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Abstract The paper is concerned with the development of a sampled-data (SD) controller designed for
Takagi–Sugeno (T–S) fuzzy systems. A key highlight is the incorporation of a refined fractional delayed-
state into this control approach. The primary aim is to establish criteria for system stabilization, thereby
ensuring the asymptotic stability of the considered systems. This objective is pursued within the framework
of the newly designed control methodology. The core contribution of work explains in the introduction of
an innovative Lyapunov–Krasovskii functional (LKF) tailored to T–S fuzzy systems. This novel approach
capitalizes on the efficacy of sampling intervals. The LKF design takes advantage of variable attributes tied
to the real sampling pattern, effectively reducing the conservatism of the outcomes. Moreover, the paper
introduces a sophisticated fractional delayed-state concept, which plays a pivotal role in shaping a modified
looped functional-based LKF. The stability criteria are then formulated through the utilization of linear
matrix inequalities (LMIs) and integral inequalities. These criteria perform dynamic part in establishing
the asymptotic stability of considered systems when subjected to the designed control approach.

1 Introduction

Renewable energy, often termed as clean energy, emanates from natural sources that replenish consistently. Notably,
wind energy stands out as an exceptionally valuable form of renewable energy due to its capacity to provide
abundant, pollution-free power [1]. The PMSM has garnered significant attention in the research community,
particularly from a practical perspective within the low-to-medium-power range. This interest is attributed to
its distinct advantages such as a compact form factor, a high ratio of torque to inertia, a useful the ratio of
torque to weight, and the absence of rotor losses [2]. As a result, exploring PMSM-based wind turbine models
becomes essential. Additionally, the authors have delved into the domain of wind energy conversion systems,
utilizing passivity theory as a framework [3] particularly focusing on Permanent Magnet Synchronous Generators.
Furthermore, the authors have recently tackled the issue of stability analysis for dissipative systems employing the
Lyapunov function approach [4].

In recent times, there has been a substantial focus on the development of fuzzy logic theory within both academic
and industrial circles. Notably, the T–S fuzzy method has gained significant traction within the field of control.
This is primarily due to its ability to succinctly represent nonlinear systems using a series of local subsystems
intertwined with their corresponding membership functions [5]. Consequently, T–S fuzzy controller based systems
investigated via stability theory. Given the inherently nonlinear nature of real-world processes, the design of
complicated systems becomes a rather intricate endeavour [6] and [7]. Hence, the exploration of fuzzy systems
becomes imperative. A multitude of control strategies have been explored to comprehend the dynamic behaviors

a e-mail: ramasamygru@gmail.com (corresponding author)

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-024-01268-2&domain=pdf
http://orcid.org/0000-0002-3033-2992
mailto:ramasamygru@gmail.com


Eur. Phys. J. Spec. Top.

of nonlinear models. These include techniques such as H∞ control [8], reliable control [9], passivity-based sliding-
mode control [3], event-triggered control [10], sampled-data (SD) control [11], and dissipative control [12].

Over the last few decades, numerous researchers have dedicated their efforts to exploring nonlinear models
through fuzzy model and parallel distributed compensation control. Additionally, the authors explored H∞ control
for fuzzy model [13], where the similar premise variables are engaged in both the plant and control rules. Moreover,
investigations have extended to the realm of stability criteria for complex models [14], utilizing identical premise
variables in complex model and the control rule. Building on the inspiration derived from these previous works,
for fuzzy model employing SD control, our study delves into the establishment of stabilization conditions.

Digital controllers have evolved significantly alongside the progress of modern communication networks, digital
technology, and high-speed computers. Moreover, in the physical realm [15], there has been a notable reduction
in the quantity of transmitted information, leading to increased efficiency in control systems. However, there
are different kinds of techniques utilized to study the stability analysis of nonlinear models with SD control.
For example, the impulsive systems approach [16], discrete-time method [17], and input-delay approach [18].
In the consequence of the extensive utilization of the direct LKF method in [19], the authors investigated the
stability of nonlinear models. Moreover, a variety of LKF methods considered to study the stability of nonlinear
models, for example time-dependent LKF approach [9] and discontinuous LKF method [20]. In [21], a time-
dependent LKF technique is anticipated to study stability condition of the nonlinear model through the SD control.
Besides, improved stability criterion is found in [22] by utilizing the time-dependent discontinuous LKF technique
via Wirtinger inequality. Also, in [20], the authors analyzed SD controller for nonlinear systems by utilizing a
free-matrix-based discontinuous LKF. Besides that, by utilizing a looped-functional based LKF approach, the
stabilization criterion for nonlinear systems with SD control has been deliberated in [23]. Recently, the problem of
SD control systems by employing the two-side looped-functional-based LKF technique to improve stability criteria
is investigated in [24].

The study conducted by [12], introduces the concept of a looped functional. This innovation entails relaxing
the necessity for positivity and incorporates a boundary condition at sampling instants. The primary objective
of this modification is to mitigate conservatism and amplify the systems flexibility. From a practical perspective,
larger sampling intervals encompass additional operational considerations such as communication capacity, load
limitations, and computational burdens. Hence, optimizing sampling intervals becomes crucial to achieve less
conservative outcomes in SD-based systems.

Inspired by the insights shared earlier, we embark on the design of control strategies to achieve stability in T–S
fuzzy systems, building upon the foundation of the refined fractional-delayed state. In contrast to existing research,
this paper introduces several distinctive contributions, which can be encapsulated as follows:

• A novel modified looped functional-based LKF has been developed to streamline the design process for T–S fuzzy
systems. This innovative framework integrates a wide range of valuable insights, including information from the
fuzzy membership function, the specific sampling configuration, and the fractional delayed state throughout the
entire sampling duration.

• Furthermore, the control methodology established in this paper effectively addresses the challenges posed by
delayed states and variable sampling within nonlinear models. Through the implementation of the proposed
control strategy, the SD controller ensures the stability of the considered model. This achievement is especially
noteworthy in the context of complex nonlinear dynamics.

• Utilizing a fuzzy-dependent control strategy coupled with the integral inequality technique, we employ an inno-
vative approach to establish less conservative stabilization conditions for considered systems. This is achieved by
extending the upper limit of the sampling period. Comparatively, when contrasted with prior investigations such
as those in Refs. [25–29], the unique merits of the devised control approach are illuminated. These advantages are
substantiated through numerical examples, showcasing the control methods effectiveness in securing the largest
feasible sampling period.

The following sections of this manuscript are organized as follows:
Section 2—in this section, an overview of the model formulation is presented, accompanied by an introduction to

the essential preliminary concepts. Section 3—here, the design of the SD control for fuzzy model is comprehensively
detailed. Section 4—this section is dedicated to presenting three numerical examples aimed at demonstrating the
practical applicability of the derived theoretical outcomes. Section 5—the manuscript concludes with a summary
and conclusions in this section.

Notations: In this paper, n-dimensional Euclidean space is denoted by R
n; Rn×m, 0n,m, and In represent a set of

all n × m real matrices, an n × m null matrix, and an identity matrix of size n × n, respectively. Also, the block
diagonal matrix is represented by diag{·}. In a matrix, the notation ∗ denotes the symmetric term. A > 0(< 0)
denotes a positive definite (negative definite) matrix.
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2 System formulation

Consider the following model:
Model Rule i : IF θ1(t) is Mi1 and . . . θp(t) is Mip,
THEN

ẋ(t) = Aix(t) + Biu(t), (1)

here x(t) ∈ Rn is the state, and u(t) ∈ Rm is input. The premise variables are represented by θi1, . . . , θip. The
fuzzy sets are denoted by Mij , . . . , Mip, the parameter p stands for the number of rules. Ai, Bi represent the
matrices of the considered model. Hence, by employing the fuzzy rule, the model (1) can be rewritten as:

ẋ(t) =
r∑

i=1

hi(θ(t))[Aix(t) + Biu(t)], (2)

the membership function are given by

hi(θ(t)) =

∏p
j=1 Mij(θ(t))

r∑
i=1

∏p
j=1 Mij(θ(t))

,

Here, hi(θ(t)) denote the weights of the sub-systems within the master model, subject to the conditions hi(θ(t)) ≥ 0,
and

∑r
i=1 hi(θ(t)) = 1. And, θ(t) = [θ1(t) . . . θp(t)]T , for all t > 0. Mij(θ(t))) denotes the membership grade of

θj(t) in the fuzzy set Mij .
The control signal between tk and tk+1 is sustained at a constant value using the ZOH method. Subsequently, the

considered model described in equation (2) is subjected to a fuzzy-based controller. This controller is implemented
by employing the PDC structure, while considering the influence of the premise variable. More, specifically, j is
formulated as follows
Controller rule j : IF θj1(tk) is ηj1 and . . . θp(tk) is ηjp,
THEN

u(t) = Kjx(tk), tk ≤ t < tk+1,

Here, Kj ∈ R
m×n, with j ranging from 1 to r , represents the control gain matrices. Additionally, sequence of

sampling periods is denoted by tk(k = 1, 2, . . . ). Also, sampling intervals are assumed to be satisfied in the
following:

tk+1 − tk = hk, hk ∈ [hL, hU ]. (3)

Here, hL > 0 and hU > 0, which satisfies 0 < hL ≤ hU . Then

u(t) =
r∑

j=1

hj(θ(tk))Kjx(tk), tk ≤ t < tk+1. (4)

By the combination of (2) with (4), one can obtain the following SD control model:

ẋ(t) =
r∑

i=1

r∑

j=1

hj(θ(t))hj(θ(tk))[Aix(t) + BiKjx(tk)]. (5)

The primary objective of this manuscript is to establish a SD control approach for the considered model presented
in equation (5), ensuring both global asymptotic stability and the attainment of the largest feasible sampling
interval. This objective is accomplished by introducing the following lemma:

Additionally, considering the fractional-delayed states as the state-space models are:

ẋ(t − ατ1(t)) =
r∑

i=1

r∑

j=1

hi(θ(t))hj(θ(tk))[Aix(t − ατ1(t)) + BiKjx(tk)],
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ẋ(t + βτ2(t)) =
r∑

i=1

r∑

j=1

hi(θ(t))hj(θ(tk))[Aix(t + βτ2(t)) + BiKjx(tk)].

Lemma 1 [30] Let x be a differentiable function: [a, b] → R
n. For any vector ξ ∈ R

n, symmetric matrices
M ∈ R

n×n, and Z1, Z3 ∈ R
m×m, and any matrices Z2 ∈ R

m×m, and N1, N2 ∈ R
m×n satisfying

⎡

⎣
Z1 Z2 N1

∗ Z3 N2

∗ ∗ M

⎤

⎦ ≥ 0,

the following inequality holds:

−
b∫

a

ẋT (s)Mẋ(s)ds ≤ (b − a)ξT
[
Z1 +

(b − a)2

3
Z3

]
ξ

+ 2ξT
[
N1(x(b) − x(a)) − 2N2

b∫

a

x(s)ds
]

+ 2(b − a)ξT N2[x(b) + x(a)].

Remark 1 In [31] the authors extended the idea by introducing fractional-delayed states x(t − ατ1(t)) and
x(t − βτ2(t)), 0 < α, β < 1, τ1(t) = t − tk, τ2(t) = tk+1 − t, t ∈ [tk, tk+1) tailored for SD control systems.
This method incorporates information not only from x(tk) to x (t) however from x(tk+1) to x (t). Also, the authors
introduced a novel system [32] by utilizing the fractional-delayed state x(t−ατ(t)), α varies from 0 to 1, τ(t) = t−tk,
t ∈ [tk, tk+1), specifically tailored for SD systems. This concept is particularly relevant for non-uniform partitioning
of the sampling interval. It is crucial to note that the state x(t − ατ(t)) only captures information from x(tk) to
x (t). Inspired by these concepts, we introduce fractional-delayed states and their associated state-space models to
considered systems. The primary focus of this manuscript is to design an SD controller for the considered model
presented in equation (5). This controller harnesses the refined concept of fractional delayed-states, guaranteeing
the stability of the systems under consideration.

Problem 1 To tackle the stabilization aspects of the fuzzy model outlined in equation (5), the following objectives
are pursued:

• With the specified system matrices and control gains provided, this study aims to establish sufficient criterion
ensuring the stability of the considered model. This objective is achieved through the utilization of the modified
looped LKF approach.

• In order to achieve the maximum feasible sampling interval and compute the appropriate control gains, the
stabilization criterion are expressed through LMIs within the context of the SD control scheme.

3 Main results

This section focuses on deriving the necessary conditions for considered model by (5). These conditions aim to
provide a solution to Problem 1 as outlined earlier. eg = [0n×(g−1)n In 0n×(12−g)n], g = 1, 2, . . . 12 are block
entry matrices, g ranges from 1 to 12.

Theorem 1 Given 0 < hL ≤ hU , 0 < α, β < 1, the T–S fuzzy systems (5) is asymptotically stable if there
exist matrices P > 0, Us > 0, Q ∈ R

2n×2n, Rp, Sp, Tp Vp, Wp, Gq, Nl ∈ R
12n×n, Ml ∈ R

12n×n, N̄l ∈ R
12n×n,

M̄l ∈ R
12n×n, Zp ∈ R

12n×12n, Yp ∈ R
12n×12n, Z̄p ∈ R

12n×12n, Ȳp ∈ R
12n×12n, s = 1, 2, 3, 4, p = 1, 2, 3, q = 1, 2,

. . . , 9, l = 1, 2 such that for any hk ∈ {hL, hU},

Ξ1i, i < 0, i = 1, 2 . . . r (6)

Ξ1i, j + Ξ1j, i < 0, 1 ≤ i < j ≤ r, (7)

Ξ2i, i < 0, i = 1, 2 . . . r (8)
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Ξ2i, j + Ξ2j, i < 0, 1 ≤ i < j ≤ r, (9)

⎡

⎣
Z1 Z2 N1

∗ Z3 N2

∗ ∗ U1

⎤

⎦ ≥ 0,

⎡

⎣
Y1 Y2 M1

∗ Y3 M2

∗ ∗ U2

⎤

⎦ ≥ 0, (10)

⎡

⎣
Z̄1 Z̄2 N̄1

∗ Z̄3 N̄2

∗ ∗ U3

⎤

⎦ ≥ 0,

⎡

⎣
Ȳ1 Ȳ2 M̄1

∗ Ȳ3 M̄2

∗ ∗ U4

⎤

⎦ ≥ 0, (11)

where

Ξ1i, j = φ1i, j + hkφ2, Ξ2i, j = φ1i, j + hkφ3, φ1i, j = eT
1 Pe1 − (e1 − e2)T S1(e1 − e2) − (e2 − e3)T S2(e2 − e3)

− (e1 − e3)T S3(e1 − e3) + (e6 − e1)T V1(e6 − e1) + (e7 − e6)T V2(e7 − e6) + (e7 − e1)T V3(e7 − e1)

+ eT
1 (G1Ai + AT

i GT
1 )e1 − eT

10(G3 + GT
3 )e10 + eT

2 (G4Ai + AT
i GT

4 )e4 − eT
11(G6

+ GT
6 )e11 + eT

6 (G7Ai + AT
i GT

7 )e6 − eT
12(G9 + GT

9 )e12 + eT
3 (G2BiKj + KT

j BT
i GT

2

+ G5BiKj + KT
j BT

i GT
5 + G8BiKj + KT

j BT
i GT

8 )e3 + He
{

eT
1 Pe10 − (e1 − e2)T T1e1

− (e2 − e3)T T2e2 − (e1 − e3)T T3e3 + (e6 − e1)T W1e1 + (e6 − e1)T W2e6 + (e7 − e1)T W3e7

− eT
1 G1e10 + eT

1 G1BiKje3 − eT
3 G2e10 + eT

3 G2Aie1 + eT
10G3Aie1 + eT

10G3BiKje3 − eT
2 G4e11

+ eT
2 G4BiKje3 − eT

3 G5e11 + eT
3 G5Aie2 + eT

11G6Aie2 + eT
11G6BiKje3 − eT

6 G7e12 + eT
6 G7BiKje3

− eT
3 G8e12 + eT

3 G8Aie6 + eT
12G9Aie6 + eT

12G9BiKje3 + NT
1 (e1 − e2) − 2NT

2 e4 + MT
1 (e2 − e3)

− 2MT
2 e5 + N̄T

1 (e6 − e1) − 2N̄T
2 e8 + M̄T

1 (e7 − e6) − 2M̄T
2 e9 + (e1 − e2)T

× R1[(1 − β)e12 − e10] + (e10 − (1 − α)e11)T R1(e6 − e1) + (e2 − e3)T R2(1 − β)e12

+ (1 − α)eT
11R2(e7 − e6) + (e1 − e3)T R3(−e10) + eT

10R3(e7 − e1)
}

,

φ2 = eT
10U1e10 − (1 − α)eT

11(R1 − R2)e11 + He
{

(e10 − (1 − α)e11)T [S1(e1 − e2) + T1e1]

+ (e1 − e2)T T1e10 + ((1 − α)e11)T [S2(e2 − e3) + T2e2] + (1 − α)(e2 − e3)T T2e11

+ eT
10[S3(e1 − e3) + T3e3] + βN̄2(e6 + e1) + (1 − β)M̄2(e7 + e6)

}

+ βZ̄1 +
β3h2

u

3
Z̄3 + (1 − β)Ȳ1 +

(1 − β)3h2
u

3
Ȳ3 + [e3 e7]Q[e3 e7]T ,

φ3 = eT
10U3e10 − (1 − β)eT

12(U3 − U4)e12 + He
{

((1 − β)e12 − e10)T [V1(e6 − e1) + W1e1] + (e6 − e1)T

W1e10 + (−(1 − β)e12)T [V2(e7 − e6) + W2e6] + (1 − β)(e7 − e6)T W2e12 − eT
10[V3(e7 − e1) + W3e7]

+ αN2(e1 + e2) + (1 − α)M2(e2 + e3)
}

+ αZ1 +
α3h2

u

3
Z3 + (1 − α)Y1 +

(1 − α)3h2
u

3
Y3 + [e3 e7]Q[e3 e7]T .

Proof Let us consider the LKF:

V (t) =
5∑

a=1

Va(t),

where

V1(t) = xT (t)Px(t),

V2(t) = (tk+1 − t)(t − tk)
[

x(tk)
x(tk+1)

]T

Q

[
x(tk)

x(tk+1)

]
,

V3(t) = 2ξT
1 (t)R1ξ4(t) + 2ξT

2 (t)R2ξ5(t) + 2ξT
3 (t)R3ξ6(t),

V4(t) = (tk+1 − t)
{

ξT
1 (t)[S1ξ1(t) + 2T1x(t)] + ξT

2 (t)[S2ξ2(t) + 2T2x(t − ατ1(t))] + ξT
3 (t)[S3ξ3(t) + 2T3x(tk)]

123



Eur. Phys. J. Spec. Top.

+
∫ t

t−ατ1(t)

ẋT (s)U1ẋ(s)ds +
∫ t−ατ1(t)

tk

ẋT (s)U2ẋ(s)ds
}

,

V5(t) = (t − tk)
{

ξT
4 (t)[V1ξ4(t) + 2W1x(t)] + ξT

5 (t)[V2ξ5(t) + 2W2x(t + βτ2(t))] + ξT
6 (t)[V3ξ6(t) + 2W3x(tk + 1)]

−
∫ t+βτ2(t)

t

ẋT (s)U3ẋ(s)ds −
∫ tk+1

t+βτ2(t)

ẋT (s)U4ẋ(s)ds
}

,

where

ξ1(t) = x(t) − x(t − ατ1(t)), ξ2(t) = x(t − ατ1(t)) − x(tk),
ξ3(t) = x(t) − x(tk), ξ4(t) = x(t + βτ2(t)) − x(t),
ξ5(t) = x(tk+1) − x(t + βτ2(t)), ξ6(t) = x(tk+1) − x(t).

Taking the derivative of the considered LKF, one can obtain the following:

V̇1(t) = 2xT (t)P ẋ(t), (12)

V̇2(t) = (tk+1 − t)
[

x(tk)
x(tk+1)

]T

Q

[
x(tk)

x(tk+1)

]
− (t − tk)

[
x(tk)

x(tk+1)

]T

Q

[
x(tk)

x(tk+1)

]
, (13)

V̇3(t) = 2[ξT
1 (t)R1ξ̇4(t) + ξ̇T

1 (t)R1ξ4(t) + ξT
2 (t)R2ξ̇5(t) + ξ̇T

2 (t)R2ξ5(t) + ξT
3 (t)R3ξ̇6(t) + ξ̇T

3 (t)R3ξ6(t), (14)

V̇4(t) = −
{

ξT
1 (t)[S1ξ1(t) + 2T1x(t)] + ξT

2 (t)[S2ξ2(t) + 2T2x(t − ατ1(t))] + ξT
3 (t)[S3ξ3(t) + 2T3x(tk)]

+
∫ t

t−ατ1(t)

ẋT (s)U1ẋ(s)ds +
∫ t−ατ1(t)

tk

ẋT (s)U2ẋ(s)ds
}

+ (tk+1 − t)
{

2ξT
1 (t)S1ξ̇1(t)

+ 2ξ̇T
1 (t)T1x(t) + 2ξT

1 (t)T1ẋ(t) + 2ξT
2 (t)S2ξ̇2(t) + 2ξ̇2(t)T2x(t − ατ1(t)) + 2ξT

2 (t)T2
d

dt
x(t − ατ1(t))

+ 2ξT
3 (t)S3ξ̇3(t) + 2ξ̇3(t)T3x(tk) + ẋT (t)U1ẋ(t) − (1 − α)ẋT (t − ατ1(t))(R1 − R2)ẋ(t − ατ1(t))

}
. (15)

Based on (10) and applying Lemma 1 to the integral terms of V̇4(t).one can obtain the following:

−
∫ t

t−ατ1(t)

ẋT (s)U1ẋ(s)ds ≤ ατ1(t)ξT (t)
[
Z1 +

(αhu)2

3
Z3

]
ξ(t) + 2ξT (t)

[
N1ξ1(t) − 2N2

∫ t

t−ατ1(t)

x(s)ds
]

+ 2ατ1(t)ξT (t)N2

[
x(t) + x(t − ατ1(t))

]
.

Applying Lemma 1 to the integral terms of V̇4(t), one can obtain the following:

−
∫ t−ατ1(t)

tk

ẋT (s)U2ẋ(s)ds ≤ (1 − α)τ1(t)ξT (t)
[
Y1 +

((1 − α)hu)2

3
Y3

]
ξ(t)

+ 2ξT (t) ×
[
M1ξ2(t) − 2M2

∫ t−ατ1(t)

tk

x(s)ds
]

+ 2(1 − α)τ1(t)ξT (t)M2

[
x(t − ατ1(t)) + x(tk)

]
V̇5(t)

=
{

ξT
4 (t)[V1ξ4(t) + 2W1x(t) + ξT

5 (t)[V2ξ5(t) + 2W2x(t + βτ2(t))]

+ ξT
6 (t)[V3ξ6(t) + 2W3x(tk + 1)] −

∫ t+βτ2(t)

t

ẋT (s)U3ẋ(s)ds

−
∫ tk+1

t+βτ2(t)

ẋT (s)U4ẋ(s)ds
}

+ (t − tk)
{

2ξT
4 (t)V1ξ̇4(t) + 2ξ̇T

4 (t)W1x(t)

+ 2ξT
4 (t)W1ẋ(t) + 2ξT

5 (t)V2ξ̇5(t) + 2ξ̇T
5 (t)W2x(t + βτ2(t))
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+ 2ξT
5 (t)W2

d

dt
x(t + βτ2(t)) + 2ξT

6 (t)V3ξ̇6(t) + 2ξ̇6(t)W3x(tk + 1)

+ ẋT (t)U3ẋ(t) − (1 − β)ẋT (t + βτ2(t))(U3 − U4)ẋ(t + βτ2(t))
}

. (16)

Applying Lemma 1 to the integral terms of V̇5(t), one can obtain the following:

−
∫ t+βτ2(t)

t

ẋT (s)U3ẋ(s)ds ≤βτ2(t)ξT (t)
[
Z̄1 +

(βhu)2

3
Z̄3

]
ξ(t) + 2ξT (t)

[
N̄1ξ4(t) − 2N̄2

∫ t+βτ2(t)

t

x(s)ds
]

+ 2βτ2(t)ξT (t)N̄2

[
x(t + βτ2(t) + x(t))

]
. (17)

Applying Lemma 1 to the integral terms of V̇5(t), one can obtain the following:

−
∫ tk+1

t+βτ2(t)

ẋT (s)U4ẋ(s)ds ≤ (1 − β)τ2(t)ξT (t)
[
Ȳ1 +

((1 − β)hu)2

3
Ȳ3

]
ξ(t)

+ 2ξT (t)
[
M̄1ξ4(t) − 2M̄2

∫ t+(1−β)τ2(t)

t

x(s)ds
]

+ 2(1 − β)τ2(t)ξT (t)M̄2

[
x(t + βτ2(t) + x(t))

]
. (18)

Now, we introduce the slack variables Gf , f = 1, 2, . . . , 9 by the following equations

2
r∑

i=1

r∑

j=1

hi(θ(t))hj(θ(tk))
[
xT (t)G1 + xT (tk)G2 + ẋT (t)G3

]
×

[
Aix(t) + BiKjx(tk) − ẋ(t)

]
= 0. (19)

2
r∑

i=1

r∑

j=1

hi(θ(t))hj(θ(tk))
[
xT (t − ατ1(t))G4 + xT (tk)G5 + ẋT (t − ατ1(t))G6

]

[
Aix(t − ατ1(t)) + BiKjx(tk) − ẋ(t − ατ1(t))

]
= 0. (20)

2
r∑

i=1

r∑

j=1

hi(θ(t))hj(θ(tk))
[
xT (t + βτ2(t))G7 + xT (tk)G8 + ẋT (t + βτ2(t))G9

]

[
Aix(t + βτ2(t)) + BiKjx(tk) − ẋ(t − ατ1(t))

]
= 0. (21)

Now, adding from (12) to (21), one can obtain the following:

V̇ (t) ≤
r∑

i=1

r∑

j=1

hi(θ(t))hj(θ(tk))ξT (t)
[ tk+1 − t

hk
Ξ1i, j +

t − tk
hk

Ξ2i, j

]
ξ(t), (22)

where

ξ(t) =

[
xT (t), xT (t − ατ1(t)), xT (tk),

∫ t

t−ατ1(t)

xT (s)ds,

∫ t−ατ1(t)

tk

xT (s)dsT , xT (tk+1), xT (t + βτ2(t)),
∫ t+βτ2(t)

t

xT (s)ds,

∫ tk+1

t+βτ2(t)

xT (s)ds, ẋT (t), ẋT (t − ατ1(t)), ẋT (t + βτ2(t))

]T

,

and Ξ1i, j , Ξ2i, j are provided in the statement of the Theorem 1.
Thus V̇ (t) ≤ 0 if

∑r
i=1

∑r
j=1 hi(θ(t))hj(θ(tk))Ξli, j < 0, l = 1, 2.
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Moreover,

r∑

i=1

r∑

j=1

hi(θ(t))hj(θ(tk))Ξli, j =
r∑

i=1

hi(θ(t))hi(θ(tk))Ξli, i +
r∑

i=1

∑

i<j

hi(θ(t))hj(θ(tk))(Ξli, j + Ξlj, i).

Thus, it becomes evident that if (6)–(9) are satisfied, the asymptotic stability of the system described in Eq. (5)
is ensured. This concludes the proof. �

Building on the foundation of Theorem 1, this section proceeds to formulate sufficient conditions for devising
a SD control strategy for the considered model depicted in Eq. (5). It ensures that the stability for the unknown
control gains.

Theorem 2 Given 0 < hL ≤ hU , 0 < α, β < 1, εk, k = 2, 3, . . . , 9, the T–S fuzzy systems (5) is asymptotically
stable if there exist matrices P̃ > 0, Ũs > 0, Q̃ ∈ R

2n×2n, R̃p, S̃p, T̃p Ṽp, W̃p, G , Ñl ∈ R
12n×n, M̃l ∈ R

12n×n,
˜̄Nl ∈ R

12n×n, ˜̄Ml ∈ R
12n×n, Z̃p ∈ R

12n×12n, Ỹp ∈ R
12n×12n, ˜̄Zp ∈ R

12n×12n, ˜̄Yp ∈ R
12n×12n, K̃j , s = 1, 2, 3, 4,

p = 1, 2, 3, q = 1, 2, . . . , 9, l = 1, 2, j = 1, 2, . . . , r such that for any hk ∈ {hL, hU},

Ξ̃1i, i < 0, i = 1, 2 . . . r (23)

Ξ̃1i, j + Ξ̃1j, i < 0, 1 ≤ i < j ≤ r, (24)

Ξ̃2i, i < 0, i = 1, 2 . . . r (25)

Ξ̃2i, j + Ξ̃2j, i < 0, 1 ≤ i < j ≤ r, (26)
⎡

⎣
Z̃1 Z̃2 Ñ1

∗ Z̃3 Ñ2

∗ ∗ Ũ1

⎤

⎦ ≥ 0,

⎡

⎣
Ỹ1 Ỹ2 M̃1

∗ Ỹ3 M̃2

∗ ∗ Ũ2

⎤

⎦ ≥ 0, (27)

⎡

⎢⎣
˜̄Z1

˜̄Z2
˜̄N1

∗ ˜̄Z3
˜̄N2

∗ ∗ Ũ3

⎤

⎥⎦ ≥ 0,

⎡

⎢⎣
˜̄Y1

˜̄Y2
˜̄M1

∗ ˜̄Y3
˜̄M2

∗ ∗ Ũ4

⎤

⎥⎦ ≥ 0, (28)

where

Ξ̃1i, j =φ1i, j + hkφ2, Ξ̃2i, j = φ1i, j + hkφ3, φ̃1i, j = eT
1 P̃ e1 − (e1 − e2)T S̃1(e1 − e2)

− (e2 − e3)T S̃2(e2 − e3) − (e1 − e3)T S̃3(e1 − e3) + (e6 − e1)T Ṽ1(e6 − e1) + (e7 − e6)T Ṽ2(e7 − e6)

+ (e7 − e1)T Ṽ3(e7 − e1) + eT
1 (AiG̃ + G̃AT

i )e1 − 2ε3e
T
10G̃e10 + ε4e

T
2 (AiG̃ + G̃AT

i )e4 − 2ε6e
T
11G̃e11

+ ε7e
T
6 (AiG̃ + G̃AT

i )e6 − 2ε9e
T
12G̃e12 + (ε2 + ε5 + ε8)eT

3 (BiK̃j + K̃T
j BT

i )e3

+ He
{

eT
1 P̃ e10 − (e1 − e2)T T̃1e1 − (e2 − e3)T T̃2e2 − (e1 − e3)T T̃3e3

+ (e6 − e1)T W̃1e1 + (e6 − e1)T W̃2e6 + (e7 − e1)T W̃3e7 − eT
1 G̃e10 + eT

1 BiK̃je3 − ε2e
T
3 G̃e10 + ε2e

T
3 AiG̃e1

+ ε3e
T
10AiG̃e1 + ε3e

T
10BiK̃je3 − ε4e

T
2 G̃e11 + ε4e

T
2 BiK̃je3 − ε5e

T
3 G̃e11 + ε5e

T
3 G̃Aie2

+ ε6e
T
11AiG̃e2 + ε6e

T
11BiK̃je3 − ε7e

T
6 G̃e12 + ε7e

T
6 BiK̃je3 − ε8e

T
3 G̃e12 + ε8e

T
3 AiG̃e6

+ ε9e
T
12AiG̃e6 + ε9e

T
12BiK̃je3 + ÑT

1 (e1 − e2) − 2ÑT
2 e4 + M̃T

1 (e2 − e3) − 2M̃T
2 e5

+ ˜̄NT
1 (e6 − e1) − 2 ˜̄NT

2 e8 + ˜̄MT
1 (e7 − e6) − 2 ˜̄MT

2 e9 + (e1 − e2)T R̃1[(1 − β)e12 − e10]

+ (e10 − (1 − α)e11)T R̃1(e6 − e1) + (e2 − e3)T × R̃2(1 − β)e12

+ (1 − α)eT
11R̃2(e7 − e6) + (e1 − e3)T R̃3(−e10) + eT

10R̃3(e7 − e1)
}

,

φ̃2 =eT
10Ũ1e10 − (1 − α)eT

11(R̃1 − R̃2)e11 + He
{

(e10 − (1 − α)e11)T [S̃1(e1 − e2) + T̃1e1] + (e1 − e2)T T̃1e10

+ ((1 − α)e11)T [S̃2(e2 − e3) + T̃2e2] + (1 − α)(e2 − e3)T T̃2e11 + eT
10[S̃3(e1 − e3) + T̃3e3]

+ β ˜̄N2(e6 + e1) + (1 − β) ˜̄M2(e7 + e6)
}
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+ β ˜̄Z1 +
β3h2

u

3
˜̄Z3 + (1 − β) ˜̄Y1 +

(1 − β)3h2
u

3
˜̄Y3 + [e3 e7]Q̃[e3 e7]T ,

φ̃3 = eT
10Ũ3e10 − (1 − β)eT

12(Ũ3 − Ũ4)e12 + He
{

((1 − β)e12 − e10)T [Ṽ1(e6 − e1) + W̃1e1]

+ (e6 − e1)T W̃1e10 + (−(1 − β)e12)T [Ṽ2(e7 − e6) + W̃2e6] + (1 − β)(e7 − e6)T W̃2e12

− eT
10[Ṽ3(e7 − e1) + W̃3e7] + αÑ2(e1 + e2) + (1 − α)M̃2(e2 + e3)

}

+ αZ̃1 +
α3h2

u

3
Z̃3 + (1 − α)Ỹ1 +

(1 − α)3h2
u

3
Ỹ3 + [e3 e7]Q̃[e3 e7]T .

In this case the controller gain is given by Kj = K̃jG̃
−1.

Proof Define G1 = G > 0, Gk = εkG, k = 2, 3, . . . 9, G̃ = G−1, P̃ = G−1PG−1, Q̃ =
diag{G−1 G−1}Qdiag{G−1 G−1}, R̃p = G−1RpG

−1, S̃p = G−1SpG
−1, T̃p = G−1TpG

−1, W̃p =
G−1WpG

−1, Ṽp = G−1VpG
−1, Ũp = G−1UpG

−1, Ñl = G−1Nlλ, M̃l = G−1Mlλ, ˜̄Nl = G−1N̄lλ, ˜̄Ml =
G−1M̄lλ, ˜̄Zs = λZ̄sλ, λ = diag{G−1, . . . G−1}12n×12n. Utilizing a congruent transformation with respect to λ
on equations (6)–(9) leads to equations (23)–(26). �
Remark 2 In SD-based control systems, the choice of a sampling interval holds a pivotal role as it significantly
influences the trade-off between system conservatism and efficiency. To achieve the maximum feasible sampling
interval, several approaches have been explored in literature. Firstly, researchers have derived sufficient conditions
for considered systems using time-dependent continuous Lyapunov functionals [25], employing the LMI technique.
These endeavors focus on optimizing the sampling interval to enhance system performance. Furthermore, the
concept of looped-functional, as presented in [5, 31, 33], contributes to relaxing the positivity constraints of the
Lyapunov functional. This leads to less conservative results while integrating comprehensive information from x(tk)
to x (t) and x(tk+1) to x (t). Inspired by the advancements enabled by looped functionals, we have developed a
looped-functional based LKF in this work. This novel approach is instrumental in establishing stability conditions
for the proposed systems, thereby diminishing traditionalism and enhancing the overall system performance.

4 Numerical simulation and results

In this section, to show the efficiency and superiority of the proposed methods, three nonlinear systems are consid-
ered. In this connection, a nonlinear model of PMSM is considered and illustrated with the acquired stabilization
condition in Theorem 2, and it is provided in the design Example. Next, a Rossler’s model and Lorenz system are
considered and illustrated with the acquired sufficient condition in Theorem 2, which is compared with existing
works, and it is provided in the comparison Examples (see Example 4.1 and Example 4.2)

4.1 Design example

In PMSM, the d − q axis representation is commonly used for analysis and control. This representation simplifies
the mathematical model of the motor by transforming the three-phase system into a two-dimensional system,
where the d axis represents the magnetic flux produced by the permanent magnet and the q axis represents the
quadrature axis.

The state-space model of a PMSM on the d−q axis typically consists of equations that describe the dynamics of
the motors electrical and mechanical behavior. These equations can include equations for the stator and rotor flux
linkages, electromagnetic torque, and electrical currents. The state-space representation is valuable for designing
control algorithms, such as field-oriented control, which enables precise control of the motor’s torque and speed.

Here a general outline of the state-space model for a PMSM on the d − q axis: The PMSM can described as in
the following [11]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
dt id = −Rsid+npνLqiq+ud

Ld

d
dt iq = −Rsiq−npνLdid−npνφ+uq

Lq

d
dtω = np{(Ld−Lq)idiq+φiq}−β̂ν−TL

J

In this scenario, the stator currents in the d and q axes (id and iq), along withω representing the rotor’s angular
velocity. The external load torque is labeled as TL, and J denotes the polar moment of inertia. The d− q voltages
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are denoted as ud and uq, while the stator inductances on the d − q axis are represented by Ld and Lq. Stator
resistance is indicated by Rs. The coefficient of viscous friction is denoted by β̂, and the permanent magnet flux
linkage is symbolized as φ. The number of pole pairs is expressed asnp. Figure 1 illustrates the configuration
of a PMSM-based wind energy system. Additionally, by leveraging the concepts of affine transformation and
time-scaling transformation described in [34], the following relationships can be obtained:

PMSM-based wind energy system is shown in Fig. 1. Furthermore, based on the affine transformation and
time-scaling transformation in one can get the following:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1(t) = −Lq

Ld
x1(t) + x2(t)x3(t) + ûd

ẋ2(t) = −x2(t) − x1(t)x3(t) + γ̄x3(t) + ûq

ẋ3(t) = ϑ̂(x2(t) − x3(t)) + ςx1(t)x2(t) − T̂L

(29)

where γ̄ = npφ2

Rsβ̂
, ϑ̂ = Lqβ̂

RsJ , ûq = npLqφuq

R2
sβ̂

, ûd = npLqφud

R2
sβ̂

, ς = (Ld−Lq)β̂
2Lq

LdJ npφ2 , T̂L = L2
qTL

R2
sJ , np = 1,

[x1(t) x2(t) x3(t)]T = [id iq ω]T . Here, let us assume γ̄ and ϑ̂ to be positive constants. In the smooth air-gap
case, Lq = Ld and the external inputs are vanish, thus, ûd = ûq = T̂L = 0. Let x(t) = [x1(t) x2(t) x3(t)]T ,
and control input u(t), to establish the control design of (29) on d − q axis. Thus, based on these parameter
assumptions, one can obtain the following:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1(t) = −x1(t) + x2(t)x3(t) + u(t)

ẋ2(t) = −x2(t) + x3(t)(γ̄ − x1(t)) + u(t)

ẋ3(t) = ϑ̂(x2(t) − x3(t)).

(30)

Due to its notable attributes like high power density, improved efficiency, and reduced maintenance costs, the
dynamical system of PMSM has garnered substantial attention in existing literature. Nevertheless, a distinctive
aspect of this work is the exploration of the stabilization problem within the background of the PMSM model
based fuzzy approach coupled with the SD controller. In this pursuit, the non-linear PMSM model is converted
into a linear subsystem using if-then rules. The central focus of this research lies in the application of the fuzzy
model, which is highly suitable for modeling nonlinear systems. To exemplify the scope of obtained results, the

Fig. 1 PMSM-based wind
energy system
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PMSM model is employed. The state-space representation of the PMSM model described by (30) can be succinctly
depicted as follows:

ẋ(t) =
2∑

i=1

μi(x3(t))[Aix(t) + Biu(t)], (31)

where A1 =

⎡

⎣
−1 d1 0
−d1 −1 γ̄

0 ϑ̂ −ϑ̂

⎤

⎦, B1 =

⎡

⎣
1
1
0

⎤

⎦, A2 =

⎡

⎣
−1 −d1 0
d1 −1 γ̄

0 ϑ̂ −ϑ̂

⎤

⎦, B2 =

⎡

⎣
1
1
0

⎤

⎦.

Moreover, the considered model parameters are taken as d1 = 5, γ̄ = 1.1, and ϑ̂ = 5.46. Let us assume that the
membership functions are μ1(x3(t)) = 1

1+e−2x3(k) , and μ2(x3(t)) = 1 − μ1(x3(t)).
By taking εl = 0.000001, l = 1, 2, . . . , 9, α = 0.01, β = 0.02 and sampling interval is 0.035, which still keeps the

considered model to be stable. The below control gains are attained by solving the LMIs in Theorem 2:

K1 = [−0.7610 1.8723 − 11.8339],
K2 = [−0.7610 1.8722 − 11.8339]. (32)

Let x(0) = [−0.5 0.1 0.1]T , the simulation outcomes are presented in Figs. 2 and 3. Figure 2 illustrates the state
responses of the PMSM system, affirming the stability of the controlled system. Additionally, Fig. 3 showcases

Fig. 2 State responses of
system (31) under control
gain matrices (32)
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Fig. 3 Control response of
system (31) under control
gain matrices (32)
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the behavior of u(t). These visualizations clearly indicate that the proposed controller effectively stabilizes the
considered model presented in equation (31).

4.2 Comparison examples

Example 1 To demonstrate the efficiency of the developed controller in contrast to established methods, we will
analyze the model [5] formulated as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1(t) = −x2(t) − x3(t)

ẋ2(t) = x1(t) + ax2(t)

ẋ3(t) = bx1(t) − (c − x1(t))x3(t) + u(t)

(33)

Here, it is assumed that x1(t) ∈ [c − d, c + d]. Subsequently, we utilize the Rossler’s system (33) to establish the
following T–S fuzzy model:

ẋ(t) =
2∑

i=1

μi(θ(t))[Aix(t) + Biu(t)],

where A1 =

⎡

⎣
0 −1 −1
1 a 0
b 0 −d

⎤

⎦, B1 =

⎡

⎣
0
0
1

⎤

⎦, A2 =

⎡

⎣
0 −1 −1
1 a 0
b 0 d

⎤

⎦, B2 =

⎡

⎣
0
0
1

⎤

⎦, and let μ1(x1(t)) = c+d−x1(t)
2d and

μ2(x1(t)) = 1 − μ1(x1(t)), a = 0.3, b = 0.5, c = 5 and d = 10.

Setting εl = 0.01, l = 1, 2, . . . , 9, along with α = 0.1, β = 0.2, yields a maximum sampling interval of 0.13,
maintaining stability within the considered model. Solving the LMIs in Theorem 2 yields the following control
gains:

K1 = [−335.1776 − 158.1693 − 335.7430],
K2 = [−335.2391 − 158.2207 − 335.7049].

The maximum value of hU along with the corresponding control gains can be obtained using Theorem 2, with the
tuning parameters specified in Table 1. The maximum sample period bound calculated by Theorem 2 is presented
in Table 2 for the case when hL = hU . In comparison, the upper bounds obtained from existing works are also
included in Table 2. This table clearly indicates that our method offers larger ranges of sampling intervals for h
compared to the existing works. Compared with [15, 19, 25, 35, 36, 5]. It is provided in Table 2. It is provided in
Table 2. Table 2 demonstrates that our anticipated approaches yield less conservative results compared to existing
methods. This clarifies the effectiveness of our proposed SD controller scheme.

Table 1 Maximum hU ,
Control gains, and tuning
parameters when
hL = 0.00005 in Example 1

hU εk, k = 1, 2, · · · , 9 Control gains

Theorem 2 0.0017 0.01 K1 = [−211.1176 8.5164 − 144.9786]

K2 = [−211.1184 8.5135 − 144.9782]

Table 2 Maximum upper
bound of sampling intervals
hU when hL = hU by
various methods in
Example 1

Methods hL = hU

[19] 0.0534

[35] 0.0692

[25] 0.0736

[36] 0.0959

[15] 0.1147

[5] 0.1165

Theorem 2 0.1300
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Fig. 4 State responses of
the open-loop system (35)
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Fig. 5 State responses of
system (35) under control
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Example 2 To illustrate the superiority of the designed control approach with existing methods, in [27] model
which is formulated as in the following:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1(t) = −a1x1(t) + a1x2(t) + u1(t)

ẋ2(t) = a3x1(t) − x2(t) − x1(t)x3(t)

ẋ3(t) = x1(t)x2(t) − a2x3(t)

(34)

with x1(t) ∈ [−a4, a4]. Then, we use the above Lorenz system (34):

ẋ(t) =
2∑

i=1

μi(θ(t))[Aix(t) + Biu(t)], (35)

where A1 =

⎡

⎣
−a1 a1 0
−a3 −1 −a4

0 a4 −a2

⎤

⎦, B1 =

⎡

⎣
1
0
0

⎤

⎦, A2 =

⎡

⎣
−a1 a1 0
−a3 −1 a4

0 −a4 −a2

⎤

⎦, B2 =

⎡

⎣
1
0
0

⎤

⎦, and let us consider the membership

functions as μ1(x1(t)) = a4+x1(t)
2a4

and μ2(x1(t)) = 1 − μ1(x1(t)). The parameters are provided as a1 = 10, a2 = 8
3 ,

a3 = 28 and a4 = 25.

By taking εl = 0.000001, l = 1, 2, . . . , 9, α = 0.01, β = 0.02. It is possible to get that the maximum sample
period is 0.12, which still keeps the considered model to be stable. By solving the LMIs in Theorem 2, one can
obtain the following control gain matrices:

K1 = [7.5299 3.3959 − 3.7089],
K2 = [7.5299 3.3958 − 3.7089]. (36)

Using the values in Table 3, we can determine the maximum hU and equivalent control gains according to Theo-
rem 2. Considering the initial conditions as x(0) = [−0.5 0.1 0.1]T , the simulation results are depicted in Figs. 4, 5.
The trajectories of the Lorenz system without control input are shown in Fig. 4, indicating the chaotic behavior of
the system. The responses of the Lorenz model states are displayed in Fig. 5, confirming the stable nature achieved
by the considered model under the proposed control.

Furthermore, the control input u(t) is depicted in Fig. 6. Additionally, the maximum sampling upper bounds
are determined by [25–28], and these values are listed in Table 4 when h = hL = hU . The data listed in Table 4
clearly reveals that the anticipated approach provides the largest sampling interval. Consequently, the proposed
method yields less conservative results.

Table 3 Maximum hU ,
Control gains, and tuning
parameters when
hL = 0.00061 in Example 2

hU εk, k = 1, 2, · · · , 9 Control gains

Theorem 2 0.0012 0.0001 K1 = [−23.9269 179.3032 20.6347]

K2 = [−23.9372 179.2491 20.6542]

Table 4 Maximum upper
bound of sampling intervals
hU when hL = hU by
various methods in
Example 2

Methods hL = hU

[25] 0.0412

[26] 0.0438

[27] 0.0746

[28] 0.1021

Theorem 2 0.1200
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5 Conclusion

This research investigates stabilization techniques for a nonlinear model using fuzzy-based SD control. The fuzzy
membership rules are customized to match fuzzy premise variables, reflecting the nonlinear terms within the
model. In cases where nonlinear terms are not present, these rules are amalgamated into a singular entity, leading
to less conservative outcomes through the integral inequality approach. To comprehensively account for the char-
acteristics of membership functions, fractional-delayed states, and actual sampling patterns, an enhanced looped
LKF framework has been introduced, capturing these aspects simultaneously. Stability and stabilization criteria
are defined by formulating an appropriate LKF for the nonlinear model under investigation in terms of LMIs.
Furthermore, Lyapunov stability theory is utilized to derive stability conditions for the nonlinear system under
consideration. To highlight the advancements of this study, a comparative analysis is conducted against existing
literature. Additionally, numerical examples are presented to illustrate the applicability and effectiveness of the
proposed nonlinear models under the SD control scheme. In future work, the nonfragile fuzzy proportional retarded
sampled-data scheme will be taken into account for multiagent systems
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