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Abstract In the present paper, we consider single traveling waves (STW) generated by the oscillatory
instability of Marangoni convection in the thin non-isothermal liquid layer with deformable free surface.
The layer is covered by insoluble surfactant that plays an active role in the pattern selection together with
inhomogeneity of temperature along the interface and surface deformability. Using the weakly nonlinear
analysis we derived the modified complex Ginzburg–Landau equation describing the large-scale distortions
of STWs near the bifurcation point. Linear stability analysis reveals existence of two modulational modes:
one is for the amplitude and another one for the phase (Benjamin–Feir). Numerically, we found that STWs
are stable with respect to longitudinal modulations in the case without surfactant. In the presence of the
insoluble surfactant both modulational modes are found. The stability maps for different values of the
surfactant concentration are plotted.

1 Introduction

Pattern formation is a very common phenomenon that is seen in many natural systems from the desert sand ripples
to fascinated shapes of snowflakes. A wide variety of patterns are found in physical systems, including chemically
active media, liquid interfaces, liquid crystals, etc. [1–4]. In many processes, such as crystal growth, paint drying,
wetting processes and in other phenomena studied by thin film physics, the pattern formation relates to Marangoni
effect [5–8]. The patterns grow beyond the instability threshold characterized by the critical wavenumber kc and,
in the case of oscillatory instability, by the critical frequency ωc [9]. Two sorts of patterns are possible, stationary
ones and oscillatory ones. The most widespread patterns in the first group are hexagons, rolls, and squares. Wave
patterns, like single traveling waves (STWs), are typical for the second group.

Recently, an interest in Marangoni patterns was stimulated by the work of Shklyaev et al. [10]. The authors
showed that long-wave disturbances with wavenumber k ∼ O(Bi1/2) (Bi � 1 is the Biot number, ratio of heat
transfer resistances inside and at the surface of the liquid) in a heated from below thin liquid layer can form
stationary and wave periodic structures. In this paper we explore the action of an additional factor, insoluble
surfactant spread over liquid interface, that can significantly modify the onset of Marangoni convection, as well as
behavior of periodic structures. In extended systems, the periodicity of structures can be distorted by disturbances
with wavenumbers close to the critical one, kc, [11, 12]. Earlier, [13, 14], we considered modulation of stationary
patterns using the Newell–Whitehead–Segel approach [15, 16]. The result of the modulation of stationary patterns
is the appearance of the Eckhaus instability.

In the present paper, we analyze the Marangoni convection that occurs in a thin liquid layer on a heated
substrate with small heat conductivity. The upper liquid surface is deformable and covered by insoluble surfactant.
Unlike the problem studied in [17], the considered problem contains three active variables: deviation of the flat
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surface, perturbation of the temperature field and distribution of surfactant concentration. In the region of the
parameters characterized by the oscillatory instability of the conductive state, we investigate the propagation of
a modulated one-dimensional traveling wave (STW). We obtain the corresponding complex Ginzburg–Landau
equation (CGLE) modified due to the presence of the surfactant. It leads to the change of the criterion for
the appearance of longitudinal phase-modulation (Benjamin–Feir) instability, as well the appearance of a new,
amplitude–modulation, instability.

The structure of the paper is as follows. Section 2 describes the underlying physical problem. Unmodulated
one-dimensional traveling wave is considered in Sect. 3. The modulation of STW is considered in Sect. 4. Here we
present the derivation of the modified CGLE. Analysis of modulational STW instability is performed in Sect. 5.
In Sect. 6 the influence of the insoluble surfactant is discussed, followed by Sect. 7 with conclusions.

2 Problem formulation

We consider an infinite thin horizontal liquid layer with a mean thickness d0, thermal diffusivity χ, kinematic
viscosity ν, density ρ, dynamic viscosity η = ρν, and thermal conductivity Λ, confined between a deformable
free upper surface on the top and a solid substrate on the bottom. The layer is heated from below with transverse
temperature gradient −a(a > 0). At the upper surface the liquid is covered by the insoluble surfactant. It is
advected by interfacial velocity field and diffuses over the interface but not into the bulk. The reference value
of the surfactant concentration is Γ0. The surface tension is a linear function of the temperature and surfactant
concentration, σ = σ0 − σ1(T − T0) − σ2(Γ − Γ0) (σ0 is the reference value of the surface tension, σ1 = −∂T σ,
σ2 = −∂Γσ, T0 is reference value of temperature at the surface in the absence of convection.)

The problem has the following governing parameters: M = σ1ad2
0/ηχ is the Marangoni number, N = σ2d0Γ0/ηχ

is the elasticity number, L = D0/χ is the Lewis number (D0 is the surface diffusivity), G = gd3
0/νχ is the Galileo

number, Σ = σ0d0/ηχ is the inverse capillary number, and Bi = qd0/Λ is the Biot number (q is the heat transfer
coefficient). The Biot number is defined as the ratio of heat-transfer resistances inside of and at the surface of the
liquid.

Recently, Shklyaev et al. [10] showed that the interaction of temperature disturbances and surface deformations
can generate large-scale monotonic and oscillatory instabilities in the case of poor heat transfer, Bi � 1, and
strong surface tension, Σ ∼ Bi−1 � 1. The interval Δk of perturbation wavenumbers where the instability can
appear, is O(Bi1/2). Therefore, the ratio between the mean thickness of the liquid d0 and the typical horizontal
scale of disturbances ε ∼ Bi1/2 � 1. The appropriate scaling of Bi and Σ is Σ = ε−2S, Bi = ε2β, where S = O(1)
and β = O(1). The influence of insoluble surfactants on those instabilities was formerly considered in [13, 14, 18].

The system of equations describing a long-wave Marangoni convection in the liquid layer covered by insoluble
surfactant was derived in [18]. That system governs the evolution of the local film thickness H(X, Y , τ), the
surfactant concentration Γ(X, Y , τ) and the temperature perturbation F (X, Y , τ):

∂τH = ∇ · J1, J1 =
(

H3

3
∇R +

MH2

2
∇θ +

NH2

2
∇Γ

)
(1)

∂τΓ = ∇ · J2, J2 = ΓH

(
H

2
∇R + M∇θ + N∇Γ

)
+ L∇Γ, (2)

H∂τF = ∇ · (H∇F ) − 1
2
(∇H)2 − βθ + J1 · ∇θ + ∇ ·

(
H4

8
∇R +

MH3

6
∇θ +

NH3

6
∇Γ

)
, (3)

where X , Y are new spatial coordinates (X = εx, Y = εy), τ is the rescaled temporal coordinate (τ = ε2t),
R = GH − S∇2H is the pressure disturbance and θ = F − H is the temperature disturbance at the free surface,
∇ = (∂X , ∂Y ). This system of equations (1)–(3) describes following effects: in the right-hand side of (1) damping
of the surface deflection due to gravity, surface tension and influence of both thermocapillary and solutocapillary
flows on the thickness of the layer; the first term in the right-hand side of (3) relates to heat conductivity in the
longitudinal direction, the second term describes the enhancement of heat flux due to the growth of the surface
area by the surface deformation, the third term is responsible for heat losses from the surface, other terms describe
the advective heat transfer by the flow. The Eq. (2) for the surfactant concentration was in details described in
our work [19].

The linear stability analysis of (1)–(3) around the base state solution H0 = 1, F0 = 1, and Γ0 = 1 was performed
in [18], where the existence of two instability modes, monotonic one and oscillatory one, was shown. For rescaled
wavenumbers K = ε−1k, the influence of the insoluble surfactant on the monotonic (Mm) and oscillatory (Mo)
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neutral curves, respectively is described by formulas:

Mm =
(48 + 12N/L)(G + K2S)(β + K2)

K2(72 + G + K2S)
(4)

and

Mo =
12

(
β + K2 + iω0

)[
4iK2ω0

(
G + K2S + 3(L + N)

)
+ K4(4L + N)

(
G + K2S

) − 12ω2
0

)
K2(K2L + iω0)((G + 72)K2 + K4S + 48iω0)

. (5)

The frequency of neutral oscillations is determined by the formula:

ω2
0 =

1
288

(−K4
[
G2 − 9G(N − 3) +72(2L(L + N) + N + 3) − 45βS]

+K6S(9(N − 3) − 2G) + 9βK2(5G + 16N − 24) −K8S2 +
√

D1

)
, (6)

where

D1 =[K4(G2 − 9G(N − 3) + 72(2L(L + N) + N + 3) − 45βS) + K6S(2G − 9N + 27)

− 9βK2(5G + 16N − 24) + K8S2]2 − 144K6{K4S[4(2G + 27)L2 + 2(G + 18)LN

− N(2G + βS + 72)] + K2[4L2(G(G + 27) − 45βS + 216) + LN(G(G + 36) − 36βS + 864)

− N(2β(G + 36)S + G(G + 72))] − β[36(5G − 24)L2 + 36(G − 24)LN + G(G + 72)N ]

+ K6S2(4L2 + (L − 1)N)}. (7)

Marginal stability curves for different parameters are published in [18].

3 Unmodulated 1D STW

Let us consider the nonlinear dynamics in the vicinity of the oscillatory neutral curve, i.e., take

M = Mo + δ2M2,

where the small parameter δ denotes a small deviation from the critical value of Mo.
Near the convection threshold we can expand the fields as

(H, F , Γ) = (1, 1, 1) + δ(h1, f1, γ1) + δ2(h2, f2, γ2) + · · · , ∂τ = ∂τ0 + δ2∂τ2 + · · · . (8)

Here, we introduce two different time scales. The “fast” time, τ0, relates to the oscillation frequency ω0, and the
“slow” one, τ2 corresponds to the low growth rate proportional to M − M0.

At the leading order, a single traveling wave (STW) is described by the following formula, that is

(h1, f1, γ1)

= (A(τ2), α1A(τ2), α2A(τ2))eiKX+iΩ0τ0 + c.c., (9)

“c.c.” means complex-conjugate terms, and

α1 = −GK2 + K4S − 72β − 24iω0

72(K2 + β + iω0)
, (10)

α2 =
GK2 + K4S + 12iω0

6K2L + 6iω0
. (11)
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Fig. 1 Domain of
oscillatory instability
without surfactant, [10].
The dashed line is the
boundary between
subcritical STW (above the
line) and supercritical STW
(below the line)

The temporal evolution of the STW amplitude near the convection threshold is governed by the amplitude equation,
see [18]:

∂τ2A = κ0A + κ1|A|2A. (12)

Here, κ0 = κ0, r + iκ0, i is the linear complex growth rate and κ1 = κ1, r + iκ1, i is the complex Landau constant.
The sign of κ1, r determines the type of Hopf bifurcation (for a direct one κ1, r < 0-supercritical bifurcation and
for an inverse one κ1, r > 0-subcritical one).

Later on, we consider the oscillatory mode of instability near the threshold of convection M c
o at critical wavenum-

ber Kc and frequency ωc = ω0(Kc). Thus, M = M c
o +δ2M2. The critical wavenumber for oscillatory instability Kc

is found by minimizing the Marangoni number for this instability, (5), with respect to wavenumber. In the case
without surfactant the critical wavenumber was calculated in [10] and it equals Kc = (3β)1/4, but surfactant can
change the value of critical wavenumber. Thus, it was recalculated for each value of N . The value of the Lewis
number has a significant limitation and for all our calculation is taken at fixed value as L = 0.003, [14]. Without
loss of generality, we also fix for the calculation the inverse capillary number, S = 1, which corresponds to the
definition of parameter ε as ε = Σ−1/2. The results, which demonstrate the influence of surfactant concentration,
are presented in the form of stability maps in the plane (G, β) for different values of the elasticity number. Figure 1
presents the domain of oscillatory instability for case without surfactant, [10]. The dashed line marks the boundary
between subcritical and supercritical STWs.

Stability maps for different values of the elasticity number N will be presented in Sect. 6.
The results of our calculations can be presented in dimensional form if we take the following typical values of

the physical parameters (in SI): kinematic viscosity ∼ 10−6, density of liquid ∼ 103, thermal diffusivity ∼ 10−7,
surface tension ∼ 10−2−10−1, heat transfer coefficient ∼ 102−103, surface diffusion coefficient ∼ 10−9. It is
known, [20], that low-molecular-weight surfactants in emulsions and foams form monolayers with low elasticity
number N < 1.

4 Modulation of wave patterns

In order to consider longwave spatial modulations of a traveling wave, we introduce two spatial coordinates:
X0 corresponds to the pattern scale and X1 = δX corresponds to the scale of pattern modulation due to the
superposition of Fourier components within and around the instability region. For the temporal coordinate we
introduce τ0 = τ , τ1 = δτ , τ2 = δ2τ , i.e., ∂τ = ∂τ0+δ∂τ1+δ2∂τ2+· · · . Note that ∂XX = ∂X0X0+2δ∂X0X1+δ2∂X1X1 .
The variables (H, F , Γ) near the threshold can be presented as shown in (8).

At the leading order, the system of linear stability problem is recovered, which can be written:

∂h1

∂τ0
− ∂X0X0

(
1
3
R1 +

Mo

2
θ1 +

N

2
γ1

)
= 0, (13)

∂γ1

∂τ0
− ∂X0X0

(
1
2
R1 + Moθ1 + (N + L)γ1

)
= 0, (14)

∂f1

∂τ0
− ∂X0X0

(
1
8
R1 +

Mo

6
θ1 +

N

6
γ1 + f1

)
+ βθ1 = 0. (15)
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The solution can be written in the form of a modulated STW:

h1 = A(X1, τ1, τ2)ei(KcX0+ωcτ0) + c.c.,

f1 = α1(Kc)A(X1, τ1, τ2)ei(KcX0+ωcτ0) + c.c.,

γ1 = α2(Kc)A(X1, τ1, τ2)ei(KcX0+ωcτ0) + c.c. (16)

At the second order of δ, we obtain

∂h2

∂τ0
− ∂X0X0

(
1
3
R2 +

Mo

2
θ2 +

N

2
γ2

)

= −∂τ1h1 + ∂X0(h1∂X0R1 + Moh1∂X0θ1 + Nh1∂X0γ1) + ∂X0X1

×
(

2
3
Gh1 − 4

3
S∂X0X0h1 + Mo(f1 − h1) + Nγ1

)
, (17)

∂γ2

∂τ0
− ∂X0X0

(
1
2
R2 + Moθ2 + (N + L)γ2

)

= −∂τ1γ1 + ∂X0

(
(h1 +

γ1

2
)∂X0R1

+ Mo(h1 + γ1)∂X0θ1 + N(h1 + γ1)∂X0γ1

)

+ ∂X0X1

(
Gh1 − 2S∂X0X0h1

+ 2Mo(f1 − h1) + 2(N + L)γ1

)
, (18)

∂f2

∂τ0
− ∂X0X0

(
1
8
R2 +

Mo

6
θ2 +

N

6
γ2 + f2

)
+ βθ2

= −∂τ1f1 − h1∂τ0f1 + ∂X0(h1∂X0f1)

− 1
2
(∂X0h1)2 +

(1
3
∂X0R1 +

Mo

2
∂X0(f1 − h1)

+
N

2
∂X0γ1

)
∂X0(f1 − h1)

+ ∂X0

(h1

2
∂X0R1 +

Moh1

2
∂X0(f1 − h1)

+
Nh1

2
∂X0γ1

)
+ ∂X0X1

(
2f1 +

G

4
h1

− S

2
∂X0X0h1 +

Mo

3
(f1 − h1) +

N

3
γ1

)
. (19)

Here, the solvability condition yields a wave equation for the envelope function A:

∂τ1A = ω1∂X1A, (20)

where ω1 is a group velocity. The expression for the group velocity is given in the Appendix.
Introducing the reference frame moving with velocity ω1, we can write for the amplitude function:

A = A(X̃1, τ2, . . .), X̃1 = X1 + ω1τ1.

Later on, the tilde will be omitted.
Solution at the second order in case of modulation can be written in the form:

h2 =a22A
2e2i(KcX0+ωcτ0) + h20(X1, τ2) + c.c., (21)

f2 = b21
∂A

∂X1
ei(KcX0+ωcτ0) + b22A

2e2i(KcX0+ωcτ0) + b20|A|2+c.c., (22)

γ2 = c21
∂A

∂X1
ei(KcX0+ωcτ0) + c22A

2e2i(KcX0+ωcτ0) + γ20(X1, τ2) + c.c. (23)
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The coefficients b20, b21, and a21 can be found as

b20 = −K2
c

β
, (24)

b21 = −i

(
∂α1

∂k

)
Kc

=
2iKc(K4

c S + (72 + G + 2K2
c S)β) − 2Kc(24 + G + 2K2

c S)ωc + (K2
c (24 + G + K2

c S) − 48β)ω1

72(K2
c + β + iωc)2

(25)

c21 = −i

(
∂α2

∂k

)
Kc

=
Kc(−2iK4

c LS + 2(G − 12L + 2K2
c S)ωc − Kc(G − 12L + K2

c S)ω1)
6(K2

c L + iωc)2
. (26)

The expressions for coefficients a22, b22, and c22 are more complicated and presented in the Appendix.
For h20, we obtain at the third order of δ the following equation:

ω1∂X1h20 = iKc[Mo(α1 − α∗
1) + N(α2 − α∗

2)]∂X1 |A|2. (27)

Integrating (27), we find

h20 =
iKc

ω1
[Mo(α1 − α∗

1) + N(α2 − α∗
2)]|A|2+C1(τ2) = ch|A|2+C1(τ2). (28)

Here

ch =
Kcωc

3ω1

(
K2

c N(G − 12L + K2
c S)

K4
c L2 + ω2

c

−Mo((G + 24)K2
c + K4

c S − 48β)
12((K2

c + β)2 + ω2
c )

)
.

Averaging the value of h20 over all region X1 and taking into account the conservation of the liquid’s volume, we
find that the variable h20 can be written as follows:

h20(X1, τ2) = ch

(|A|2−〈|A|2〉X1

)
. (29)

The similar method can be applied to determine γ20(X1, τ2) as

γ20 = − iKc

2ω1

[
(G − 2N + K2

c S)(α2 − α∗
2) +2Mo(α∗

1 + α∗
2 − α1(1 + α∗

2) − α2(1 − α∗
1)]|A|2+C2(τ2)

= cγ |A|2+C2(τ2), (30)

where

cγ = − Kcωc

216(K4
c L2 + ω2

c )ω1

(
36K2

c (G − 12L + K2
c S)(G − 2N + K2

c S) +
D3Mo

(K2
c + β)2 + ω2

c

)
,

D3 =K10
c (L − 1)S2 + G2K4

c [K2
c (L − 1) − β]

− 288K4
c (L − 3)Lβ + K8

c S[−72 + 6L(L + 6) − Sβ]

+ 36K6
c [4L(L + 6) − (L + 2)Sβ] + 2GK4

c [K4
c (L − 1)S

− 18(L + 2)β + K2
c (−36 + 3L(L + 6) − Sβ)]−

− 30GK2
c ω2

c + 6[24K2
c (4L + 3) − 5K4

c S − 144β]ω2
c , (31)

and finally

γ20(X1, τ2) = cγ

(|A|2−〈|A|2〉X1

)
. (32)

The solvability condition at the third order of δ gives us the equation for the envelope function A(X1, τ2) containing
terms with h20 and γ20 as in case described in [14]:

∂τ2A = κ0A + κ1|A|2A + μ̃1∂X1X1A + μ̃2h20A + μ̃3γ20A. (33)
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The traveling wave bifurcates at Kc in a supercritical way, i.e., into the region where κ0, r > 0, if κ1, r < 0, hence
−κ0, r/κ1, r > 0. At the point Kc the growth rate of the linear instability has a maximum; therefore, μ̃1r > 0.

Using the expressions for surface distortion h20 and distribution of the surfactant concentration we can rewrite
the amplitude equation as

∂τ2A = κ0A + κ1|A|2A + μ̃1∂X1X1A + κ̃1(|A|2−〈|A|2〉)A, (34)

where κ̃1 = μ̃2ch + μ̃3cγ . Coefficients in Eq. (34) are complex.
Making the rescaling as

A = a

√
−κ0, r

κ1, r
eiκ0, iτ2 , ∂τ2 = κ0, r∂t, ∂X1 =

√
κ0, r

μ̃1, r
∂x (35)

we obtain the standard form of the modified CGLE:

∂ta = a − (1 + iv)|a|2a + (1 + iu)∂xxa + (wr + iwi)(|a|2−〈|a|2〉x)a (36)

with

v = κ1, i/κ1, r, u = μ̃1, i/μ̃1, r,
wr = κ̃1, r/κ1, r, wi = κ̃1, i/κ1, r. (37)

5 Linear stability of STW

Let us consider the 1D traveling wave in the form:

a(x, t) = r(x, t) exp(iφ(x, t)).

Substituting this form of STW into Eq. (36) we obtain a system of two equations for real amplitude a(x , t) and
real phase φ(x, t):

∂tr = r − r3 + ∂xxr − u(2∂xr∂xφ + r∂xxφ) − r(∂xφ)2 + wr(r2 − 〈r2〉x)r, (38)

r∂tφ = −vr3 + 2∂xr∂xφ + u(∂xxr − r(∂xφ)2) + r∂xxφ + wi(r2 − 〈r2〉x)r. (39)

Let us consider the stability of the TW solution with the amplitude independent of x (i.e., the TW with the
wavenumber equal to Kc):

r0 = 1, φ0 = −vt. (40)

Linearizing system (38)–(39) around solution (40) for small disturbances (r̃, φ̃) ∼ eλt+iqx, (q �= 0) we obtain the
equation for the growth rate λ:

λ2 + 2(1 − wr + q2)λ + q4(1 + u2) + 2q2[1 − wr + u(v − wi)] = 0. (41)

That equation has two roots. In the limit |q|� 1, the first one describes the amplitude mode: λ = 2(wr −1)+O(q2)
and the second one is the phase mode: λ = q2

(
1−wr+u(v−wi)

wr−1

)
. Thus, the stability conditions with the longitudinal

disturbances are

wr < 1, 1 − wr + u(v − wi) > 0. (42)

For the standard CGLE (w = 0) the criterion of phase modulation (Benjamin–Feir) instability, 1 + uv < 0,
coincides with the classic result of Yamada and Kuramoto [21].
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6 Influence of insoluble surfactant

Without the surfactant STW is stable with respect both amplitude and phase modulation. The same result was
obtained in [17]. Addition of the surfactant changes the position of the boundary between the supercritically
excited STWs (this region is denoted as “STW” on the (G, β)-stability map) and the subcritically excited ones,
denoted as “sub.STW” region on the map. Only “STW”-region, where κ1, r < 0, is actual for our consideration,
because is a region of stability of traveling rolls. Figure 2 shows how these boundaries for the three different values
of the surfactant concentration N = 0.01 (blue one), N = 0.1 (red one), and N = 0.5 (purple one). It is shown
that the region of subcritical bifurcated STW shrinks when the surfactant concentration increases.

To find the regions stable with respect to amplitude and phase modulation we calculate the coefficients wr,
wi, u, , and v using the parameters of the problem for the domain of the stable traveling rolls (region “STW”
on the stability map) at different values of the elasticity number N . Figure 3 on two panels (a) and (b) depicts
the domains of stable traveling rolls at N = 0.01 [panel (a)] and N = 0.1 [panel (b)]. As we see in both these
cases exist both regions: the region of amplitude modulational instability marked as “AM” and the region of phase
modulational instability (Benjamin–Feir instability) marked as “BF”.

Fig. 2 Domain of oscillatory instability for different values of surfactant concentration. The dashed line is the boundary
between subcritical STW, marked as “sub.STW” (above the line) and supercritical STW, marked as “STW” on the map
(below the line). Blue, red, and purple lines correspond to N = 0.01, N = 0.1, and N = 0.5, respectively

Fig. 3 Domains of stability
for traveling rolls for
longitudinal modulation for
different values of
surfactant concentration.
The dashed line is the
boundary between
subcritically excited (“sub.
STW”) and stable STWs,
marked as “STW” on the
map. Panel a: N = 0.01,
panel b: N = 0.1.
Amplitude modulational
instability and phase
modulation
(Benjamin–Feir) instability
marked as “AM” and “BF”,
respectively
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Note, that earlier the modulational instability was studied only in the framework of the CGLE and the phase
modulation instability was discussed only. Thus, this work, together with the paper [17], for the first time demon-
strates the appearance of the amplitude modulation instability as a result of the interaction with the stable soft
modes.

7 Conclusion

In the present paper, we analyzed the influence of the insoluble surfactant on the modulation instability of large-
scale Marangoni convection. Applying the weakly nonlinear analysis we derived a set of the CGLE-like equations
for the amplitude of stable wave patterns that described the interaction of three active variable of the problem:
amplitude of the wave pattern a, surface thickness deflection h and perturbations of the surfactant concentration
γ. Near the threshold point of the oscillatory Marangoni convection onset, the linear analysis of the modulation
instability of the stable traveling waves was performed. Two possible modes of instability have been revealed,
the phase modulation (Benjamin–Feir) instability and the amplitude modulation instability. The criteria of their
existence have been found. We reproduced the results of [17] showing that without a surfactant, the traveling
waves are stable with respect to modulation. In the presence of the surfactant, both kinds of instabilities were
found numerically in a tiny range of parameters at two values of the elasticity number (N = 0.01 and N = 0.1).
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Appendix A

ω1 = D11/D10 (A1)

D11 = −ik{3K2
c M0(K2

c L + iω0)[24α1 + 3G + 6K2
c S + 4(α1 − 1)Mo + 4α2N ]

− 2(K2
c (Mo + 6) + 6(β + iω0))[GK2

c (4L + N) + 4iGω0 + 2K4
c S(4L + N)

+ K2
c (6(α1 − 1)LMo + 8iSω0) + 6iω0((α1 − 1)Mo + α2N)] + 2K4

c MoN(G + 2K2
c S − 6α2L)},

D10 = 6{(α2 − 2)K4
c MoN − 6α1K

2
c Mo(K2

c L + iω0) + (K2
c (Mo + 6)

+ 6(β + iω0))(K2
c (2(L + N) − α2N) + 2iω0)}.

a22 =
D21 + ωcD22 + ω2

cD23

D00 + D01ωc + D02ω2
c + 36iω3

c

, (A2)

D23 = −18k2[2G + 2(K2
c S + α2N) + (α1 − 2)Mo],

D22 = 3iK2
c [6βG + 2GK2

c (12L − α1Mo − 3α2N + 6N + 12) + 2K4
c S(12L − α1Mo − 3α2N + 6N

+ 12) + K2
c (3Mo(4α1(L + N + 1) − 8L − 4N − 7) + 12α2N(2L − α2N + N + 2) + ((4 − 3α1)α1 − 1)

× M2
o + (13 − 15α1)α2MoN + 6βS) + 6β((α1 − 1)Mo + α2N)],

D21 = 3K4
c [−4GK2

c (L(α1Mo − 12) + 3(α2 − 2)N) + 12βGL − 3(α2 − 2)βGN

− 4K4
c S(L(α1Mo − 12) + 3(α2 − 2)N) − 2K2

c LMo((α1 − 1)(3α1 − 1)Mo + 3α1(α2N − 4)

− α2N + 21) + 48α2K
2
c LN + 12βK2

c LS − 24(α2 − 1)K2
c N((α1 − 1)Mo + α2N) − 3(α2 − 2)βK2

c NS

+ 6β(2L − α2N + N)((α1 − 1)Mo + α2N)],

D00 = 2K6
c [GL(Mo − 48) − 12GN + 4K2

c S(L(Mo − 48) − 12N) + 72LMo] − 6βK4
c (4L + N)(G + 4K2

c S),

D01 = −iK2
c [K2

c (G(48L − Mo + 12N + 48) + 4K2
c S(48L − Mo + 12N + 48) − 48L(Mo − 3)

− 72(Mo − 2N)) + 12β(G + 4K2
c S + 3(L + N))],

D02 = 24K2
c (3 + G + 3L − Mosc + 3N + 4K2

c S) + 18β,
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b22 =
D31 + D32ωc + D33ω

2
c − 36iα1ω

3
c

2(D00 + D01ωc + D02ω2
c + 36iω3

c )
, (A3)

D31 = K4
c [G2K2

c (4(4α1 − 1)L + N(4α1 + α2 − 2)) + G(5K4
c S(4(4α1 − 1)L + N(4α1 + α2 − 2))

+ 2K2
c (6L(8α1 + α1(2α1 − 5)Mo + Mo + 2α1α2N − α2N − 2) + N(12α1

+ (3α1 + α2 − 2)((α1 − 1)Mo + α2N) − 3)) + 18β(4L − (α2 − 2)N)) + 4K6
c S2(4(4α1 − 1)L

+ N(4α1 + α2 − 2)) + 8K4
c S(3L(16α1 + (α1(4α1 − 7) + 2)Mo + 4α1α2N − 2α2N − 4)

+ N(12α1 + (3α1 + α2 − 2)((α1 − 1)Mo + α2N) − 3)) + 6K2
c (−2LMo(12α1 + 3α2

1Mo

− 4α1Mo + Mo + (3α1 − 1)α2N − 3) + 12βLS − 3(α2 − 2)βNS)
+ 36β(2L − α2N + N)((α1 − 1)Mo + α2N)],

D32 = 2iK2
c [(4α1 − 1)G2K2

c + 18βG + 5(4α1 − 1)GK4
c S + 3GK2

c (8α1 + 4(3α1 + 2)L

+ α1(2α1 − 5)Mo + Mo + N(2α1(α2 + 3) − 3α2 + 4) − 2) + 4(4α1 − 1)K6
c S2

+ 12(9α1 + 2)K4
c LS + 6K4

c S(16α1 + (α1(4α1 − 7) + 2)Mo + N(4α1α2 + 6α1 − 3α2 + 2) − 4)

+ 3K2
c (6L(4α1 + ((α1 − 2)α1 − 1)Mo + (α1 + 1)α2N − 1) + ((4 − 3α1)α1 − 1)M2

o

+ Mo(−12α1 + N(α1(6α1 − 7α2 − 4) + 5α2 − 2) + 3) + 2N(3α1(α2N + 4)
+ α2(1 − 2α2)N − 3) + 6βS) + 18β((α1 − 1)Mo + α2N)],

D33 = 6K2
c [−2(3α1 + 2)G − 2(9α1 + 2)K2

c S − 3(4α1(L + N + 1) + ((α1 − 2)α1 − 1)Mo

+ (α1 + 1)α2N) + 3],

c22 =
D41 + D42ωc + D43ω

2
c

2(D00 + D01ωc + D02ω2
c + 36iω3

c )
, (A4)

D41 = −K4
c (−12(α2 − 1)βG2 + G2K2

c (Mo(4α1 + α2 − 2) − 48(α2 − 1))

+ 5GK4
c S(Mo(4α1 + α2 − 2) − 48(α2 − 1)) + 2(α1 − 1)GK2

c M2
o (3α1

+ α2 − 2) + 2GK2
c Mo(3α1(α2(N − 16) + 12) + α2((α2 − 2)N + 84) − 99) + 48α2(1 − 2α2)GK2

c N

− 60(α2 − 1)βGK2
c S + 12(1 − 2α2)βG((α1 − 1)Mo + α2N) + 4K6

c S2(Mo(4α1 + α2 − 2) − 48(α2 − 1))

+ 8(α1 − 1)K4
c M2

o S(3α1 + α2 − 2) + 8K4
c MoS(3α1(α2(N − 16) + 12) + α2((α2 − 2)N + 57) − 45)

+ 192α2(1 − 2α2)K4
c NS − 48(α2 − 1)βK4

c S2 + 48K2
c ((α1 − 1)Mo

+ α2N)(3(α2 − 1)Mo + (1 − 2α2)βS)),

D42 = 6iK2
c [4(α2 − 1)G2K2

c + 3(α2 + 2)βG + 2GK2
c (2(5(α2 − 1)K2

c S + α2(2α2N − N + 3) + 6)

+ Mo(α1(4α2 − 5) − 6α2 + 6)) + 16(α2 − 1)K6
c S2 + 4K4

c S(Mo(8α1α2 − 7α1 − 9α2 + 6)

+ α2(8α2N − 4N + 3) + 6) + K2
c (−2(α1 − 1)M2

o (3α1 + 4α2 − 5) − 2Mo(α2(3α1(N − 4) − 5N + 12)

+ 4α2
2N + 9) + 24α2(α2 + 1)N + 3(α2 + 2)βS) + 6(α2 + 1)β((α1 − 1)Mo + α2N)],

D43 = −36K2
c [2Nα2(α2 + 1) + (G + K2

c S)(α2 + 2) + 2Mo(α2(α1 − 1) − 1)].

References

1. J.P. Gollub, J.S. Langer, Pattern formation in nonequilibrium physics. Rev. Mod. Phys. 71, S396–S403 (1999). https://
doi.org/10.1103/RevModPhys.71.S396

2. L. Pismen, Patterns and Interfaces in Dissipative Dynamics (Springer, Berlin, 2006)
3. M. Cross, H. Greenside, Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge University Press,

Cambridge, 2009)
4. Ph. Ball, Patterns in Nature: Why the Natural World looks Way It Does (The University of Chicago Press, Chicago,

2016)
5. M. Maillard, L. Motte, A.T. Ngo, M.P. Pileni, Rings and hexagons of nanocrystals: a Marangoni effect. J. Phys. Chem.

B 104, 11871–11877 (2000). https://doi.org/10.1021/jp002605n
6. K. Eckert, M. Acker, R. Tadmouri, V. Pimienta, Chemo-Marangoni convection driven by an interfacial reaction: pattern

formation and kinetics. Chaos 22, 037112 (2012). https://doi.org/10.1063/1.4742844

123

https://doi.org/10.1103/RevModPhys.71.S396
https://doi.org/10.1021/jp002605n
https://doi.org/10.1063/1.4742844


Eur. Phys. J. Spec. Top. (2024) 233:1539–1549 1549

7. H. Uchiyama, T. Matsui, H. Kozuka, Spontaneous pattern formation induced by Bénard–Marangoni convection for
sol-gel-derived titania dip-coating films: effect of co-solvents with a high surface tension and low volatility. Langmuir
31, 12497–504 (2015). https://doi.org/10.1021/acs.langmuir.5b02929

8. S. Shklyaev, A. Nepomnyashchy, Longwave Instabilities and Patterns in Fluids (Birkhaüser, New York, 2017)
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