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Abstract We study a binary mixture of disk-shaped active run and tumble particles (RTPs) and pas-
sive particles on a two-dimensional substrate. Both types of particles are athermal. The particles interact
through the soft repulsive potential. The activity of RTPs is controlled by tuning their tumbling rate.
The system is studied for various sizes of passive particles keeping size of RTPs fixed. Hence the vari-
ables are, size ratio (S) of passive particles and RTPs, and the activity of RTPs, v . The characteristic
dynamics of both RTPs and passive particles show a crossover from early-time superdiffusive to later-time
diffusive. Furthermore, we observed that passive particles dynamics changes from diffusive to subdiffusive
with respect to their size. Moreover, late time effective diffusivity Deff of passive particles decreases with
increasing their size as in the corresponding equilibrium Stokes systems. We calculated the effective tem-
peratures, using Deff , Ta, eff (Δ) and also using speed distribution Ta, eff (v) and compared them. The
both Ta, eff (Δ) and Ta, eff (v) increases linearly with activity and are in agreement with each other. Hence
we can say that an effective equilibrium can be established in such a binary mixture. Our study can be
useful to study the various biological systems like; dynamics of passive organelles in cytoplasm, colloids
etc.

1 Introduction

In the recent years, researchers have paid lots of attention in the field of active matter [1–6] because of their unusual
properties in comparison to their equilibrium counterparts. Examples of active systems range from microscale such
as bacterial colonies, cell suspension, artificially designed microparticles [7–12], etc. to the larger scale; fish school,
flock of birds [13–15] etc. Active system continuously evolve with time which leads to non-equilibrium class with
interesting features i.e; pattern formation [16], non-equilibrium phase transition [17–20], large density fluctuations
[21], enhanced dynamics [9, 22, 23], motility-induced phase separation [24–27] etc. In recent years, the motion
of passive particles in the presence of an active medium is used to explore the non-equilibrium properties of the
medium. In such mixtures passive particles exhibit enhanced diffusivity Deff greater than their thermal (Brownian)
diffusivity D0 [28, 29]. In the experiment of [30], passive Brownian disks in active bacterial solution show enhanced
diffusivity. The enhanced diffusivity Deff increases linearly with increasing concentration of bacteria in the solution
[31–33]. A variety of studies have focused on the role of bacterial concentration on passive particles [7, 34–36]. In
the absence of bacteria, or in equilibrium fluid the diffusivity of a sphere follows the Stokes-Einstein relation [37].
To understand the role of particle size on their dynamics in the active medium, we introduce a binary mixture
of RTPs and passive particles. RTPs move in a straight line for some time and then undergo a random rotation
(tumble event).

Hence activity can also be tuned with tumbling rate. A large tumbling rate means a smaller run time and hence
more random motion.
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We studied the mixture for different sizes of passive particles and the activity of RTPs. Effective diffusivity Deff

of RTPs does not change significantly whereas it decreases linearly with size for the passive particles: similar to
their equilibrium counterparts-Stokes system [37]. We calculated the effective temperatures, using Deff , Ta, eff (Δ)
and using speed distribution of RTPs, Ta, eff (v).

The both increase linearly with increasing activity for all size ratios. Hence although the system is active, an
effective equilibrium can be established in such mixtures.

The rest of paper is organised as follows. In section 2 we discuss the model with simulation details. In section.3
we discuss the results followed by the conclusion in section 4 at the end.

2 Model

We consider a binary mixture of Na small RTPs of radius ra, and Np passive particles of radius rp moving on
a two-dimensional (2D) substrate of size L × L. The size of the RTPs is kept fixed whereas the size of passive
particles is tuned. We define the size ratio S = rp/ra. The position vector of the centre of the ith RTP and passive
particle at time t is given by ra

i (t) and rp
i (t), respectively. The orientation of ith RTP is represented by a unit

vector ni = (cos θi, sin θi). The dynamics of the RTPs is governed by the overdamped Langevin equation [38–40]

∂tra
i = v0ni + μ1

∑

j �=i

Fij (1)

The first term on the right-hand side (RHS) of Eq. 1 is due to the activity of the RTPs, and v0 is the self-propulsion
speed. In the second term, μ1 is the mobility of RTPs and Fij is the soft repulsive interaction (force) among the
particles. It is obtained from the binary soft repulsive pair potential V (rij) = k(rij−2σ)2

2 and Fij = −∇V (rij), for
rij ≤ σ and zero otherwise. σ = ai + aj , where ai, j is the radius of ith and jth particles respectively. rij = |rj − ri|
is the distance between particles i and j . The summation runs over all the particles. τ = (μk)−1 sets the elastic
time scale in the system. Further, the orientation of RTPs is controlled by run and tumble events. The particles
orientation is updated by Eq. 2 introducing a uniform random number rn. A tumbling rate λ is defined such that
if λ > rn then the particle undergoes a tumble event with a random orientation ηi ∈ (−π, +π). Else it undergoes
run event with the same angle as in the previous step. Hence large tumbling rate λ means frequent change in
particle orientation. Hence, the orientation update of RTPs is given by:

θi(t + Δt) = θi(t) + ηi(t) (2)

The position of the passive particles is also governed by the overdamped Langevin equation,

∂tr
p
i = μ2

∑

i�=j

Fij (3)

The Fij has the same form as defined in Eq. 1 and μ2 is the mobility of passive particles. For the simplicity we
kept μ1 = μ2 There is no translational noise [41] in Eqs. 1 and 3, therefore, both RTPs and passive particles
are athermal in nature. The smallest time step considered is Δt = 5 × 10−4, much smaller than the elastic time
scale τ = 1 (for μ = 1 and k = 1) All the physical quantities calculated here are averaged over 50 independent
realizations. The self-propulsion speed v0 is kept fixed to 0.5 and activity is varied by tuning tumbling rate λ, such
that the dimensionless activity defined as v = v0/λra can vary from 5×103 to 5×104. We start with random initial
positions with non-overlapping condition for all the particles (RTPs and passive particles) and random orientation
directions of all RTPs. Once the update of the above two equations is done for all N = Na + Np particles, it is
counted as one simulation step. We simulated the system for a total of 2×105 steps. Total packing fraction of RTPs

and passive particles is fixed π(Nar2
a+Npr2

p)

L2 = 0.6. We choose the total area fraction or packing fraction of particles
fixed to 0.6 because for very low packing fraction we might not see the interesting effect of RTPs as observed in
the previous study on active Borwnian particles (ABPs) [34]. For packing fraction larger than 0.6, particles may
not have sufficient space for their dynamics. Also, for the collection of disks in two-dimensions, 0.6 is the random
close packing density [42]. The linear dimensions of the system is fixed to L = 150ra. We have kept the packing
fraction of active and passive particles fixed to 0.5 and 0.1 respectively. Since the size of active particle is fixed for
different parameters. Hence if the box size is fixed the number of active particles is fixed and number of passive
particles will change for different size ratio. Number of active particles in our current simulation is about 4000.
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3 Results

3.1 Dynamics of the particles in the mixture

We characterise the dynamics of both types of particles in the mixture for different system parameters (size ratio S
and activity v). We first calculate the displacement of RTPs, and passive particles and calculate their mean-square
displacement (MSD); Δa, p(t) = 〈|r(t+t0)−r(t0)|2〉. The subscripts a and p denote the active and passive particles
respectively. < .. >, implies average over different reference times t0’s, for all the particles of respective types and
over 50 independent realizations.

The Fig. 2(a, b) shows the plot of MSD of RTPs, Δa(t) for different size ratio S=2, 4, 6, and 8 for two activities
v = 5 × 104 and v = 1.2 × 104 respectively. We find that Δa(t) is independent of the size ratio S for both
activities and shows an early-time superdiffusion to late time diffusive dynamics. In general, the particle follows
the persistent random walk (PRW) and MSD can be approximated as [43]-

Δ(t) = 2dDeff t[1 − exp(
−t

tc
)] (4)

where Deff is the effective diffusivity in the steady state and tc is the typical crossover time from superdiffusive
to diffusion. The effective diffusivity of RTPs, Da, eff shows weak dependence with size as shown in Fig. 3(a).
Starting from a very small size ratio, effective diffusivity increases with size ratio and then reaches a maximum
around S = 4 and then again decreases for a large size ratio. For every large size ratios S > 7 data further shows
the variation with size ratio.

In Fig. 2(c, d) we show the plot of MSD of passive particles Δp(t) for different size ratios. The dashed and solid
lines are lines with slope 2 and 1 respectively. For small size ratio, the MSD is diffusive at the late time and becomes
subdiffusive for large S as shown by the dotted-dashed line in Fig. 3(c, d). Since for large size ratio S > 4, the late
time dynamic of passive particles is subdiffusive, the typical crossover time from initial superdiffusive to late time
diffusive for (S ≤ 4) and subdiffusive for (S > 4) is the time where MSD starts to deviate from t2. The crossover
time tp, c increases linearly with S for both activities as shown in Fig. 3(c) Hence larger passive particles spend
more time in superdiffusive propagation. The bigger passive particle are surrounded by more number of RTPs,
and resultant persistent motion of RTPs are leading to the increase in crossover time tp, c. We further calculated
the dependence of effective diffusivity of passive particles, Dp, eff on size ratio S . The Dp, eff decreases inversely
as a function of size ratio as shown in Fig. 3(b). It matches with the earlier results for the diffusion of Brownian
disk moving in the equilibrium Stokes fluid [37].

Fig. 1 (color online) Typical snapshot (from the simulation) of the part of the system of binary mixture. RTPs (black
particles) and passive particles (red particles). The two parameters S = 4 and v = 5 × 104
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We also explored the system for fixed size ratios S = 1 and S = 8 and varying the activity v . For all activities,
the RTPs show PRW as given in Eq. 4 and MSD shows a crossover from early-time superdiffusive to late-time
diffusive behaviour. In Fig. 4(a, b) we show the plot of MSD of RTPs particles, Δa(t) for different v and fixed
size ratios S = 1 and 8 respectively. The data points from the numerical simulation and lines are fit from the
expression of MSD as given in Eq. 4. Fitting line is only drawn for v = 5 × 104 as shown by solid line in Fig. 4(a,
b). The ta, c is obtained by fitting the MSD Δa(t) of RTPs with the expression of PRW as given in Eq. 4. In Fig. 5
we plot the crossover ta, c vs. v . The ta, c increases linearly with increasing v as shown in Fig. 5. We also calculated
the Da, eff , obtained from the fitting. The variation of Da, eff with activity will be discussed later.

To further confirm that the MSD follows the PRW, we show the scaling collapse of MSD by rescaling the x−axis
with ta, c (scaled time t/ta, c) and y−axis, as rescaled MSD, Δa(t)

Da, eff ta, c
. We find scaling collapse of data for both

size ratios and for all activities as shown in the inset of Fig. 4(a, b).
We also calculated the MSD of passive particles Δp(t) for different activities and for the two size ratios S = 1

and S = 8 as shown in Fig. 4(c-d).Label For small size ratio S = 1, the passive particles also show a crossover

Fig. 2 (color online) Plot Δa(t) vs. t for active (a, b) and passive particles Δp(t) (c, d), for activity v= 5× 104, 1.2× 104

with variation of different size ratios S . Dashed and solid lines are lines with slope 2 and 1 respectively. The dotted dashed
line in (c) and d is of slope 0.8 and 0.7 respectively

Fig. 3 (color online) Plot shows variation of Da, eff with size ratio S for different activity v for active particles. a Dp, eff

vs. S for passive particles. The dashed line has a slope −1. b tp, c for passive particles with size ratios S for two different
v=5 × 104 (black circles) and 1.6 × 104 (red circles). c (Error bars are of the order of symbol size)
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Fig. 4 (color online) The Plots (a–d) show the Δ(t) vs. t for active Δa(t) (a, b) and Δp(t) passive particles (c, d) for
S = 1 and 8 respectively. with different v (inset shows the scaling plot of MSD). lines are fitting function using Eqn. 4.
solid and dashed lines in (a–c) are of slope 2 and 1 respectively. The dotted dashed lines in (d) is of slope 0.8

Fig. 5 (color online) a Plot of variation of ta, c with v for different size ratios S

from early time superdiffusive to late time diffusive behavior and MSD Δp(t) fits well with the expression for
the PRW as given in Eq. 4. Data shows a scaling collapse when we plot the scaled time t/tp, c vs. scaled MSD,

Δp(t)
Dp, eff tp, c

4(c) (inset). For a large size ratio, S = 8, passive particles show an early-time superdiffusion but late
time subdiffusion with Δp(t) � t0.8, as shown by the dotted dashed in Fig. 4(d). The early-time superdiffusion
to late time subdiffusion appears for larger activities v ≥ 8.3 × 103. But for small activities v < 8.3 × 103, it is
diffusive for the whole range of time as shown by the solid line in Fig. 4(d)

We also investigated the dynamic of particles by extracting the MSD dynamic exponent β(t) defined by Δ(t) ∼
tβ(t), hence

β(t) = log10

[
Δ(10t)
Δ(t)

]
(5)
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Fig. 6 (color online) In these plot we shows the β(t) vs t , for active βa(t) (a, b) and passive βp(t) (c, d). Other parameters
are the same as in Fig. 4

The Fig.6(a-d) shows the plot of dynamic exponent β(t) vs. time t for the same parameter as in 4(a-d) respectively.
For the RTPs β(a)(t) shows crossover from superdiffusive βa(t) > 1 to diffusive βa(t) ∼ 1 regime. For the passive
particles for S = 1, early time dynamics is superdiffusive βp(t) > 1 and becomes diffusive βp ∼ 1 at late times.
Whereas for the size ratio 8 passive particles show superdiffusion βp(t) > 1 to subdiffusive βp < 1 motion at late
times. The dynamic exponent approaches to 1 for late times on decreasing activity v .

3.2 Diffusivity and effective temperature of active particles in the mixture

Now we further explore the concept of effective temperature [43–46] of the medium. Assuming an effective equilib-
rium, a relation between an effective temperature (calculated from the speed distribution) Ta, eff (v) and effective
diffusivity calculated from MSD of active particles can be obtained. The effective temperature calculated from
MSD is defined as Ta, eff (Δ) = Da, eff/kB , where kB is a constant factor used as the fitting parameters.

To calculate Ta, eff (v), we first calculate the speed distribution p(σ) of RTPs. The fluctuation in the speed dis-
tribution is the measure of the randomness present in the system. If the distribution follows a Maxwell-Boltzmann
(MB) form as always the case in fluids at equilibrium, the mean kinetic energy is related to the thermodynamic
temperature via the equipartition theorem [43]. We calculate the p(σ) and it follows the MB distribution for
different parameters. fitted it with standard MB distribution. In Fig. 7(a) we plot p(σ) for different size ratio S .
The data points are from the numerical simulation and lines are fit to MB distribution. Further, we compared
the two effective temperatures of active particles, calculated from speed distribution p(σ); Ta, eff (v) and from the
MSD Ta, eff (Δ).

In Fig. 7(b) we plot the variation of Ta, eff (v) and Ta, eff (Δ) vs. v for different S . The data shows good match
of both the effective temperatures. In RTP system [47] Deff = v2

0/dλ = v0vra/d. Where d is the dimensionality
of space. Hence Ta, eff (Δ) varies linearly with v as shown in Fig. 7(b). For better comparison, we also tabulated
the data for the two effective temperatures in table 1 for four different size ratios and varying activity.

4 Summary

We extensively studied the dynamics in a binary mixture of disk-shaped active RTPs and passive particles on a
two-dimensional substrate. Both types of particles are athermal in nature. The activity of RTPs is controlled by
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Fig. 7 (color online) a speed distribution and b Ta, eff (Δ) (open symbol) and Ta, eff (v) (solid symbol) vs. v for different
size ratio

Table 1 Table shows the variation of the effective temperature calculated from MSD and speed distribution as a function
of activity and four different size ratios. All the data with the error of order ± 0.001

S = 1 S = 2 S = 3 S = 4

v Ta, eff (v) Ta, eff (Δ) Ta, eff (v) Ta, eff (Δ) Ta, eff (v) Ta, eff (Δ) Ta, eff (v) Ta, eff (Δ)

16666 0.018 0.024 0.022 0.024 0.023 0.026 0.023 0.027

12500 0.013 0.018 0.017 0.020 0.018 0.021 0.018 0.022

8333 0.009 0.012 0.012 0.015 0.012 0.014 0.012 0.016

6250 0.007 0.011 0.009 0.011 0.009 0.012 0.010 0.013

5555 0.006 0.009 0.008 0.010 0.009 0.011 0.009 0.012

5000 0.006 0.009 0.007 0.010 0.008 0.010 0.008 0.011

2500 0.003 0.006 0.004 0.006 0.004 0.006 0.004 0.007

their tumbling rate. The size of RTPs is fixed whereas it is varied for passive particles. Further, in the mixture,
the MSD of RTPs show early-time superdiffusive behavior and late-time diffusive motion with increasing value
of v and size ratio S . The passive particles show a crossover from late time subdiffusive to diffusive dynamics on
increasing v and decreasing S . The late-time effective diffusivity of passive particles Dp, eff decay monotonically
with their size as found in equilibrium passive Stokes fluid [37].

The effective diffusivity of RTPs increases linearly with their activity and shows a good match with the effective
temperature obtained from the steady-state speed distribution with the MB distribution.

Hence our study explores dynamics and steady-state of RTPs and passive particles in the mixture and shows
an effective equilibrium in the system. The particle-size dependence of MSD of passive particles in the presence of
active RTPs has important applications in particle sorting in different types of fluids like-microfluidic devices [48].
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