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Abstract Nanochannels and their engineering within polymer membranes have emerged as a transfor-
mative way to address critical challenges in energy and biological applications. The multidisciplinary
approach, through precisely controlling the nanoscale features to modify molecular transport and inter-
actions, provides a range of innovative opportunities. In the realm of energy applications, these tailored
nanochannels can enhance ion transport to benefit various energy storage and conversion devices, such
as high-performance lithium-ion batteries and fuel cells, due to improved electrolyte management. In the
biological domain, these engineered nanochannels with their selective transport of biomolecules provide the
potential to revolutionize the treatment of diseases, and personalized medicine by precisely governing the
passage of DNA, and proteins and offering unprecedented control in medical and biotechnological appli-
cations. The review explores the state-of-the-art techniques for engineered nanochannels within polymer
membranes, with a focus on their fabrication methods and applications in various areas. It also discusses
various advancements and innovative research going on to enhance the characteristics of nanochannels
further. Moreover, it discusses the current challenges and future prospects in harnessing the nanochannels
for sustainable energy solutions and advanced biological tools.
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Abbreviations

SiO2 Silicon dioxide
NIL Nanoimprint lithography
Ag NPs Silver nanoparticles
PET Polyethylene terephthalate
PEO Polyethylene glycol
HMMP-1 High valence metal-induced microporous polymer
MMM Mixed matrix membranes
GO Graphene oxide
PEGDA Poly(ethylene glycol) diamines
Pd Palladium
PC Polycarbonate
API Active Pharmaceutical Ingredients
HVNCs High-Value Natural Compounds
CMP Conjugated microporous polymer
PTFE Polytetrafluoroethylene
AF Acid fuchsin
SWCNT Single-walled carbon nanotube
DOPC 1,2-Dioleoyl-sn-glycrol-3-phosphocholine
NaCl Sodium chloride
COF Covalent organic framework
PMMA Poly(methyl methacrylate)
CA Cellulose acetate
PVDF Polyvinylidene fluoride
AB 1,4-Diacetylbenzene
CG Chrysoidin G
FS Fluorescein sodium
EB Eosin B
COP Covalent organic polymer
EB’ Ethidium bromide
RED Reverse electrodialysis
sPEEK Sulfonated poly(ether ether ketone)
Am Americium

1 Introduction

Over the last few decades, membranes have emerged as growing alternatives to conventional methods across
a spectrum of industries. Their versatility, efficiency, and eco-friendly characteristics have paved the way for
innovative solutions, fostering a paradigm shift in processes ranging from water purification to pharmaceutical
separations. Membranes serve at the forefront of technological progress, unlocking new dimensions of sustainability
and performance. They have an array of purposes, from water purification and air filtration to fuel cells and
artificial organs. These membranes, as a thin and selective barrier, separate and allow the transport of specific
substances, making them invaluable in a wide range of applications [1]. Membranes are better than the conventional
techniques, which are energy-intensive and require sophisticated instruments as well as create pollution to the
environment. Besides cost-effectiveness and environment friendliness, these membranes also offer versatility and
simplicity in commercialized system designs due to their easier processing and fabrication techniques [2]. Among
various membrane materials, polymeric membrane provides use in various applications, such as food packaging,
controlled drug release, separation, and beverage industry [3–5].

Nanochannels within polymer membranes represent a remarkable combination of nanotechnology and materials
science [6]. Nanochannels are extremely tiny, well-defined passageways or pores that are intentionally engineered
at the nanoscale level within a polymer material. These minute passageways, often on the scale of just a few
nanometers, offer the potential to precisely control the movement of ions, molecules, and particles. Their precise
size, structure, and surface properties can be controlled and customized to allow specific substances to pass through
while blocking others [7, 8]. Their engineered design allows a wide range of applications, spanning energy storage,
water purification, and biological sciences. In energy-related applications, nanochannels enable the development
of advanced batteries, fuel cells, and membrane-based processes for sustainable power generation and storage [9,
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10]. In the domain of biology, these nanoscale channels play a pivotal role in drug delivery, biosensing, protein
analysis, and DNA sequencing, offering unparalleled precision and control. As we continue to refine the fabrication
techniques and functionalization of these polymer-based nanochannels, their potential to revolutionize a multitude
of industries becomes increasingly evident, promising innovation on both microscopic and macroscopic scales [11,
12].

Although nanochannels provide advantages in various fields, they are susceptible to deterioration due to changing
external conditions, such as pH, temperature, stress, and more. Also, for the transportation through nanochannels,
surface chemistry and geometry should be controlled to regulate the ionic and non-ionic transport phenomenon.
The length of these nanochannels should be reduced to around 100 nm along one dimension. Tailoring nanochan-
nel dimensions to specific applications enables precise control over the filtration process, making nanochannels
versatile tools across a diverse range of applications. Further, the applications of these nanochannels in the prepa-
ration of nanowire fabrication are the availability of nanopores of different shapes, and the control of chemically
functionalized inner walls [13].

In this comprehensive review article, we will discuss briefly the diverse array of nanochannels found in polymer
membranes and their strategic engineering approaches of designing and manipulating their sizes to harness their
potential in both energy and biological applications. Since these nanoscale channels hold great promise in the
realm of energy and biology, we aim to shed light on the challenges that have to be faced with the current research
process and the outlook for further advancement in the innovative use of nanochannels in diverse applications.

2 Fundamentals of nanochannels

Nanochannels are extremely small channels or pores with dimensions on the nanometer scale, typically ranging
from a few nanometers to several hundred nanometers in diameter. These channels can be found in a variety of
natural and synthetic materials and possess several unique characteristics and properties, including [14, 15]:

• Size and Dimension: Nanochannels typically have dimensions in the range of a few nanometers to several hundred
nanometers in diameter or width. Regulating the nanochannel dimensions allows engineers and scientists to
tailor these structures to meet the specific requirements of different applications. For example, nanochannel
membranes with distinct pore sizes are employed in various filtration processes, including water purification
and the separation of nanoparticles. Their small size allows for strictly controlling the flow and transport of
molecules or particles at the nanoscale [16].

• High surface area-to-volume ratio: The small size of nanochannels results in a high surface area-to-volume ratio,
which is required for applications involving adsorption, separation, and reactions, as it provides a large area of
contact for interactions with passing molecules.

• Capillary action: Nanochannels often exhibit strong capillary forces due to their narrow dimensions. Capillary-
driven fluid transport in nanochannels is widely used in various applications, including microfluidics, point-of-care
diagnostics, lab-on-a-chip devices, and capillary electrophoresis. It is also useful in fields like nanofluidics for
studying the behavior of fluids at the nanoscale. This capillary action can be improvised by manipulating the
dimensions of the nanochannels for fluid transport [16].

• Selective Transport : Nanochannels can be engineered for the selective transportation of specific molecules or
ions based on their size, charge, and chemical properties. This selectivity is beneficial for filtration, separation,
and controlled transport. The engineering of nanochannels involves tuning the size and geometry, modification
via chemical functionalization, and engineering the surface charge of nanochannel walls.

• Surface properties: The surface properties of nanochannels can be modified to control interactions with molecules.
Specific applications can be facilitated by certain surface modification processes, such as functionalization or
coatings, which can either increase or decrease adsorption [17].

• Diffusion-driven transport : In nanochannels, diffusion is a dominant mode of transport for molecules and parti-
cles. This can lead to unique transport phenomena and can be important in applications like controlled released
systems and drug delivery.

• Electrokinetic Phenomena: Nanochannels can take advantage of electrokinetic phenomena, such as electroosmosis
and electrophoresis, to manipulate the transport of charged species. Upon applying voltages or modifying the
surface charge of the nanochannels, specific ions or molecules can be directed to move towards or away from any
particular region of the channel [18, 19]. These phenomena are vital in microfluidic devices and lab-on-a-chip
technologies.
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2.1 Techniques for nanochannel creation

Nanochannels must be created with precise control and desired properties for their wide range of applications.
Several techniques are available for nanochannel fabrication, including ion beam irradiation and chemical etching,
optical lithography [20], photolithography, nanoimprinting lithography [21], etc. Out of the various approaches used
to create the nanochannels in polymer membranes, top-down approaches can more tightly control the size and
distribution of pores within the membranes. These are carried out using lithographic steps to generate predefined
patterns on the membranes through focused ion beam, track-etching, reactive ion etching, etc. These approaches
involve membranes having pore size depending upon pore design rather than membrane fouling (as done in the
bottom-up approach) to create a tortuous path [22].

2.1.1 Ion beam irradiation

Ion beam irradiation is a top-down approach for creating nanochannels in materials. It involves bombarding
a material’s surface with high-energy ions, leading to the removal of material and the formation of nanoscale
features, including channels [23, 24]. This technique is used for both creating permanent nanochannels and for
modifying existing surfaces. It offers excellent control over pore size through changing ion beams and dose. The
detailed explanation of the process can be given as [25, 26]:

(1) Irradiation: The most important step is the irradiation process through high-energy ions, such as protons or
helium ions, which are accelerated and directed toward the material’s surface. The choice of ions depends on
the specific material and the desired channel characteristics such as nanochannel dimensions.

(2) Sputtering : When the ions collide with the material’s surface, they transfer energy, which can cause atoms
to be dislodged from the surface. This process is known as sputtering.

(3) Pattern Formation: The ion beam can be precisely controlled to create a pattern on the material’s surface.
By controlling the beam’s intensity and scanning it across the material, nanochannels with well-defined
dimensions can be formed.

Through the ion irradiation process, the polymer material surface gets damaged along the transportation path
of the ions. These damaged zones can be easily converted into latent tracks upon chemical etching. Under this
process, the material is exposed to a chemical etchant that selectively reacts with the exposed regions, removing
material and forming the desired channels as shown in Fig. 1a. Depth, shapes, and structural dimensions of
the etched channels can be regulated depending on how much faster the track is etched in comparison to the
bulk. Figure 1b represents different geometries of the track-etched pores. Etching can be isotropic (uniform in all
directions) or anisotropic (directionally dependent). Apart from the ion irradiation, masking typically in the form
of a patterned photoresist or a physical mask can be used to protect certain areas from etching while exposing
others to etchant [27, 28]. The method of ion irradiation is good where extremely high resolution and precision
are required. However, it is less suitable and scalable due to the requirement of specialized instruments and ion
accelerators.

2.1.2 Photolithography

Creating nanochannels in polymer membranes using photolithography allows for precise control over channel
dimensions and arrangements, making it suitable for various microfluidic and filtration applications [30, 31]. It
involves coating the polymer surface with a thin film of photoresist material and exposing it to UV light through
a photomask to get the desired nanochannels. The photoresist can be both positive as well as negative depending
upon its behavior towards the UV light. The nanochannel width can be determined through the wavelength of
UV used. The technique is then followed by the etching process to obtain the required depth of the nanochannels.
Shankles et al. in 2015 created 200 nm deep nanochannels in PDMS polymer membrane utilizing the combination
of photolithographic and soft lithographic techniques through high-resolution patterning and etching strategies
[22]. Spelthahn et al. in 2009 fabricated self-aligned nanopores and fluidic nanochannels of 15–20 nm dimensions
on Si-SiO2 substrate through a combination of photolithography and pattern size reduction technique [32]. Ranjan
et al. in 2023 fabricated durable and regenerative nanoporous superhydrophobic surfaces by creating nanochannels
into 500 μm thick substrate using the photolithography technique [33]. Photolithography offers good compatibility
with a range of materials, such as polymers and metals; however, the choice of photoresists and etchants may
restrict the compatibility. Further, the technology offers moderate scalability due to the complex procedure and
requirements related to the clean room facilities.
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Fig. 1 a Creation of nanochannels using ion irradiation and etching process [2], b various geometries obtained through the
etching process [2], c self-regulating mechanisms affecting the transportation mechanism through functionalized nanochan-
nels [29]

2.1.3 Nanoimprint lithography

Nanoimprint lithography (NIL) is a replication technique that uses molds or stamps to imprint nanoscale patterns
on a substrate. It offers several advantages including high resolution, simplicity, and the ability to create nanoscale
features across wide regions [34]. Its key principle involves the mechanical deformation of a resist material by a
template or mold. In the first step, a template or mold (typically made up of silicon or quartz) is created with the
desired nanoscale pattern. The template is then attached to the polymer membrane coated with a thin layer of a
resist material. The template is then pressed using controlled force or pressure or sometimes heat application. The
mechanical deformation causes the resistance to flow and fill the nanoscale features on the template, resulting in
the desired pattern transfer. After imprinting, the template is removed and the imprinted resist is subjected to a
hard bake to stabilize the pattern. The method offers moderate to high material compatibility and is suitable for
polymers, silicon, and metals which are capable of softening under pressure and heat [35, 36].

Sabirova et al. in 2022 used UV nanoimprint lithography to create highly porous membranes of pore size 300 nm
with a pore density of 4 × 109 pores/cm2 and stable permeance of 108,000 Lm−2 h−1 bar−1 towards nanoparticles
[21]. Choi et al. in 2019 created conical-shaped nanopores of 10 nm diameter using the NIL technique with a Si
microneedle stamp [37]. Ren et al. in 2023 created nanopores of 10–270 nm diameter in a flexible polycarbonate
membrane using silver nanoparticles (Ag NPs) as a template and intense pulsed light as a heating source [38].
Feng et al. in 2017 created vertically aligned nanochannels of 1.2 nm–1.5 nm diameter using a combination of
molecular templating and directed self-assembling using physical confinement and magnetic fields [39].

2.1.4 Self-assembled block copolymer structures

Self-assembled block copolymers are fascinating materials to create nanochannels of pore diameter in the range
from 10 to 50 nm in the membranes with precise control over the size and structure [40]. Block copolymers (BCP)
are formed when two thermodynamically incompatible blocks are bonded together via covalent bonds. Hence,
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Fig. 2 Schematic of the
process of nanopore
creation in a block
copolymer membrane

these BCPs can undergo precise separation in the range of 10–100 nm [41]. These self-assembled structures can
be easily regulated using various factors, such as solvent type, polymer type, concentration of polymer solution,
additive aspects, annealing conditions, and many more [42]. In general, the nanochannels can be created into
such membranes via certain steps: (1) Preparation of a uniform film using methods like spin-coating, dip-coating,
doctor-blade casting, etc., (2) Annealing the solvent through exposing the film to solvent vapor or another method
to cause the blocks to self-assemble into the desired nanostructure, (3) Finally, selective removal of one block via
etching or other methods to create the nanochannels. The method is compatible mainly with polymer materials.
However, the copolymer domains can form inorganic–organic hybrid structures that can expand their compatibility.
Figure 2 represents the schematic of the process of nanopore creation in a block copolymer membrane.

The strategy offers the advantages of high density and high order which is significant for the mass transport via
membranes. Sharon et al. in 2020 used block copolymer-based ion-selective membranes as separators in concen-
tration cells [43]. Yang et al. in 2021 used PSF-b-PEG block copolymer (made from polysulfone and polyethylene
glycol units)-based nanoporous membranes as lithium-ion battery separators. The membrane possesses a rigid and
flexible structure with good mechanical stability [44]. In general, the self-assembly of the block copolymer is an
efficient way to create nanochannels due to the high control over the shape, size, and spacing of the nanostructures
[45].

2.1.5 Template-assisted method

The template-assisted method is a versatile and precise approach to producing tailored nanopore structures of
required pore size, shape, and distribution by utilizing a template or scaffold to guide the formation of nanopores
[46, 47]. Initially, the polymer is deposited around the template, conforming to its shape and structure. After
which, it is cured, and then the template is removed using physical or chemical methods, leaving behind the
polymer membrane with nanopores that mimic the features of the template. The method provides the advantages
of exact control over the size and shape of the nanopore, together with the uniformity and scalability required for
mass production. Ma et al. in 2018 used a templating approach to produce nanovoids in a polyamide layer using
Cu nanoparticles loading and later etching them. The membranes showed a 70% increment in water flux without
changing the NaCl rejection [48]. In another work, Li et al. in 2021 used the template-assisted method to generate
one-dimensional nanochannels using the polyamide layer with Cu nanorods loading and later etching them. The
process demonstrated enhanced water purification in RO membranes [49]. Table 1 represents a comparison of
different aspects of various techniques of nanochannel creation [40, 50–52].

2.2 Factors affecting nanochannel size and distribution

Size and distribution of nanochannels can be influenced by several factors, including both intrinsic material prop-
erties and external processing and fabrication conditions. All of these factors are crucial for controlling and manip-
ulating nanochannel characteristics [53]. Some key factors that affect nanochannel size and distribution are given
as:
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Table 1 Comparison of various techniques of nanochannel creation

Parameter/
Technique

Ion beam
irradiation

Photolithography Nanoimprint
lithography

Self-assembled block
copolymer
structures

Template
assisted
method

Cost High High Low Low Low

Resolution Excellent
(Sub
nanometer)

Excellent
(Sub-10 nm)

Good
(Sub-10 nm)

Moderate
(10–100 nm)

Moderate
(10–100 nm)

Control over pore
size

Excellent Good Good Moderate Moderate

Scalability Low Moderate High Moderate to High High

Material
compatibility

Moderate to
High

Moderate to High Moderate to
High

Particularly for
polymers

High

(1) Material Properties: Various material properties, such as softness/hardness, purity, and crystallinity of the
material, play a significant role in determining the nanochannel size and distribution. Different materials may
respond differently to fabrication techniques, leading to variations in channel dimensions. For example, softer
materials may be prone to more deformation during fabrication, resulting in larger or irregularly shaped
nanochannels [16].

(2) Fabrication techniques: Fabrication techniques and parameters involved, such as etching conditions (etch rate,
temperature, pressure, and exposure time), accuracy and precision of masking and patterning techniques
(during photolithography or focused ion beam lithography), and tools and equipment’s quality and precision,
play a role in achieving the desired channel size and distribution [17].

(3) Processing parameters: Apart from the environmental conditions, such as temperature and pressure, the
presence of dopants or surface functionalization can alter the material’s reactivity and, consequently, size and
distribution of nanochannels [12, 54].

(4) Template Size and Geometry : Sometimes while using templates or molds for creating nanochannels, the
nanopatterning and template properties, such as template’s size, shape, and arrangement, can affect the
resulting channel dimensions and distribution [15].

(5) Post-processing treatments : Several treatments, such as annealing and surface coating/functionalization of
the channel walls, may lead to recrystallization or other structural changes and alter the surface interactions
[55, 56].

(6) Control and monitoring mechanisms: Accurate process control and real-time monitoring of fabrication steps
can help maintain tight dimensional tolerances and improve distribution uniformity.

3 Engineering of nanochannels

The engineering of nanochannels plays a pivotal role in enhancing the performance and expanding the range
of applications in the realm of nanotechnology. By tailoring the interior surface of these channels with specific
functional groups or materials, several crucial benefits can be realized. These include selective separation, precise
control over the transportation of molecules, control release of drugs, acceleration of chemical processes in catalytic
reactions, and many more [57, 58].

There are several ways for the engineering of nanochannels, such as functionalization, crosslinking, and decoration
with other materials [59, 60]. These methods can greatly affect the size, shape, and other surface properties of
the channels. Functionalization of nanochannels in the membranes can trigger unique mechanisms, such as the
steric effect, affinity at the interface, and special recognition towards specific molecules as shown in Fig. 1c.
Functionalization can integrate selective mechanisms toward specific materials [61]. For example, in the separation
process, it not only increases the selectivity towards specific molecules but also provides other fascinating properties,
such as anti-fouling/self-cleaning, and in situ reaction characteristics. The functionalization of the inner channel
can also occur through reprocessing of inner walls. In such cases, the surface acts as a platform for the functional
materials. Apart from this, several other pore-filling methods, such as dip coating and dynamic coating, have been
used to attach the functional elements to inner nanochannel walls [29].

Espinoza et al. in 2014 created functionalized nanochannels in track-etched PET foils through grafting poly-
merization of glycidyl methacrylate [13]. Such engineering can also be used to alter the size of the nanochannels.
Choi et al. in 2019 reduced the nanochannel pore size using the polymer reflow process to achieve 6 nm pores from
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10 nm pores [37]. Choi et al. in 2020 tuned the size of the nanochannels using the chemical approach to control
fuel crossover.

4 Nanochannels for energy applications

4.1 Nanochannels for gas separation applications

For the fabrication of high-performance gas separation membranes, the nanochannel environment plays a key role
[62, 63]. According to the Knudsen theory, the gas molecules are taken as the mass points and are distinguished
based on their molecular weight. However, the gases with the same molecular weight have a significant difference
in the flow rate [64]. Qian et al. in 2023 investigated the transport of polyatomic and monoatomic gas molecules
through nanochannels using molecular dynamics (MD) simulations. They further confirmed that the geometry
of gas molecules effectively influences the collisions through the pore walls and hence affects the flux through
nanochannels [65]. There are several ways to create nanochannels in dense membranes for gas separation. Awasthi
et al. in 2011 created nanochannels in 25 μm thick polyethylene terephthalate membranes using a Cl+9 ion beam of
100 MeV energy at a fluence of 107 ions/cm2 followed by etching in 6N NaOH solution for H2 separation application.
They proved that increasing etching time increased the H2 selectivity of the membranes in comparison to other
gases [66]. Ji et al. in 2023 tuned the graphene oxide nanoribbon nanochannels by adding polyethylene glycol (PEO)
polymer. The resultant membranes showed H2 permeability of 7108 Barrer and H2/CO2 selectivity of 10.8. The
gas separation performance and the permeation mechanism through the membrane are depicted in Fig. 3a, b [67].
Yuan et al. in 2021 fabricated high valence metal-induced microporous polymer (HMMP-1) @polyvinylamine mixed
matrix membranes with amine-rich nanochannels having a high preference towards CO2 gas [68]. Nanochannels
and sub-nanochannels can also be created in mixed matrix membranes (MMM) for efficient gas separation. For
example, stacking two-dimensional nanosheets parallelly with each other can create an efficient transportation
pathway for good size-sieving ability [69]. Kim et al. in 2013 prepared 3–10 nm GO on porous polyethersulfone
support to demonstrate the selective diffusion of gas molecules by controlling gas flow channels and pores via
stacking methods. Further, they were able to achieve an H2/CO2 selectivity value of 30 due to the well-interlocked
GO membranes at higher relative humidity [70]. Such GO layers can also be mixed with other polymers, such as
polyethyleneimine [71] and poly(ethylene glycol) diamines (PEGDA), to enhance the gas separation performance.
Wang et al. in 2017 reported CO2 gas separation using GO intercalated PEGDA to generate CO2-philic and non-
CO2-philic nanodomains in the interlayer channels of graphene oxide. They demonstrated high CO2 permeance of
175.5 GPU along with CO2/CH4 selectivity of 69.5 because of the proper channel size (almost 0.35 nm) exactly
between the kinetic diameter of CO2 and CH4, i.e., 0.33 nm and 0.38 nm, respectively [72]. Qiao et al. in 2016
prepared montmorillonite /polysulfone MMM with high-speed gas transport channels by aligning the interlayer
gaps to obtain a permeance of 800 GPU with good selectivity against N2, CH4, and H2 gases [73]. The nanochannels
in MMM reduce the effective diffusion path of the gas molecules [74–76].

Functionalization of nanochannels can greatly affect the transportation of gas molecules inside the membranes
by providing active sites for the smooth transportation of certain gas molecules while blocking others. Thereby,
enhancing the overall permeability and selectivity of the gases. Awasthi et al. in 2014 reported the functionaliza-
tion of track-etched polymer PET membranes using carboxyl and amino groups as shown in Fig. 3c for hydrogen
purification purposes. Their results demonstrated that amine functionalization could bind more Pd NPs as com-
pared to the carboxylic groups in the PET membranes [77]. Kamakshi et al. in 2018 functionalized nanochannels
in track-etched PET polymer membranes through a carboxylic group and further decorated them using Pd NPs.
The decorated membranes provided enhanced H2 gas with a selectivity increment of 109% and 112% towards
H2/N2 and H2/CO2 gases respectively [78]. Filling the nanochannels with other polymer material can be another
way of functionalization and increases the permeability of one gas while blocking another depending upon the
solubility of gases in the polymer i.e. low permeable gas will hardly permeate through the constrained polymer
chains while the transportation of highly condensable gases is enhanced due to high solubility coefficients as shown
in Fig. 3d [79]. Kumar et al. in 2020 functionalized the nanochannels and surface of track-etched polycarbonate
(PC) membranes using a UV irradiation process. The photo-fries mechanism of the polymer in the presence of
UV light leads to bond breaking and hence creates many active sites for the further attachment of Pd NPs. The
membrane provided enhanced H2 permeability as well as selectivity increment of 145% and 151% towards H2/CO2

and H2/N2 gas pairs as shown in Fig. 3e, f [80].
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Fig. 3 Representation of gas permeation mechanism through PEO hybridized GO nanoribbon nanochannels [67], b H2

gas separation performance of GO nanoribbon/PEO membranes [67], c schematic representation of functionalization of
track-etched nanochannels and their decoration with Pd NPs [77], d schematic representation of transportation of non-
condensable and condensable gas molecules through polymers [79], e, f gas separation performance of UV-functionalized
and Pd NPs decorated track-etched polycarbonate membranes [79]

4.2 Nanochannels for liquid filtration applications

In the realm of daily chemical production, where organic solvents are extensively employed, the separation and
purification of high-value substances like Active Pharmaceutical Ingredients (API) and High-Value Natural Com-
pounds (HVNCs) pose significant challenges [81]. To address these, nanochannel within polymer membranes rep-
resents a new frontier offering an expansive surface area within a compact space, setting up a stage to separate,
purify, and analyze liquids at the molecular and nanoparticle levels. However, the commercial ultrafiltration mem-
branes suffer from low retention and poor solvent resistance making them unsuitable for the application. Su
et al. in 2023 reported solvent-resistant C–C bonded conjugated microporous polymer @polytetrafluoroethylene
(CCMP@PTFE) composite membranes by portioning channels using space-confined polymerization strategy. The
membrane exhibited good permeability up to 80. 7 Lm−2 h−1 bar−1 towards ethanol and small dye molecules, i.e.
Chrysoidine G, Mw 249 Da as shown in Fig. 4a [82, 83].

Shi et al. in 2023 fabricated robust covalent organic polymer membranes of uniform pores of 0.7 nm diameter and
20 nm thickness on porous polyacrylonitrile substrate for organic solvent nanofiltration. Further, the membranes
showed a high ethanol permeance of 14.5 m−2 h−1 bar−1 and excellent acid fuchsin (AF) rejection of 99% as
shown in Fig. 4c, d. Further, it provided rejection rates of > 95% towards solutes with a molecular weight above
500 gmol−1 [84]. Rose et al. in 2022 reported ultra-permeable membrane fabricated using a polymer of intrinsic
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Fig. 4 a, b Nanofiltration performance of CCMP@PTFE membranes v/s dye molecules (AB: 1,4-diacetylbenzene, CG:
Chrysoidin G, FS: Fluorescein sodium, EB: Eosin B) [82], c pure solvent permeance of COP membranes as a function
of viscosity [84], d dye rejection of different molecular weight dyes using COP membranes [84], e schematic of selective
dye molecule separation mechanism through negatively charged TpPa-SO3Na membrane [89], f cycle studies of ethidium
bromide (EB’) and methylene blue (MB) rejection and permeance through TpPa-SO3Na membrane [89]

microporosity (PIM-TMN-Trip) with a high concentration of channels of small (< 0.7 nm) and large (0.7–1.0 nm)
diameter [85].

Furthermore, with the ever-increasing global demand for freshwater resources, the imperative for effective sep-
aration and purification processes has become increasingly pronounced [86]. The challenge lies not only in the
extraction of water from saline sources but also in the removal of salts and recalcitrant pollutants, notably micro-
pollutants resistant to conventional degradation methods. Elimination of these constant pollutants through tradi-
tional means is often challenging and hence necessitates advanced separation and purification technologies. The
use of innovative approaches, such as nanochannels in filtration membranes, holds great promise in accomplishing
this demand. Nanochannels, with their precisely engineered dimensions at the nanoscale, exhibit an outstand-
ing capacity to selectively filter out salts and micro-pollutants, ensuring a more efficient and sustainable means of
water purification. As the urgency to secure freshwater resources grows more pressing, the integration of nanochan-
nels in filtration technologies becomes a crucial avenue to meet the contemporary challenges associated with salt
separation and the removal of persistent pollutants from water sources. Yu et al. in 2021 used polypyrrole and
graphene oxide-based membranes for dye/water separation process. The resultant membranes provided a rejec-
tion rate of 97% towards methylene blue dye and water permeability of 21.14 Lm−2 h−1 bar−1 [87]. Wang et al.
in 2023 fabricated the carboxylated-SWCNT incorporated 1,2-dioleoyl-sn-glycrol-3-phosphocholine (DOPC) lipo-
somes @polyamide membranes for efficient filtration properties. With the water channels provided by CNTs, the
membrane exhibited an 89% flux recovery rate and 97.6% rejection to NaCl [88]. Yang et al. prepared an anionic
COF membrane through a dual-activation interfacial polymerization method for dye wastewater treatment. The
separation mechanism is shown in Fig. 4e. The membranes provided water permeability of 270 Lm−2 h−1 bar−1

along with ordered pore structure, and good chemical stability as shown in Fig. 4f [89]. Khan et al. in 2020 fabricated
PVDF/PMMA/CA membranes of uniform pore size distribution (0.030 ± 0.005 μm) through Loeb–Sourirajan
(L–S) phase inversion and etching mechanism. They utilized SiO2 NPs in the membrane matrix for the etching
purpose. The membrane showed good permeability and selectivity values along with outstanding antifouling ability
[90]. Researchers have also fabricated intelligent nanochannel membranes that are responsive to external stimuli,
such as pH, light, temperature, and electricity. Ma et al. in 2020 prepared pH-responsive hydrophilic membranes
by attaching carboxyl groups on the PVDF surface through amine group bridging. They successfully tested the
membranes for the separation of soya bean oil/water emulsion [91].

Different size of nanochannels is favored in different scenarios based on the targeted particles or molecules, flow
rates, and desired level of selectivity shown in Table 2 [92, 93]. In general, nanochannels typically in the range of
2–100 nm are used for the ultrafiltration process to filter proteins based on their molecular weights, nanochannels
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Table 2 Classification of nanochannels for various applications

Process Pore dimension Required pressure Separable substances

Reverse osmosis 0.1–1 nm 10–100 bar Monovalent salts

Nanofiltration 1–2 nm 3–20 bar Sugars, divalent salts, dissociated salts

Ultrafiltration 2–100 nm 0.1–5 bar Macromolecules, proteins

Microfiltration 100 nm–10 μm 0.1–2 bar Suspended particles, oil, large colloids, bacteria

with sizes around 50–100 nm can effectively filter out nanoparticles, bacteria and some viruses, for instance,
nanoporous membranes are used to separate waterborne pathogens from drinking water sources, nanochannels of
2–50 nm can be designed to control the release of therapeutic agents in drug delivery systems. Nanochannels of
size less than 100 nm can be used for capillary-driven fluid transportation without external pumping, polymer
membranes with such nanochannel size can be used for lab-on-a-chip devices for point-of-care diagnostics.

4.3 Nanochannels for batteries and fuel cell applications

In electrochemical devices, ion-exchange membranes are the most promising thing which provides a clean and
affordable source of energy [94, 95]. The primary requirements are low cost, less toxicity, high output, and large-
scale production. Among these, the nanochannel-based proton exchange membrane provides advantages of (i) high
proton conductivity, (ii) high mechanical strength, and (iii) working possibility at comparatively high temperatures
[96]. Hence, the advancement of these membranes and their nanochannels is required in all of the devices including
batteries, electrochemical sensors, fuel cells, and reverse electrodialysis (RED) [97]. Choi et al. in 2020 reported
sPEEK/FAA-3 membranes for controlling fuel crossover by tuning membrane nanochannel for reverse electrodial-
ysis application [9]. Prakash et al. in 2020 reported the fabrication of latent tracks in a dense PVDF membrane
using swift heavy ion irradiation of Ag+ ions and an etching process to generate nanochannels of nearly 80 nm
in size. The membrane efficiently removed the radioactive nuclide (Am3+) up to almost 80% from its solution.
Further, high exchange capacity, ion conduction, water uptake, and high sorption showed improved results due to
functionalization and control over the nanochannel dimension [10].

Polymer nanochannels are important in batteries and fuel cells due to their unique properties and functionalities,
offering several advantages that contribute to the overall improvement of these energy storage and conversion
devices.

(1) These polymer nanochannels are important because they facilitate the transport of ions between electrodes
and electrolytes, which is required for the charge/discharge process in the functioning of batteries and fuel
cells. The controllable and tunable nature of nanochannels enables the optimization of ion transport kinetics.

(2) These nanochannels help in managing the electrolyte by selectively allowing the passage of certain ions while
blocking others, thereby ensuring precise regulation of electrochemical reactions within the device.

(3) In batteries, such as lithium-ion batteries, nanochannels provide a controlled environment and hence can
prevent the formation of undesirable needle-like structures on the electrodes, called dendrites. Thus, enhancing
the safety and longevity of the devices.

In general, the polymer nanochannel-based membranes provide superiority in terms of low-cost, faster reaction
kinetics, and controllable nanofluidic processes with improved electrolyte management, but they have a certain
shortcoming to overcome before their large-scale utilization, such as low ion conductivity and stability. Most
research is focused on ion-conducting functional groups, but these are also accompanied by high ion-exchange
capacity and water uptake resulting in ion aggregation and reduction of interconnected ion nanochannels, which
reduces structure stability and ionic conductivity of the membranes [98, 99].

5 Nanochannels for biological applications

Nanochannels in polymer membranes offer numerous biological applications due to their unique properties including
size exclusion, tunable pore size, controlled transport, selectivity, flexibility, and biocompatibility [100–102]. Some
notable biological applications include:
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5.1 Drug delivery systems

The delivery of a drug in the biological system requires parameters that include drug cargo’s mechanical and
chemical stability until it reaches its target, uniform pore size that controls drug permeability, and the ease with
which the pore size can be adjusted based on the size of the drug [103]. Nanochannels in polymer membranes can
be used as efficient drug delivery systems. The controlled release of therapeutic agents through nanochannels allows
precise dosage control and sustained release, improving the efficiency of targeted drug delivery [104]. The polymeric
nanochannels offer flexibility to customize size, shape, and surface characteristics of the drug delivery systems.
Such modifications can tailor the design of carriers for specific requirements of therapeutic agents and patient’s
needs. Further, their integration into lab-on-a-chip devices propels advancements in portable and efficient drug
delivery systems, potentially reshaping point-of-care treatments. Yang et al., in 2010 reported the controlled release
of the biotherapeutics, human growth hormone (hGH) using cylindrical nanochannels prepared by self-assembly of
PS-b-PMMA block copolymers [105]. Bigham et al. in 2016 reported the delivery of ibuprofen drug using ordered
mesoporous magnesium silicate (OMMS) with uniform nanochannels [106]. Their study revealed the effect of
calcination temperature on the use of OMMS as a promising local drug delivery system for bone tissue engineering.
Dai et al. in 2022 performed molecular dynamics simulations to study the interaction of the anticancer drug
methotrexate through CNT nanochannels present in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)
membrane. They regulated the size of nanochannels and applied an electric field to investigate the translocation
behavior and dynamics of the drug [107]. In essence, nanochannels offer a sophisticated platform for redefining the
precision, efficiency, and safety of drug delivery, heralding a new era in personalized healthcare solutions.

5.2 Biosensing and diagnostics

Polymer nanochannels can be functionalized with specific molecules to obtain biosensors that can detect
biomolecules, pathogens, or specific ions, enabling applications in diagnostics, environmental monitoring, and
medical research [108]. Size and charge-based selectivity of nanochannels enable tuning of their morphology which
enhances selective transportation. The nanochannels, apart from increasing the surface area, also maximize the
binding effect and act as nanowells for biorecognition events to take place. Recently, the biosensing platform
based on solid-state nanochannels has been developed rapidly. The nano-porous membranes with tunable pore
size and well-ordered channels have been used for the efficient immobilization of biomolecules. The confined space
within nanochannels enhances the interactions between target biomolecules and sensing elements, resulting in an
improved signal-to-noise ratio. This heightened sensitivity is crucial for early disease detection and monitoring
[109]. Within the nanochannels, the detection is based upon the change in transmembrane ionic current due to
the change in surface charge and the spacing effect (blockage) of nanochannels. Such changes are very fast and
can be easily detected by measuring voltammetric or amperometric currents. Qian et al. detected Pb2+ using a
PET membrane with conical nanochannels by means of the chelation process between Pb2+ and 4’-aminobenzo-
18-crown-6. The Pb2+ was selectively sensed in ultra-low LOD of 1 × 10−15 m [110]. Liu et al. reported label-free
detection of glycan using surface modification of asymmetric PAA membrane with ion channel nanochannel. The
electrochemical detector efficiently recognized glycan in the concentration range of 10 × 10−15–10 × 10−9 m with
a LOD of ≈10 × 10−6 m [111]. Zhao et al. in 2021 detected the microRNA-21 at an ultralow detection limit of
0.5 aM via electrochemical biosensing through a complex formation in nanochannel structure [112]. Zhang et al.,
in 2022, reported the detection of short-length DNA molecules using a large size (20 nm tip diameter) conic PET
nanopore. They were successful in detecting DNA samples as low as 0.5 nM concentrations [113].

5.3 DNA analysis

DNA analysis finds its applications in numerous fields of biomedical discipline including diagnosis, early detection
of disease or infections, cancer monitoring, and many more. For instance, optical mapping provides a simple, fast,
and affordable method to study DNA molecules. However, the process requires the stretching of molecules to
generate fluorescent barcodes which can be achieved using nanochannels [114]. These nanochannels can provide
information on the genomic length of DNA molecules with good linear spatial resolution. The basic principle is
to bring the DNA molecule inside the nanochannel using electrophoretic or hydrodynamic forces. The dimensions
of the nanochannels are such that their cross section is much smaller than the radius of the gyration of DNA
molecules, while the length is much greater than the contour length of the DNA molecules, which allows for the
inspection of the entire DNA molecule upon elongation. Further, tailoring the surface chemistry and geometry
of these nanochannels through various enzymes, ligands, or specific moieties can enhance DNA capture and thus
promote single-molecule analysis. In general, the engineering of nanochannels is an innovative approach to DNA
analysis with precise control. This method allows extracting information related to length, sequence, and structural
features of DNA molecules which finds applications in numerous areas, such as DNA sequencing, genotyping, and
detection of genetic mutations [115–117].
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5.4 Protein separation and analysis

Nanochannels in polymer membranes can be utilized for the separation and analysis of proteins. This has implica-
tions for proteomics research, clinical diagnosis, drug development, and understanding of cellular processes [118].
Nanochannels with dimensions on the nanometer scale enable high-resolution separation of proteins based on size,
charge, or other specific properties. The small size of nanochannels enhances the efficiency of the separation process
and allows for rapid analysis. Their surfaces can also be functionalized with specific coatings or capture molecules
to selectively interact with target proteins. This customization enhances the specificity of protein analysis, allowing
for the isolation and detection of specific protein species [119, 120]. Li et al. reported the separation of γ-globulin
protein using nanoporous polyethersulfone (PES) membranes. The optimized membrane exhibited high surface
porosity with a uniform pore size of 20 nm. The molecular weight cut-off was observed to be as low as 100 kD
[121].

These examples showcase the diverse range of biological applications for nanochannels in polymer membranes,
highlighting their potential impact on various fields within the life sciences.

6 Ion transport through nanochannels in polymer membranes:

Despite numerous years of investigation, the intricate mechanism governing ion transport through channels remains
elusive. Among the captivating phenomena is voltage gating, which encompasses ion current rectification and
voltage-dependent fluctuations in ion current. Typically, the current alternates between two values: zero, repre-
senting a closed state, and a non-zero value, signifying an open state. The pattern of switching between these
states varies among different channels, with voltage-gated channels dependent on external voltage. Swift heavy
ion irradiation, followed by etching in polymers, yields materials that exhibit ion transport properties akin to bio-
logical channels. A diverse array of ion channels serves various functions. Notably, diode-like ion channels exhibit
a preferential direction of ion flow, significantly impeding ions moving in the opposite direction. Many channels
display high selectivity for specific ions and can be manipulated by factors, such as an electric field, molecules
bound to the membrane, or applied mechanical stress [122, 123].

Understanding the transport of solvents and solutes through membranes necessitates knowledge of membrane
characteristics, solution properties, and operating conditions. Commercial membrane characteristics are often
undisclosed, and membranes can exhibit various properties. They may be homogeneous or heterogeneous, sym-
metric or asymmetric in structure, and carry a positive, negative, or neutral charge. Transport through membranes
can be influenced by diffusion driven by individual molecules, electric fields, concentration gradients, pressure, or
temperature gradients [124].

7 Challenges in nanochannel fabrication and performance

The level of control over transport within polymer membranes has a wide range of applications, from energy
storage and water purification to biological processes like drug delivery and DNA sequencing. The manipulation
of nanochannels in polymer membranes is a field of materials science that offers great potential for various tech-
nological and scientific advancements due to their controllable structures and tunable chemical properties. The
track-etched membranes have enabled the creation of single nanopores in polymers. However, it is difficult to
position the nanopore at an exact location on the substrate which is essential during nanopore device fabrication
and integrating the nanopore devices with additional device components [37]. Also, relying on ion accelerators for
experimental endeavors is not a practical approach due to the limited availability and cost associated. Thus, it
is imperative that we explore alternative methods and technologies that can effectively address the requirements
while remaining economically and operationally viable.

New strategies for high-resolution patterning and etching can tackle the problem, several techniques, such as
micromachining and micro-powder blasting, provide high yield but they lack resolution which is required in vari-
ous chemical and biological systems. Alternatively, the nanoscale resolution can be easily achieved using electron
beam lithography and nanoimprinting techniques, but they are comparatively costly and slow. Photolithography
and soft lithography possess the advantages between these extremes [22]. However, conventional photolithogra-
phy requires certain developers and strippers that contain a certain solvent that can dissolve and degrade the
polymer material. Hence, nowadays researchers are more focused on the use of light-triggered reactions and other
non-photolithographic strategies, such as soft lithography, nanoimprint lithography, and self-assembly of block
copolymers [125].
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In the stacking of 2-D materials, the nanochannels can also be tuned by intercalating them with other materials,
for example, specific polymers having superior properties towards the application. However, producing such 2-D
materials-based membranes on a large scale with good reproducibility is a challenge [69].

8 Conclusion and future outlook

High-precision molecular selective separation for various applications, such as seawater desalination, industrial
wastewater treatment, gas separation, and concentration of high-valued products, requires a well-defined, internal
nanoscale structure of nanochannels in the membranes. The development of intelligent, next-generation nanochan-
nel membranes can advance the separation performance, and open up the possibilities in broad applications
prospects in chemical synthesis, environmental, and life sciences. This review article provides a deeper under-
standing of the creation and functionalization of nanochannels and their application in different areas. Moreover,
it also sets the guidelines on the numerous challenges to overcome for the realization of large-scale industrial
requirements.

To bridge the gap between academic research and practical and real-world application, more optimizations and
investigations are required towards special functionalities to promote the transfer of targeted penetrants.

Some future possibilities associated with the engineering of nanochannels inside the membranes can be listed
as.

1. For deeper understanding of the fundamentals and changing specific parameters inside nano-confined channels,
more efforts are required in modeling the kinetics and thermodynamics of the mass transfer and reaction
process.

2. More research efforts are required to construct nanochannels of uniform shape and morphology while main-
taining the long-term stability of the structure.

3. Since the comprehensive performance of the nanochannel membrane under industrial operational conditions
will be more sensitive, hence, to bridge the gap between the ideal and practical conditions, the interest in real
systems must be enhanced over the lab-scale models.
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