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Abstract This paper aims to study a discrete-time COVID-19 epidemic model with a saturated incidence
rate. The basic reproductive number is calculated and the endemic steady state is obtained for the model.
The stability of the COVID-19-free steady state (CFSS) of the model is investigated when the basic
reproduction number is less than one and the step size h satisfies the exact condition. The theoretical
result is also supported with numerical simulations.

1 Introduction

Mathematical modeling is a critical tool for understanding the dynamics of infectious diseases and making predic-
tions about future scenarios. Especially in the fight against the COVID-19 pandemic, the value of mathematical
modeling is increasingly recognized. Various mathematical models have been developed to comprehend the intri-
cate dynamics of the COVID-19, and the findings obtained from these models play a significant role. By assessing
the disease transmission rate, infection rates, and intervention strategies, these models shed light for healthcare
professionals and decision-makers.

In mathematical epidemiology, models depend on an incidence rate which represents the number of individuals
who become infected per unit of time, and plays a crucial role in ensuring that the models accurately capture
the qualitative dynamics of disease transmission. Bilinear incidence βSI and standard incidence βSI

N have been
commonly employed in mathematical models (see [1–6]). Here, S , I , R and N denote the susceptible, infected,
recovered individuals and total population size, respectively. Various alternative incidence rates have been used
in literature to enhance the representation of infection dynamics. These include saturated incidence rates βSI

1+α1S

and βSI
1+α2I , along with the Beddington–DeAngelis type incidence rate βSI

1+α1S+α2I , as well as the Crowley–Martin
incidence rate βSI

(1+α1S)(1+α2I) , among other formulations (see [7–10]). Here, α1 represents measures like preventive
actions taken by susceptible individuals, and α2 denotes factors such as treatment concerning infected individuals.
Choosing the appropriate incidence rate is one of the crucial steps in mathematically modeling an infectious
disease.

Various mathematical models have been developed to understand the control and spread dynamics of COVID-
19 [4–6, 11, 12]. Very recently, Ghosh et al. in [12], proposed and studied an SITR model to employ a real data
set to analyze the dynamics of the COVID-19 pandemic. The population is divided into four non-intersecting
compartments, including susceptible individuals (S ), infected individuals without any treatment who can spread
the disease (I ), infected individuals in an isolation ward for treatment who are not spreading the disease (T ), and
recovered individuals (R). Model equations are given by

S′(t) = Λ − αSI

1 + δT
− (γ1 + d1)S,

I ′(t) =
αSI

1 + δT
− (β + d1)I,
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T ′(t) = βI − (γ2 + d1 + d2)T ,

R′(t) = γ1S + γ2T − d1R. (1.1)

Here, the parameters Λ, α, d1, d2 represent the rate at which newborn individuals are introduced into the sus-
ceptible population per unit of time, the disease transmission coefficient, the natural death rate, and the death
rate caused by COVID-19. γ1 is the rate at which the secure zone population increases due to factors such as fear
and lockdown and γ2 is the rate at which infected individuals in isolation wards recover from the disease. δ is a
controlling parameter. Here, all parameters are assumed to be positive and initial conditions are

S(0) > 0, I(0) ≥ 0, T (0) ≥ 0, R(0) > 0,

where N (t) denotes the total population size at time t , and N(t) = S(t) + I(t) + T (t) + R(t). The authors have
discretized model (1.1) using the Euler forward method:

Sn+1 = Sn + h

[
Λ − αSnIn

1 + δTn
− (γ1 + d1)Sn

]
,

In+1 = In + h

[
αSnIn

1 + δTn
− (β + d1)In

]
,

Tn+1 = Tn + h[βIn − (γ2 + d1 + d2)Tn],
Rn+1 = Rn + h[γ1Sn + γ2Tn − d1Rn]. (1.2)

Here, Sn, In, Tn and Rn denote the sub-population sizes at the discrete-time points t = nh, n = 0, 1, . . . . The
value h represents the time-step size. Since the first three equations in model 1.2 are independent of the value Rn,
the authors studied the dynamics of the reduced model given as follows:

Sn+1 = Sn + h

[
Λ − αSnIn

1 + δTn
− (γ1 + d1)Sn

]
,

In+1 = In + h

[
αSnIn

1 + δTn
− (β + d1)In

]
,

Tn+1 = Tn + h[βIn − (γ2 + d1 + d2)Tn]. (1.3)

In [12], the authors investigated the dynamical properties of the model (1.3) and obtained several important results
about disease spreading. However, it has been noticed that some of these results are mathematically incomplete.
The purpose of this paper is to clarify some results in [12] and study the qualitative analysis of a discrete-time
COVID-19 epidemic model with a saturated incidence rate. Thus, this paper improves the related results presented
in [12].

2 Main result

In [12], the authors have obtained two equilibrium points for the model (1.3), namely a COVID-19-free equilibrium
(CFE) point P1 = (S0, I0, T0) =

(
Λ

γ1+d1
, 0, 0

)
and an endemic equilibrium (EE) point P2 = (S∗, I∗, T ∗), where

S∗ =
Λ − (β + d1)I∗

γ1 + d1
,

T ∗ =
(γ2 + d1 + d2)I∗

β
,

I∗ =
β[αΛ − (β + d1)(γ1 + d1)]

(β + d1)[αβ + δ(γ1 + d1)(γ2 + d1 + d2)]
.

The correct endemic equilibrium point for the model (1.3) is given in the following result.

Remark 2.1 The endemic equilibrium point of the model (1.3) is as follows:

S∗ =
Λ − (β + d1)I∗

γ1 + d1
,
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T ∗ =
βI∗

γ2 + d1 + d2
,

I∗ =
(γ2 + d1 + d2)[αΛ − (β + d1)(γ1 + d1)]
(β + d1)[δβ(γ1 + d1) + α(γ2 + d1 + d2)]

.

For Fig. 3, Λ = 400, 000 and other parameters are taken as the values used in Table 1. The phase space of the
model to the endemic equilibrium point is shown as R0 > 1 and h = 10. Here, the endemic equilibrium point
obtained in [12] is shown in red and the equilibrium point we obtained is shown in black. It can also be seen here
that the endemic equilibrium point obtained here is asymptotically stable.

In [12], the authors used the approach given in [13] to calculate the basic reproduction number R0. They have
obtained the sub-matrices

F =
[

hαS0 0
0 0

]
, H =

[−h(β + d1) + 1 0
hβ − h(γ2 + d1 + d2) + 1

]
,

and determined R0 by using these matrices, through the next-generation matrix.
The correct method for obtaining the basic reproduction number for the model (1.3) is presented in the following

result.

Remark 2.2 To apply the approach in the study [13], the matrices F and H must be non-negative, and the matrix
F + H must be irreducible. However, for sufficiently large values of h, specifically for

h >
1

β + d1
or h >

1
γ2 + d1 + d2

,

the value of h prevents the non-negativity of matrix H . On the other hand, it is obvious that the matrix

F + H =
[

hαS0 − h(β + d1) + 1 0
hβ − h(γ2 + d1 + d2) + 1

]

is reducible. Therefore, the approach given in the study [13] has not been correctly applied. However, despite this,
the basic reproduction number has been calculated correctly:

R0 =
αΛ

(γ1 + d1)(β + d1)
.

In [12, Theorem 3], the authors have determined the Jacobian matrix at CFE point P1 as

J(P1) =

⎛
⎜⎝

1 − h(γ1 + d1) − hαΛ
(γ1+d1)

0

0 1 + h
[

αΛ
(γ1+d1)

− (β + d1)
]

0
0 hβ 1 − h(γ2 + d1 + d2)

⎞
⎟⎠. (2.1)

They indicated that the CFE point is locally asymptotically stable for R0 < 1, and unstable for R0 > 1. We
observe that, for the locally asymptotically stability of the CFE point, it is not sufficient for only R0 < 1 to hold.
Therefore, we will give the following theorem for stability.

Theorem 2.3 The CFE point of the model (1.3) is locally asymptotically stable if R0 < 1 and

h < min
{

2
γ1 + d1

,
2

(β + d1)(1 − R0)
,

2
γ2 + d1 + d2

}
(2.2)

holds, and is unstable if R0 > 1 or

h > min
{

2
γ1 + d1

,
2

(β + d1)(1 − R0)
,

2
γ2 + d1 + d2

}
. (2.3)
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Proof The eigenvalues of the matrix (2.1) calculated at the CFE point as

w1 = 1 − h(γ1 + d1) < 1,

w2 = 1 + h

[
αΛ

γ1 + d1
− (β + d1)

]

= 1 + h(β + d1)(R0 − 1),
w3 = 1 − h(γ2 + d1 + d2) < 1.

A necessary and sufficient condition for locally asymptotically stability of the CFE point is |wi|< 1, i = 1, 2, 3
(see [14]). Then, we have the following inequalities:

|w1|< 1 ⇔h <
2

γ1 + d1
,

|w2|< 1 ⇔h <
2

(β + d1)(1 − R0)
and R0 < 1,

|w3|< 1 ⇔h <
2

γ2 + d1 + d2
.

Note that h > 0. Clearly, if R0 < 1 and the condition (2.2) is satisfied, then |wi|< 1 holds for i = 1, 2, 3. On
the other hand, if R0 > 1, then w2 > 1. Also if the condition (2.3) is satisfied, then one of the eigenvalues of the
matrix (2.1) will be less than −1. Hence, the proof is completed. �

3 A counterexample and its simulations

In this section, some numerical simulations will be provided to verify the theoretical results obtained. The parameter
values given in Table 1, used in the study by [12], will be employed. All simulations were made by using MATLAB
software.

Example 3.1 According to the parameters given in Table 1,

R0 = 0.56900316796 < 1 and P1 = (76923076.9231, 0, 0).

With initial conditions given in [12], that S(0) = 8×108, I(0) = 1400, T (0) = 256, the inequality for the time-step
size

h < 39.9840063974

must be satisfied for the stability of the equilibrium P1. In Fig. 1, the stability behavior of the CFE point P1 is
simulated for sufficiently small h values. On the other hand, as seen in Fig. 2, for sufficiently large h values, the
number of individuals in classes I and T oscillates and diverges. These simulations confirm the theoretical results
obtained (Fig. 3).

Table 1 Parameters used
for simulations [12] Parameter Value Parameter Value

Λ 40,000 γ1 0.0005

α 0.37 × 10−9 γ2 0.005

β 0.05 d1 0.00002

δ 0.00042 d2 0.00197
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Fig. 1 Stability of the
CFE point P1 for
sufficiently small various
h values
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Fig. 2 Instability of the
CFE point P1 for
sufficiently large various
h values
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Fig. 3 The asymptotic
stability of the endemic
equilibrium point for
R0 > 1 and h = 10
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4 Discussion and conclusions

Differential equation systems are commonly used for the mathematical modeling of biological phenomena. How-
ever, for practical purposes, it may be necessary to discretize such models and analyze them in discrete form.
Discretization involves partitioning continuous time into discrete time steps to solve the system at specific points
in time. The choice of time step size h during the modeling of a biological system is associated with the nature of
the system. For instance, smaller time steps may be required for rapidly changing processes, while larger time steps
may suffice for slower changing processes. Therefore, selecting the appropriate time step size is of vital importance
for accurately reflecting the behavior of the model in the real world. The time step size h used in the Euler dis-
cretization is crucial in the dynamical analysis of the model. But, for models discretized using the Euler method,
various numerical inconsistencies can occur for sufficiently large h values (see [10, 15]). In this study, attention has
been drawn to the significance of the time step size h by correcting certain incomplete results obtained in [12].
The accuracy of theoretical results has been supported by numerical simulations.

On the other hand, during the development of mathematical models for biological systems, it is essential to
ensure that the model is biologically well-defined and yields meaningful results. The mathematical tools used in
the qualitative analysis of the proposed model should be thoroughly understood and correctly applied. Furthermore,
when constructing a mathematical model, attention should be paid to whether the expressions used have direct
counterparts in real-life scenarios. What does the incidence function

αSI

1 + δT

used in (1.1) explain? What is the meaning of the term 1
1+δT here? What is the impact of individuals in the

isolated class T on the transition of susceptible individuals to the infected class? It is evident that the theoretical
inconsistency in calculating the basic reproduction number originates from here.

For the interested authors, we anticipate that by selecting an incidence function in the form of

αSI

1 + aS

better results can be obtained for this model. Here, the parameter a represents a measure of the inhibition effect
taken by susceptible individuals, such as wearing masks. Furthermore, the development of non-standard finite
difference schemes could enable more flexible behavior in the selection of the time step size value h.
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