral over this subset, expressing
the other quadrons in terms of the independent ones. This, in turn, leads us to the
realisation that correlations between quadrons must be taken into consideration.
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Fig. 5. The mean volume of the ideal quadron gas model as a function of compactivity. Both
Vo and X are measured in units of A. As the compactivity increases, the mean volume per
grain undergoes a transition at Xo = A from V5 — A to V4.

Calculations with the volume ensemble

To illustrate the use of quadron volumes as SDF, let us consider the following simple
model in 2D — the ideal quadron gas approximation [19]. In this model, as in the
traditional ideal gas of molecules, the quadrons are considered independent. Since
the number of quadrons, Nz, is the same as the number of SDF, we can write the
partition function as

7z, = { / e_V/XOg(V)dV] " (23)

The function g(V') is an analogue of the density of states, namely, it is the frequency
of having quadrons with volumes between V' and V +dV. We suppose a model where
the quadrons can take any value between, V5 + A and V) — A(A > 0). The density
of states is then 1/2A between these two values and zero otherwise. This partition
function can be computed exactly

Xosinh (A/Xg)eVo/Xo 12

Zy = A (24)
The mean volume per quadron is
1 0InZz,

(see Fig. 5). As the compactivity increases so does the mean volume, making a tran-
sition from Vy — A at low X to Vj at high Xy around Xy = A. The variance of the
volume fluctuations per grain can also be calculated exactly,

1 9?lnZ A2
PVy=——— v _—x2_ = . 26
(0°V) NO(1/X0)2  ~° sinh?®(A/Xo) (26)

The variance also shows a transition at Xy = A (Fig. 6).

Expanding the phase space with the stress ensemble

In the mid 2000’s, it was proposed that granular entropy consists not only of
the configurational disorder but also of the disorder in the different stress states
[14,16,20]. This suggestion was later supported by numerical tests [14,15]. The rea-
son is that the application of external forces on a system’s boundary grains cannot be
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Mean Volume fluctuations per quadron

o 1 2 3 4 5 6 7 8 9 10
Compactivity

Fig. 6. The mean volume fluctuations of the ideal quadron gas model as a function of
compactivity. Both V5 and X, are measured in units of A. As the compactivity increases,
the fluctuations increase, undergoing a transition at Xo = A.

controlled precisely but only the global boundary stresses can be imposed. Consid-
ering only compressive boundary loads in the absence of body forces, the boundary
stress, X, is an average of the total o force component on the boundary, per unit
surface area in the (3 direction. For example, the normal stress on a flat boundary
with normal in the n direction is X,,,, which is the total force applied on it in the n
direction. The boundary loading is determined by a collection of single forces applied
to the boundary grains. Specifying the boundary loading precisely, requires specifying
the position of each of the boundary grains and the external forces applied to them.

There are astronomically many combinations of such grain forces, each potentially
leading to a different configurational rearrangement near the boundary. Since stresses
in GS are not uniform and since individual force chains emanate exactly from the load
points at the boundary then each boundary forces configuration leads to a different
stress chain network and hence to a different stress state. It is the statistics of these
stress states that the stress ensemble captures. The disorder in the stress micro-states
adds to the structural disorder and the stress entropy is the logarithm of the number
of such stress micro-states.

We outline the stress ensemble in isostatic systems. The static determinacy of such
systems and the linearity of the isostaticity theory means that the number of stress
micro-states is exactly the same as the number of possible combinations of individual
forces on the boundary. If M is the number of boundary force sources at any one
configuration then these forces g,,, (m = 1,2,..., M) are the independent DFs of
the stress ensembles. The inter-granular forces cannot be the DFs because depend
linearly on the boundary forces by Newton’s equations.

In 2D, the partition function of the stress ensemble is

M
— 1 .
2= [ =57 ] g, o
m=1

Here the indices 4, j run over the Cartesian components x,y and F;; are the compo-
nents of the force moment function, from which the stress o;; is derived,

F = Z Vygoy = Z Pgg' @ Fggr. (28)
g 99’

The sum runs over pairs of grains in contact gg’, Fgg is the force that g’ applies to g,
Pgg is the position vector of the contact point between these grains, measured from
the centroid of grain g and Vj is the volume associated with grain g, i.e. the sum of the
quadron volumes associated with grain g. The tensorial parameter X;; = 0F;;/0S
has been named “angoricity” by Edwards and Blumenfeld [16] and it is the analogue
of the temperature and of the compactivity [33,34]. S here is the entire entropy
associated with both the volume and the stress ensembles.
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Recently, it has been argued that the stress and the volume ensembles are inter-
dependent [17]. This corrected a previous misconception in the literature that the
stress and the volume ensembles are independent, which had given rise to results
obtained from using each of these ensemble alone. The conclusion of inter-dependence
was based on three arguments. Firstly, the volume ensemble alone does not capture
all the entropy of mechanically stable granular systems because it is presumed to
comprise all the possible structural arrangements under a set of identical boundary
forces. Yet, no experiment on a collection of many grains can reproduce the same
precise forces on every boundary grain — only boundary stresses can be controlled.
This means that the statistics of the boundary forces must be taken into consideration.
Secondly, the stress ensemble alone certainly does not capture the entire entropy
of mechanically stable granular systems because changes in the boundary loading
forces, however small, change the internal structure. This means that one cannot
consider an ensemble of boundary forces with a fixed structure. Thirdly, the stress
ensemble depends on the force moment function F, which in turn depends on the
structural DFS. This means that the stress and structural partition functions cannot
be calculated independently and Z # Z,Z¢. This is shown explicitly below.

The implication of these arguments, which hold in any dimension, is that the
phase space is made of both the structural and stress DFs. We illustrate this issue in
2D for simplicity, following the work in [17]. We start by considering the ensemble of
all 2D N-grain systems (N > 1), with each system constrained to be prepared by the
same process, to be in mechanical equilibrium under M external compressive forces,
acting on the boundary grains, and to have the same mean contact number z.

For this ensemble, the combined partition function is conveniently expressed in
terms of two generalised vectors:

R = (T1£E7r2227 - 'Nz/ 22, 1y, T2y, - - - 771N2/2y)
g = (911792x7 s GMxz, Ty, T2y, "'7rMy>

where r,; is the ith component (i = x,y) of the nth vector r,, and similarly for
the boundary forces g,,. In terms of these, the volume function is quadratic, W =
%R - A-R, where p,q run over quadrons, i, j run over vector components z,y and A
is a matrix of rational fractions [17]. The partition function is then

Z = / e TG RARGERGNzp 2M g (29)

The matrix B both couples the boundary forces to the loop forces [18] and in inversely
linear in the angoricity components [17]. Again, it is the occurrence of the vector R
in both the volume and the force moment functions that couples the volume and the
stress phase sub-spaces.

Calculations of expectation values with the combined partition function can be
carried out straightforwardly in 2D due to the quadratic form of the exponential
in (29) [17]. The mean volume is

_ Nz+2M

vy =1

Xo. (30)
This result assumes that A is not singular, an assumption that has to be carefully
checked [35]. Expression (30) is in fact an equipartition principle, analogous to the
well known thermal one, (E) = kgT/2 per DF. It also highlights the fact that the
total number of DFs is Nz + 2M, which includes both the structural and stress DFs.
An intriguing interpretation of this result is that the compactivity in itself is not the
conjugate variable of the volume function, nor is the angoricity the conjugate of the
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force moment function. Rather, the coupling between the two ensemble means that
there is a complicated combination of the compactivity and angoricity variables, which
is the conjugate of a combined function of the volume and force moment functions.
The search for these combination is currently ongoing. One can similarly calculate
expectation values that relate to the boundary forces and therefore the boundary
stresses. It is this type of calculations that leads to derivation of equations of state
[36], but these calculations will not be given here.

Conclusion and discussion

To conclude, the entropy-based granular statistical mechanics of static granular mat-
ter is still in the process of development. Although aspects of this formalism have
been supported many issues remain open. The absence of ergodicity is particularly
handicapping, which makes it difficult to study dynamics with results from the static
ensemble. We have pointed out some misconceptions in the field, such as mistaking
the grain volumes for degrees of freedom and derivation of results from either the
volume or the stress ensembles independently. We have shown here that the quadrons
are much better candidates as the quasi-particles and that the two ensembles are
inherently coupled.

The results reviewed here highlight the enormous potential of the granular statis-
tical mechanical approach. In particular, a consistent formulation can lead directly
to calculations of equations of state, which are much needed in the field of granular
matter. In principle, our 2D calculations can be extended straightforwardly to 3D.
However, deriving closed form relations in 3D is not as easy as in 2D. This is because
the volume function is cubic in the structural DF's, limiting much of the analysis to
numerical evaluation of the expectation values. Nevertheless, it would be useful to
carry out these calculations and compare with experimental measurements.

This also means that the choice of the ensemble needs to be carefully considered.
An ensemble is characterised by its constraints and these constraints must correspond
to the modelled experimental system. For example, the ensemble may have either a
fixed or a fluctuating number of grains. Even when the number of grains is fixed,
it can have either fixed or fluctuating number of quadrons, corresponding to a fixed
or fluctuating coordination number z. The ensemble can also have a given grain size
and shape distributions. In particular, one of the most significant constraints, which
applies to most of the ensembles we are interested in, is that all the systems should
be prepared by the same procedure.

Finally, statistical mechanics of granular matter is far from complete at this stage,
making this field an active and exciting research frontier. Much more work is required
to bring this field to maturity and to realisation of its potential. This can be done
only with a focused cooperative theoretical-computational-experimental effort.
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