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Abstract In this paper, we study the singularities of Feynman integrals by compactifying the integration
domain as well as the ambient space of these integrals, by embedding them in higher-dimensional space.
In this compactified space, the singularities occur due to the meeting of compactified propagators at non-
general position. The present analysis, which had been previously used only for the singularities of second
type, is used to study other kinds of singularities viz threshold, pseudo-threshold and anomalous threshold
singularities. We study various one-loop and two-loop examples and obtain their singularities. We also
present observations based on results obtained, that allow us to determine whether the singularities lie
on the physical sheet or not for some simple cases. Thus, this work at the frontier of our knowledge of
Feynman integral calculus sheds insight into the analytic structure.

1 Introduction

Feynman integrals are important for precision calculations in quantum field theory. Their study is a very mature
field, with a large number of techniques, computational, numerical and analytic unifying and exemplifying several
branches of mathematics. It may be worth recalling that Feynman diagrams per se are now over 7 decades old. While
many of their technical properties have been known for several decades, there are aspects that have been studied
in the past using techniques of that era, which have not been sufficiently developed for one reason or another.
With the focus shifting to the Standard Model of the electro-weak and strong interactions, and to properties of
field theories including that of renormalization and of renormalization group, and with the advent of dimensional
regularization as the favored method for regularization in most instances, a large number of results are today
available at higher loops and with several masses and with several external legs. They can be evaluated using
many techniques, Mellin–Barnes techniques and differential equation techniques, to name a couple [1–4]. Apart
from their evaluation, they also have a rich mathematical structure for example, a Hopf algebra structure [5–9],
coaction [10], twisted cosmology groups [11], homology group [12] to name a few. Another interesting property of
Feynman integrals is that they can in general be written as multi-variable hypergeometric functions [13–15] and
are, thus, multi-valued. Once such computations are carried out the analytic properties of the Feynman integrals
can be readily obtained. Since such calculations are at times difficult to carry out, there may be value in revisiting
methods of algebra, geometry and analysis, to obtain insights into the analytic structure of the integrals without
evaluating them explicitly, as well as insights in general. We believe that the present work is part of the effort to
realize this goal. To this extent, we believe that this is research at the Frontier.

In this work, we focus on understanding the analytic properties of the Feynman integrals without carrying the
aforementioned computation. We will analyze the Feynman integrals at the integrand level so as to obtain their
singularities. We know that the n−point functions are used to describe the scattering of n− particles. Also, to write
down the dispersion relations [16–18] one needs to know the analytic structure of the amplitude in question to
define the proper integration contour. There are various other works where analytic structure of Feynman integrals
has been previously studied in various contexts. These include analysis of Landau equations and that of physical
region singularity [19], unitarity with two or three particle in the intermediate states [20], study of singularities
for physical examples such as pi-pi scattering [21] and studies related to spectral representation and Mandelstam
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representation in perturbative field theory [22, 23]. Thus, the analytic properties of the Feynman integral are of
much interest in high-energy physics. Once the analytic computation of Feynman integrals has been done, these
analytic properties can be easily obtained by analyzing the result. However, we would like to focus on methods
where such analysis can be carried out without evaluating the Feynman integrals explicitly and at the integrand
level itself. Our focus is to extract the various singularities contained in them [18]. Formally, the analytic properties
of Feynman integrals have been studied mainly using the following two tools:

• Landau equations: It gives the condition for the occurrence of the singularities [18, 19, 24–27].
• Cutkosky rules: These rules [28] are used to compute the discontinuity of an amplitude.

In this work, we attempt to study these singularities using tools developed in 1960s [29]. However, Feynman
integrals as they appear in literature are not suited to directly apply these tools [29, 30]. So as to apply these tools,
we would study these integrals in the compactified space. This is achieved by embedding both the integration
cycle as well as the ambient space(the space to which the loop momenta belongs), associated with them into
a compact space. Analysis of a simple unitary integral using this technique has already been presented in [29],
though the treatment of Feynman integral has not been carried out citing their complicated nature. The other
work where such treatment of Feynman integrals has been attempted is the work of Federbush [31], though the
analysis is restricted only to the singularities of the second kind for bubble and triangle integral at one-loop and
the double-box integral at two-loop level. Our aim would be to extend the use of this analysis and also describe
the existing analysis in detail. The method we would use can be briefly described as follows

• Consider a one-loop Feynman integral in Euclidean 4-space of the following form1

∫
R4

d4k
1∏

i Si(t, k)
,

where Si(t, k) are the Feynman propagators. We call the space to which loop momenta k belongs as the ambient
space. In our case, the ambient space is C4 which is not compact. The integration cycle R4 ⊂ C4 is also not
compact.

• The Feynman integrals in the above form fail to be in the standard form [30], which is essential for further
analysis using the present approach. The reason for this is that both the ambient space as well as the integration
cycle are not compact.

• To bring the Feynman integral into standard form by compactifying both the integration cycle as well as the
ambient space associated with it. The compactification procedure to be used has been described in 2.2. This is
similar to the compactification of complex plane C into the Riemann sphere.

• After the compactification procedure, we have transformed propagators Si(t, k) → Si(t, x). Si(t, x) are hyper-
planes in the compactified space CP5. The singularities of the Feynman integrals are then obtained by analyzing
the intersection of these planes in the non-general position 2.3.

For ease of understanding, the above procedure has been described for the one-loop integrals but it can be
generalized to higher loops as well. As we have already mentioned, the method described above has been used
to study the second-type singularities [31] in a few cases. With this motivation, we use the method to analyze
other singularities viz threshold, pseudo-threshold and anomalous threshold using the method and show that the
procedure allows us to study all the kinds of singularities in a single framework. We will also refine the analysis to
further determine whether the singularities lie on the physical sheet or not for some tractable examples. For the
simple case of the bubble and the triangle integral, we will see that this analysis is very similar to the conditions
on the Feynman parameters for the singularities to lie on the physical sheet [32].

The outline of the paper is as follows: In Sect. 2.1, we review the Landau analysis using a simple example
of a one-loop bubble integral. We also introduce some mathematical preliminaries such as non-general position
and the compactification for both single as well as higher loops. These preliminaries are essential for the further
development of the paper. In the subsequent Sects. 3, 4, 5, 6 and 7 we analyze one-loop cases such as the bubble
integral, the vertex integral, the box integral, as well as two-loop cases such as the two-loop sunset and the double-
box integrals. We analyze various singularities associated with them extending the previous analysis. We also
discuss the procedure to determine the singularities in the physical sheet. This is followed by a discussion of future
work. To further fill the gaps in the calculations, we have provided a Mathematica file Calculation.nb which
can be found at: https://github.com/TanayPathak-17/Singularities-of-Feynman-Integrals.

1We stick to the notation of [29].
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2 Preliminaries

In this section, we discuss the preliminaries essential for the further analysis carried out in the subsequent sections.

2.1 Landau analysis

We first briefly discuss how the singularities of the Feynman integrals are obtained using the Landau equations
[18, 24–27].

A generic Feynman integral with L-loop of momenta ki(i = 1, . . . , L), N− propagators, external momenta pi

can be written as follows

I =
∫

Dk
1∏N

i=1(q
2
i − m2

i )
, Dk =

L∏
i=1

d4ki. (2.1)

Using Feynman parameters, we can write the above integral as follows

I =
∫

Dk

∫ 1

0

Dα
1

(F )N
, Dα =

N∏
i=1

dαiδ

(
1 −

N∑
i=1

αi

)
, (2.2)

where

F =
N∑

i=1

αi(q2i − m2
i ) (2.3)

and αi are called the Feynman parameters.
The main idea for the analysis of singularities is that there are different classifications of singularities depending

on how many of the N propagators are on-shell, i.e., q2i = m2
i . This idea is more concretely given by Landau

equations which tell that the singularities occur when

1. q2i = m2
i .

2. There exists αi, not all 0, such that
∑

i∈loop(l) αi(qi)
μ = 0 for loop l = 1 . . . L.

The Landau equation 1, q2i = m2
i implies that the corresponding propagator is on-shell. This in turn assures that

F = 0 in Eq. (2.2), by demanding that each term in the summand (2.3) is zero. The Landau equation (2), can be
interpreted in a geometric manner. It tells us that the corresponding singularity surfaces are parallel to each other
and the hypercontour cannot be deformed away from the approaching singularity surfaces [25]. Furthermore, if
αi = 0 for any i , it means that the corresponding propagator does not contribute to the singularity. The singularity
corresponding to αi �= 0, for all i , is called the leading singularity. All others are called sub-leading singularities.

As an example, we consider the simple case of a one-loop two-point function. The bubble Feynman integral is
given by

IB =
∫

d4k

(k2 − m2
1)((k − p)2 − m2

2)
,

hence, we have q1 = k and q2 = k − p. The first Landau equation gives q21 = m2
1 and q22 = m2

2. The second Landau
equation can be cast into the form det(Q) = 0, where

det(Q) = det
(

m2
1 q1 · q2

q1 · q2 m2
2

)
= 0,

q1 · q2 = ±m1m2. (2.4)

Reinserting into p = q1 − q2, yields following two singularities
p2(+) = (m1 + m2)2 and p2(−) = (m1 − m2)2.
To determine in which sheets the above singularities lie, further analysis has to be done and the Landau equations

have to be refined. The analysis reveals that the singularity p2(+) lies on the physical sheet while the singularity

123



Eur. Phys. J. Spec. Top.

p2(−) does not. These singularities are called threshold and pseudo-threshold singularities, respectively. They are
also the leading singularities for the present case.

Following [25], we can also look at the geometrical interpretation of the above singularities. The two Landau
equations give

k2 = m2
1, (k − p)2 = m2

2
These two equations defines two hyperboloids with their centers displaced by p (see Fig. 9, [25]). Then for

any light-like p, these two hyperboloids meets at infinity, thus giving rise to second-type singularities. Another
interpretation of the origin of these singularities is that they arise due to pinching at infinity [18].

The second-type singularities is determined by looking at the vanishing of the Gram-determinant

det pi · pj = 0. (2.5)

For the case of one-loop bubble integral the above condition gives p2 = 0. These singularities are independent of
the masses and do not lie in the physical sheet. Using the techniques presented in later sections we will see that
all three types of singularities of the bubble integral can be incorporated within a single framework and no special
analysis is required to obtain the second type of singularity.

2.2 Compactification

The detailed compactification procedure is described in [29]. A Feynman integral in 4-space has the form2

∫
R4

d4k
1∏

i Si(t, k)
. (2.6)

There are two problems here. First, the ambient space C4 is not compact and second, the domain of integration
R4 is also not compact. For further calculations, it is useful for both of them to be compact. We follow [29]

We compactify the ambient space C4 by embedding it in to CP5 using the map

C4 −→ CP5,

k −→ x := (2k, 1 − k2, 1 + k2). (2.7)

That is xi = 2ki, 1 ≤ i ≤ 4, x5 = 1 − (k2
1 + k2

2 + k2
3 + k2

4) and x6 = 1 + (k2
1 + k2

2 + k2
3 + k2

4). We could instead
embed C4 into CP4 but certain computations become clearer this way.

Under this map, the domain of integration R4 is taken to the set (2k, 1 − k2, 1 + k2) in CP5. Since k ∈ R4,
1 + k2 is always non-zero. Hence we can divide by (1 + k2) and consider it as a subset of R5 ⊂ C5, where C5

is the subset of CP5 given by x6 = 1. So, the closure of the image of R4 is the closure of the image of the set(
2k

1+k2 , 1−k2

1+k2

)
∈ R5. This is the unit sphere and is compact. The above compactification procedure is essentially

the inverse stereographic projection [33] and further homogenization of the resulting coordinates [34]
Recall that the denominators of the Feynman integral (2.6) are of the form Si(t, k) = (ai(t) + k)2 − m2

i . Under
the mapping above, these are taken to

Si(t, k) −→ Si(t, x) =
x · Ai

x5 + x6
, (2.8)

where Ai = (2ai(t), a2
i − m2

i − 1, a2
i − m2

i + 1). The dot product is defined as

x · y = x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6.

Similarly, d4k is taken to

d4k −→
(

1
x5 + x6

)4

dx1 ∧ dx2 ∧ dx3 ∧ dx4. (2.9)

2We assume that in all the Feynman integrals we consider the parameters that appear are “dimensionless” quantities
which are divided by some fundamental ‘mass’ relevant to a particular theory under consideration.
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Fig. 1 a Two surfaces meeting in general position. b Two surfaces meeting in non-general position. We see that for the
case of non-general position, at the point of intersection, the normal to both surfaces are parallel to each other

We remark that in Eq. 2.8 the compactified propagator is homogeneous, i.e., it is invariant under any transformation
of the form x → λx, where λ is some scalar. From Eq. (2.8) and (2.9), we can further see that if there are less
than four propagators in the Feynman integral, we have an effective denominator in the compactified integral.
This denominator corresponds to surface S0 ≡ x5 + x6 = 0 and is singular. The singularities arising due to the
intersection of S0 and Si in non-general position give rise to second-type singularities.

In the case of two or higher loop integrals, there is no general formula for a generic denominator as (2.8). In
these cases, one has to recursively apply (2.8) for each of the loop momenta ki, thus compactifying each of the ki

into a copy of CP5.
As an example consider the two-loop Sunset integral (6.1). It has the following three propagators
k2
1 − m2

1, k2
2 − m2

2 and (k1 + k2 − p)2 − m2
3.

The first two propagators are easily dealt with using Eq.(2.8) and we get

S1 =
x5(−m2

1 − 1) + x6(−m2
1 + 1)

x5 + x6
,

S2 =
y5(−m2

2 − 1) + y6(−m2
2 + 1)

y5 + y6
.

For the third propagator, we have to use Eq. (2.8) twice, once for each ki. We can write the third propagator in
the following suggestive form

S3 = (k2
1 − m2

3) + (k2 − p)2 +
2(2k1) · (2k1 − 2p)

4
.

Using Eq.(2.8) for each of the pieces and simplifying, we get

S3 =
(y5 + y6)(x5(−m2

3 − 1) + x6(−m2
3 + 1)) + (−2y · p + y5(p2 − 1) + y6(p2 + 1))(x5 + x6)
(x5 + x6)(y5 + y6)

,

which is the required compactification. We emphasize the fact that to keep the S3 invariant under the transfor-
mation x → λ1x, y → λ2y, the factor of (x5 + x6)(y5 + y6) in the denominator is important.

2.3 Non-general position

In this subsection, we briefly outline the concept of non-general position as given in [29]. Surfaces Si in non-general
position intersect at a simple pinch giving rise to the singularities we are interested in.

A pinch is only possible when the surfaces meet at non-general position, which implies that the following
conditions are satisfied3

1. Si = 0, i = 1, . . . , m

3We introduce parameters αi sticking to the notation in [29], they are not same as the Feynman parameters.
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2. There exists αi, not all 0, such that
∑m

i=1 αi
∂Si

∂xk
= 0, k = 1, . . . , l.

In the case of Feynman integrals, Si will be the compactified propagators obtained via compactification described
in 2.2 and the conditions 1 and 2 are valid for any L−loop Feynman integral. We further notice that the above
conditions bear resemblance to Landau equations described in Sub-Sect. 2.1. Though it is to be mentioned that
the above conditions are more general consideration and valid for any family of hyper-surfaces Si-, the Landau
equations can be thought of as a special case of the same when applied to Feynman integrals.

Geometrically, condition 1 restricts x to S1 ∩ S2 ∩ · · · ∩ Sm and condition 2 implies that the normal vectors to
Si at x are linearly dependent. For the case when m = 2, Condition 2 implies that the two normals are parallel,
see Fig. 1a and b. Similarly, when m = 3, this implies that the three normals are co-planar.

3 One-loop Bubble integral

From this section onwards, we analyze various one- and two-loop integrals. We have also considered a toy example
to demonstrate the method in a lower-dimensional integral in Appendix A. Due to the tedious calculation involved
at times, we have provided a Mathematica file Calculation.nb to fill the gaps for the reader. The file can be
found at https://github.com/TanayPathak-17/Singularities-of-Feynman-Integrals.

Let us consider the one-loop Bubble Feynman integral corresponding to the diagram in Fig. 2

I2 =
∫

d4k

(k2 − m2
1)((k − p)2 − m2

2)
. (3.1)

To compactify the propagators, we make the following transformation as given in Eq. (2.7)

xα = 2kα, x5 = 1 − k2, x6 = 1 + k2. (3.2)

Using Eq. (2.8), we get the following compactified propagators

S1 =
x5(−m2

1 − 1) + x6(−m2
1 + 1)

x5 + x6
,

S2 =
−2p · x + x5(p2 − m2

2 − 1) + x6(p2 − m2
2 + 1)

x5 + x6
,

(3.3)

and the new ambient space is W given by:

W = {(x1, · · · , x6)|
5∑
i

x2
i − x2

6 = 0} ⊂ CP5.

We also have an effective denominator S3 = x5 +x6 which can be identified as the plane at infinity. It will be later
shown that the intersection of the plane at infinity with the compactified propagators(S1 and S2 in the present
case) give rise to singularities of the second kind.

Fig. 2 Bubble diagram
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In the compactified space the integral is

I2 =
∫

dx1dx2dx3dx4

(x5 + x6)2S1S2
, (3.4)

where S1 and S2 are given by Eq. (3.3).
The singularities corresponding to the integral above are given when the denominators S1, S2 and S3 meet at

non-general position in W , see subsection 2.3. We first analyze the case when S1 and S2 are in a non-general
position in W . Using the condition 1 for surfaces meeting in a non-general position, we get

−x5 + x6 = (x6 + x5)m2
1,

(x5 + x6)(p2 − m2
2) + (x6 − x5) = 2p · x,

5∑
i

x2
i − x2

6 = 0. (3.5)

Using the condition 2, we get

α2(−2p) + α3(2x) = 0,

α1(−m2
1 − 1) + α2(p2 − m2

2 − 1) + α3(2x5) = 0,

α1(−m2
1 + 1) + α2(p2 − m2

2 + 1) + α3(−2x6) = 0. (3.6)

Using Eq. (3.5), we get

2p · x = (x5 + x6)(p2 − m2
2 + m2

1). (3.7)

We perform the dot product of p in the first relation of Eq. (3.6),. This converts the equation into an equation
with scalar coefficients whose value we know. Performing this, we get

α2(−2p2) + α3(2p · x) = 0. (3.8)

substituting the value of 2p · x we get

α2(−2p2) + α3((x5 + x6)(p2 − m2
2 + m2

1)) = 0. (3.9)

With this, Eq. (3.6) becomes

α2(−2p2) + α3((x5 + x6)(p2 − m2
2 + m2

1)) = 0,

α1(−m2
1 − 1) + α2(p2 − m2

2 − 1) + α3(2x5) = 0,

α1(−m2
1 + 1) + α2(p2 − m1

2 + 1) + α3(−2x6) = 0. (3.10)

We want the non-trivial solution for αi in equations the above equation, which is possible when the matrix of the
coefficients of αi s has a vanishing determinant. That is,

∣∣∣∣∣∣
0 − 2p2 ((x5 + x6)(p2 − m2

2 + m2
1)),

−m2
1 − 1 p2 − m2

2 − 1 2x5,
−m2

1 + 1 p2 − m1
2 + 1 − 2x6

∣∣∣∣∣∣ = 0. (3.11)

Evaluating the above determinant and solving for the invariant p2.

p2 = (m1 − m2)2, (m1 + m2)2. (3.12)

These are precisely the conditions for the threshold and pseudo-threshold singularity.

123



Eur. Phys. J. Spec. Top.

Table 1 Singularities of Bubble integral Eq. (3.1)

Type Singularity Equation

Threshold p2 = (m1 + m2)
2 Eq. (3.12)

Pseudo-threshold p2 = (m1 − m2)
2 Eq. (3.12)

Second-type p2 = 0 Eq. (3.16)

Next, we consider the case of the second-type singularity for the Bubble integral, which has been analyzed in
[31] as well. The second type of singularity occurs when S1, S2 and S3 are in non-general position and S1 and S2

meet in general position. Using the first condition for surfaces meeting in a non-general position, we get

x6 + x5 = 0,

−x5 + x6 = (x6 + x5)m2
1,

(x5 + x6)(p2 − m2
2) + (x6 − x5) = 2p · x,

5∑
i

x2
i − x2

6 = 0. (3.13)

Using the second condition, we get

α1(x) + α2(−p) = 0. (3.14)

Performing dot product with p in the above, we obtain

α1(p · x) + α2(−p2) = 0. (3.15)

For αi to have a non-trivial solution, we need the following

p2 = 0, (3.16)

which gives the second-type singularity. We see that in this picture, the second-type singularity occurs due to the
intersection of the planes at infinity (S3 in the present case) with the other planes (S1and S2 in the present case).
In the case of the Bubble integral, we summarize all the results in Table 1.

Properties of αiat the singularity
We now discuss some features of the parameters αi at the singularity. Using Eqs. (3.5) and (3.6), we get the

following values of α

α1 = − 2α3x3

(
m2

1 + m2
2 − p2

)
(m2

1 + 1)(m2
1 − m2

2 + p2)
,

α2 =
4α3m

2
1x3

(m2
1 + 1)(m2

1 − m2
2 + p2)

. (3.17)

Without loss of generality, we may assume m1 > m2 and α3 = x3 = 1. We consider the following three cases:

1. Threshold : For the threshold singularity p2 = (m1 + m2)2. We then get the following value of α1 and α2

α1 =
2m2

(m2
1 + 1)(m1 + m2)

, α2 =
2m1

(m2
1 + 1)(m1 + m2)

. (3.18)

We see that both are positive.
2. Pseudo-threshold : For the pseudo-threshold singularity, p2 = (m1 − m2)2. We get

α1 = − 2m2

(m2
1 + 1)(m1 − m2)

, α2 =
2m1

(m2
1 + 1)(m1 − m2)

. (3.19)
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Notice that α1 is negative and α2 is positive.
3. Second-type singularity : For second-type singularity, p2 = 0. We get

α1 = − 2
(
m2

1 + m2
2

)
(m2

1 + 1)(m2
1 − m2

2)
, α2 =

4m2
1

(m2
1 + 1)(m2

1 − m2
2)

. (3.20)

Notice that again α1 is negative and α2 is positive.

From the conventional analysis, it is known that the threshold singularities lie on the physical sheet and the
pseudo-threshold and the second-type singularities do not lie on the physical sheet. We observe that it is only in
the case of the threshold singularity that the values of α1 and α2 are both positive. Hence if the sign of αi is
positive at a singularity, then the singularity is in the physical sheet. We would like to emphasize that this feature
is similar to that of Feynman parameters, which have to be positive for the singularities to lie on the physical
sheet. In [32], it has been shown using physical arguments that the Feynman parameters have to be positive for
singularities to lie on the physical sheet. The similar feature of αis, thus, hints toward the connection between the
two.

4 Triangle integral

We now consider the Triangle Integral corresponding to the triangle diagram in Fig. 3

I3 =
∫

d4k

(k2 − m2
1)((k + p3)2 − m2

2)((k − p2)2 − m2
3)

. (4.1)

The three propagators in the triangle diagram are given as follows:

k2 − m2
1, (k + p3)2 − m2

2, (k − p2)2 − m2
3.

Compactifying the propagators as in the previous case, we get the following

S1 =
x5(−m2

1 − 1) + x6(−m2
1 + 1)

x5 + x6
,

S2 =
2p3 · x + x5(p23 − m2

2 − 1) + x6(p23 − m2
2 + 1)

x5 + x6
,

S3 =
2(p3 + p1) + x5((p3 + p1)2 − m2

3 − 1) + x6((p3 + p1)2 − m2
3 + 1)

x5 + x6
, (4.2)

Fig. 3 Triangle diagram
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and the new ambient space W is given by

W = {(x1, . . . , x6)|
5∑
i

x2
i − x2

6 = 0} ⊂ CP5.

We also get an effective denominator as

S4 = x5 + x6. (4.3)

The analysis is similar to the previous section. The leading singularity of the triangle integral is called the pseudo-
threshold singularity. This occurs when S1, S2 and S3 meet at non-general position in W . We get the following
condition for the anomalous threshold singularity

∣∣∣∣∣∣∣∣∣∣∣

0 2p23 − p21 + p22 + p23 − (1−m2
1)(−m2

2+p2
3−1)

m2
1+1

+ m2
2 − p23 − 1

0 − p21 + p22 + p23 2p22 − (1−m2
1)(−m2

3+p2
2−1)

m2
1+1

+ m2
3 − p22 − 1

−m2
1 − 1 − m2

2 + p23 − 1 − m2
3 + p22 − 1

2(1−m2
1)

m2
1+1

1 − m2
1 − m2

2 + p23 + 1 − m2
3 + p22 + 1 − 2

∣∣∣∣∣∣∣∣∣∣∣
= 0. (4.4)

This matches the result given in [18], where it was obtained using the Feynman parameterized form of the Triangle
integral.

We can further simplify this result to compare it with other literature results [25]. We take the following values
p2 = p, p3 = p, m2 = m and m3 = m. With these special values, we get

p21 = 4m2 − (−m2 − m2
1 + p2)2

m2
1

. (4.5)

The above singularity lies below the two-particle threshold 4m2 and is called the pseudo-threshold singularity.
Now, let us analyze the second-type singularities for the Triangle diagram. There are two cases when these

singularities can occur.

1. The first case arises when the sets {S1, S2, S4}, {S1, S3, S4} and {S2, S3, S4} are in non-general position in
W . This is similar to the case of one-loop bubble integral and hence we simply get the singularity

p23 = 0, p22 = 0, p21 = 0. (4.6)

2. The second case arises when S1, S2, S3 and S4 are in non-general position in W . Analyzing this case in a
similar manner as before we obtain the following singularity:

p21p
2
2 = (p1 · p2)2. (4.7)

The second type of singularity for the triangle has also been obtained in [31].

For the triangle integral, we, thus, have the following singularities

Type Equations

Anomalous threshold Eqs. (4.4) and (4.5)

Second type Eqs. (4.6) and (4.7)

Properties of αiat the singularity
We will now study the properties of the parameters αi. For the present case, we will consider the leading

singularity because of its interesting feature. We consider the simpler special case of Eq. (4.5). For this case, we
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get the following values of αi

α1 =
2
(
p2 − m2 − m2

1

)
(m2

1 + 1)(−m2 + m2
1 + p2)

,

α2 =
2m2

1

(m2
1 + 1)(−m2 + m2

1 + p2)
,

α3 =
2m2

1

(m2
1 + 1)(−m2 + m2

1 + p2)
. (4.8)

We immediately observe that when p2 > m2 + m2
1, αi are all positive. When we have p2 < m2 + m2

1, α1 has a
negative sign and the other two have a positive sign. The former case corresponds to the singularity in the physical
sheet and later corresponds to the singularity lying in the unphysical sheet [25].

5 Box Integral

We now consider the Box Integral corresponding to the box diagram in Fig. 4

I4 =
∫

d4k

(k2 − m2
1)((k + p2)2 − m2

2)((k + p2 + p3)2 − m2
3)((k + p2 + p3 + p4)2 − m2

3)
. (5.1)

The compactified propagators are as follows

S1(t, x) =
(−m2

1 − 1)x5 + (1 − m2
1)x6

x5 + x6
,

S2(t, x) =
2p2 · x + (p22 − m2

2 − 1)x5 + (p22 + 1 − m2
1)x6

x5 + x6
,

S3(t, x) =
2(p2 + p3) · x((p2 + p3)2 − m2

1 − 1)x5 + ((p2 + p3)2 + 1 − m2
1)x6

x5 + x6
,

S4(t, x) =
−2(p1 · x) + (p21 − m2

1 − 1)x5 + (p21 + 1 − m2
1)x6

x5 + x6
, (5.2)

where in S4 we have used the momentum conservation p1 + p2 + p3 + p4 = 0 condition. The new ambient space is
W given by:

W = {(x1, · · · , x6)|
5∑
i

x2
i − x2

6 = 0} ⊂ CP5.

Fig. 4 Box diagram
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In this case, we will not have any effective denominator as the number of propagators is four.
The singularities can arise in the following cases

1. When two Si are in non-general position in W . This consist of set {Si, Sj}, i, j = 1, 2, 3, 4, i �= j.
2. When three Si are in non-general position in W . This consist of set {Si, Sj , Sk}, i, j, k = 1, 2, 3, 4, i �= j �= k
3. Finally, we have the leading singularity which is given when S1, S2, S3 and S4 meet at non-general position

in W .

The two-propagators case and the three-propagators case are similar to the analysis of Sects. 3 and 4.
As a demonstrative example of the two propagator case, we consider the case when S1 and S2 are in non-general

position in W . Using Eq. (3.12) we get the following two particle threshold and pseudo-threshold singularity

Threshold: p22 = (m1 + m2)2.

Pseudo-threshold: p22 = (m1 − m2)2. (5.3)

In a similar way, we can consider other combinations of two propagators. There are a total of six such cases.
We can also consider the case when three propagators meet at non-general position. Consider the case when S1,

S2 and S3 are in non-general position in W . For this case, the singularity is given by Eq. (4.4) with the replacement
p3 → p3 + p4. In a similar way, one can consider other combinations of the propagators and obtain the singularity
with proper replacement in Eq. (4.4). There are 4 such cases.

Before proceeding, we introduce a few variables so as to facilitate comparison with the literature. We use the
following

s = (p1 + p2)2, t = (p1 + p3)2,

p21 = M2
1 , p22 = M2

2 , p23 = M2
3 , p24 = M2

4 , u = M2
1

+ M2
2 + M2

3 + M2
4 − s − t. (5.4)

We now consider the case when S1, S2, S3 and S4 are in non-general position in W . The first condition for
non-general position (given in subsection 2.3) gives

Si = 0, i = 1, 2, 3, 4,
5∑
i

x2
i − x2

6 = 0. (5.5)

Similarly, the second condition gives

α2(2p2 + α3(2(p2 + p3)) + α4(−2p1) + α5(2x) = 0,

α1

(−m2
1 − 1

)
+ α2

(−m2
2 + p22 − 1

)
+ α3

(−m2
3 + t − 1

) − m2
4 + p21 + 2α5x5 − 1 = 0,

− 2α5 + α1

(
1 − m2

1

)
+ α2

(−m2
2 + p22 + 1

)
+ α3

(−m2
3 + t + 1

) − m2
4 + p21 + 1 = 0. (5.6)

Doing the analysis as before we get the following condition for the singularity

2m4
3

[−2M2
1

(
M2

2 + s
)

+
(
M2

2 − s
)
2 + M4

1

]
+ 2m4

1

[−2M2
3

(
M2

4 + s
)

+
(
M2

4 − s
)
2 + M4

3

]
+

2m4
4[−2M2

2 (M2
3 + t) + (M2

3 − t)2 + M4
2 ] + 2m4

2

[−2M2
1

(
M2

4 + t
)

+
(
M2

4 − t
)
2 + M4

1

]
2[−2M2

1M2
3 (M2

2M2
4 + st) + (M2

2M2
4 − st)2 + M4

1M4
3 ] + 4m2

4[M
2
1M2

3 (M2
2 − M2

3 + t)+

st(M2
3 − t) + M2

2

(
t
(
M2

4 + s
)

+ M2
3

(
M2

4 − 2t
)) − M4

2M2
4

]
+ 4m2

1

[
m2

3M
2
3 s + m2

4M
2
3 s

− m2
3s

2 + m2
2M

2
4 s + m2

3M
2
4 s − m2

4M
4
3 + m2

2M
2
4M2

3 + m2
4M

2
4M2

3 − 2M2
4M2

3 s − m2
2M

4
4 + m2

2

(M2
3 + M2

4 − s) + t
(
m2

2

(−M2
3 + M2

4 + s
)

+ M2
3

(
m2

4 + s
)

+
(
m2

4 − s
)(

s − M2
4

) − 2m2
3s

)
+

M2
2

(
m2

3

(−M2
3 + M2

4 + s
)

+
(
m2

4 − M2
4

)(
M2

4 − s
) −2m2

2M
2
4 + M2

3

(
m2

4 + M2
4

))
+

M2
1 (m2

3(M
2
3 − M2

4 + s) + M2
3

(−2m2
4 − M2

3 + M2
4 + s

)
]

− 4m2
3

[
M4

1M2
3 + M4

2

(
m2

4 + M2
4

)
+ s

(
m2

4M
2
3 + t

(
s − m2

4

)) − M2
2

(
m2

4

(−2M2
4 + s + t

)
+m2

4M
2
3 + s

(
M2

4 + t
)) − M2

1 (t(s−
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m2
4) + M2

2

(
m2

4 + M2
3 + M2

4 − 2s
)

+ M2
3

(
m2

4 + s
))] − 4m2

2

[
M4

1

(
m2

3 + M2
3

)
+ t2

(
m2

4 + s
)
+

M2
4

(
m2

4M
2
3 − M2

2

(
m2

3 + m2
4 − M2

4

)
+m2

3s
) − t

(
m2

4M
2
3 + m2

3s − 2m2
4s + M2

4 s + m2
4M

2
4 +

M2
2

(−m2
3 + m2

4 + M2
4

)) − M2
1

(
t
(
m2

4 + M2
3 − 2M2

4 + s
)

+M2
2

(
m2

3 − m2
4 + M2

4

)
m2

3

(−2M2
3 + M2

4 + s + t
)

+ +M2
3

(
m2

4 + M2
4

))]
= 0. (5.7)

The above result for the leading singularity can also be obtained from the analysis of Landau equation and has
been presented in [18], where further analysis related to the physicality of the above singularity has also been
presented. To further simplify the above result, we make the substitution Mi = M , mi = m, and get

2st
(
4m2

(−4M2 + s + t
)

+ 4M4 − st
)

= 0. (5.8)

We note that this result matches with the result given in [35], thus providing an important cross-check of Eq.
(5.7).

6 Sunset integral

We now consider the two-loop Sunset Integral as a starting point for the two-loop case. The sunset integral
corresponding to the sunset diagram of Fig. 5 is given by

Is =
∫

d4k1d
4k2

(k2
1 − m2

1)((k2)2 − m2
2)((k1 + k2 − p)2 − m2

3))
. (6.1)

The three propagators are as follows:
k2
1 − m2

1, k2
2 − m2

2 and (k1 + k2 − p)2 − m2
3.

For the first two propagators, the compactification procedure is similar to the one-loop case with different
variables. The compactification for the third propagator is non-trivial and has to be done recursively, as has been
outlined in Appendix 2.2. After compactification, we get the following compactified propagators

S1 =
x5(−m2

1 − 1) + x6(−m2
1 + 1)

x5 + x6
,

S2 =
y5(−m2

2 − 1) + y6(−m2
2 + 1)

y5 + y6
,

S3 = ((y5 + y6)(x5(−m2
3 − 1) + x6(−m2

3 + 1)) + (−2p.y

+ y5(p2 − 1) + y6(p2 + 1))(x5 + x6) + 2x.y − 2p.x(y5 + y6))
1

(x5 + x6)(y5 + y6)
. (6.2)

It is to be noted that we can write S3 in a more suggestive manner as

S3 = p2 − m2
3 +

x6 − x5

x5 + x6
+

y6 − y5
y5 + y6

− 2p · y

y5 + y6
− 2p · x

x5 + x6
. (6.3)

Fig. 5 Sunset diagram
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We again remark that the above propagator is homogeneous in x and y.
The new ambient space is given by

W1 × W2 ⊂ CP5 × CP5,

where

W1 = {(x1, · · · , x6)|
5∑
i

x2
i − x2

6 = 0} ⊂ CP5,

W2 = {(y1, · · · , y6)|
5∑
i

y2
i − y2

6 = 0} ⊂ CP5. (6.4)

The analysis is the same as in the previous section, though more tedious due to a large number of equations arising
from the conditions of meeting at non-general position. We will focus only on the leading singularity for the present
case as it is the non-trivial one. Other singularities can be obtained using the result of previous sections.

The leading singularity occurs when S1, S2 and S3 meet at non-general position in W1 × W2. The analysis for
this case is tedious and has been done using Mathematica. We outline the important steps of the calculation. Using
the first condition for the hyperplanes to meet at non-general position, we get

Si = 0, i = 1, 2, 3,
5∑
i

x2
i − x2

6 = 0,
5∑
i

y2
i − y2

6 = 0. (6.5)

Using the second condition, we get

α3((2x) − 2p(y5 + y6)) + α4(2y) = 0, α2(−m2
3 − 1) + α3((y5 + y6)(−m2

3 − 1)

+ (−2y · p + y5(p2 − 1) + y6(p2 + 1)) + α4(2x5) = 0, α2(−m2
3 + 1) + α3((y5 + y6)(−m2

3 + 1)

+ (−2y · p + y5(p2 − 1) + y6(p2 + 1)) + α4(2x6) = 0, α3((2y) − 2p(y5 + y6)) + α4(2x) = 0,

α3(−m2
2 − 1) + α3(x5(−m3 − 1) + x6(−m2

3 + 1) + (p2 − 1)(x5 + x6) − 2p · x) + α5(2y5) = 0,

α3(−m2
2 + 1) + α3(x5(−m2

3 − 1) + x6(−m2
3 + 1) + (p2 − 1)(x5 + x6) − 2p · x) + α5(2y5) = 0. (6.6)

Repeating the analysis as in Sect. 3 and simplifying, we get the following singularities corresponding to the Sunset
integral

p2 = (−m1 + m2 + m3)2, p2 = (m1 + m2 − m3)2, p2 = (m1 − m2 + m3)2,

p2 = (m1 + m2 + m3)2. (6.7)

The first three singularities are called the pseudo-threshold singularities and the last singularity is called the
threshold singularity [36].

7 Double-box integral

Next, we consider the case of Double-Box integral corresponding to the double-box diagram in Fig. 6

I4, 2 =
∫ ∫

d4k1d
4k2

(k2
1 − m2

1)(k
2
2 − m2

2)((k2 + p2)2 − m2
3)((k2 + p2 + p3)2 − m2

4)

× 1
((k1 + p2 + p3)2 − m2

5)((k1 + p2 + p3 + p4)2 − m2
6)((k1 − k2)2 − m2

7)
. (7.1)

The compactified propagators are as follows

S1 =

(−m2
1 − 1

)
x5 +

(
1 − m2

1

)
x6

x5 + x6
,
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Fig. 6 Sunset diagram

S2 =

(−m2
2 − 1

)
y5 +

(
1 − m2

2

)
y6

x5 + x6
,

S3 =
y5

(−m2
3 + p22 − 1

)
+ y6

(−m2
3 + p22 + 1

)
+ 2p2.y

x5 + x6
,

S4 =
y5

(−m2
4 + t − 1

)
+ y6

(−m2
4 + t + 1

)
+ 2(p2.y + p3.y)

x5 + x6
,

S5 =
x5

(−m2
5 + t − 1

)
+ x6

(−m2
5 + t + 1

)
+ 2(p2.x + p3.x)

x5 + x6
,

S6 =
x5

(−m2
6 + p21 − 1

)
+ x6

(−m2
6 + p21 + 1

) − 2p1.x

x5 + x6
,

S7 =

((−m2
7 − 1

)
x5 +

(
1 − m2

7

)
x6

)
(y6 + y5) − 2x.y + (x5 + x6)(y6 − y5)

(x5 + x6)(y5 + y6)
. (7.2)

To demonstrate the method, we consider a few cases where the results of the sunset integral can be used. As an
example consider the case when the surfaces {Si, Sj , S7}, i = 1, 5, 6 and j = 2, 3, 4, are in non-general position
in W . Then we have the following singularities

• {S1, S2, S7}: (p1 + p2)2 = (m1 + m2 + m7)2, (m1 − m2 + m7)2, (m1 + m2 − m7)2, (−m1 + m2 + m7)2,
• {S1, S3, S7}: (p1 + p3)2 = (m1 + m3 + m7)2, (m1 − m3 + m7)2, (m1 + m3 − m7)2, (−m1 + m3 + m7)2,
• {S1, S4, S7}: (p1 + p4)2 = (m1 + m4 + m7)2, (m1 − m4 + m7)2, (m1 + m4 − m7)2, (−m1 + m4 + m7)2,
• {S5, S2, S7}: (p5 + p2)2 = (m5 + m2 + m7)2, (m5 − m2 + m7)2, (m5 + m2 − m7)2, (−m5 + m2 + m7)2,
• {S5, S3, S7}: (p5 + p3)2 = (m5 + m3 + m7)2, (m5 − m3 + m7)2, (m5 + m3 − m7)2, (−m5 + m3 + m7)2,
• {S5, S4, S7}: (p5 + p4)2 = (m5 + m4 + m7)2, (m5 − m4 + m7)2, (m5 + m4 − m7)2, (−m5 + m4 + m7)2,
• {S6, S2, S7}: (p6 + p2)2 = (m6 + m2 + m7)2, (m6 − m2 + m7)2, (m6 + m2 − m7)2, (−m6 + m2 + m7)2,
• {S6, S3, S7}: (p6 + p3)2 = (m6 + m3 + m7)2, (m6 − m3 + m7)2, (m6 + m3 − m7)2, (−m6 + m3 + m7)2,
• {S6, S4, S7}: (p6 + p4)2 = (m6 + m4 + m7)2, (m6 − m4 + m7)2, (m6 + m4 − m7)2, (−m1 + m2 + m7)2.

We remark that the above result can also be obtained using the Landau equation analysis as presented in [18]. Next,
we consider the second-type singularities. The mechanism for the second-type singularities to occur is different
from the previous cases as they arise due to the singular manifold S7 in the present case [31]. These singularity
occur because in momentum space S7 which is given by (k1 − k2)2 − m2

7, corresponds to line k1 = k2 ± m7 which
intersect at infinity in the k1, k2 plane.

The second-type singularities occur when {Si, Sj}, i, j = 1, 2, 3, 4, 5, 6, i �= j, meet in non-general position [31]

• {S6, S2}: p21 = 0,
• {S6, S3}: (p1 + p2)2 = 0.

Similarly, we can also obtain other second-type singularities for other combinations with proper substitutions of i
and j .

We can also consider a case with 3 propagators as follows

{S6, S1, S3} : p21p
2
2 = (p1 · p2)2.

Similarly,we can obtain other singularities with proper substitutions of i and j .

123



Eur. Phys. J. Spec. Top.

8 Summary and discussion

We considered one and two-loop Feynman integrals and studied the singularities associated with them using the
method extending the analysis in [29]. We found for the tractable cases of one-loop Bubble and the Triangle
integrals, it is possible to determine whether the singularity lies on the physical sheet or not. We found parallels
with the properties of Feynman parameters for singularities in physical sheet [32]. The analysis of the second
type of singularity was presented for both one-loop cases, where they occur due to the presence of an effective
denominator, and for the two-loop cases where a different mechanism is responsible for them [31]. We showed that
by extending the analysis presented in [31] such a technique can also be used to obtain singularities of other kinds.
Thus, the results presented here in our opinion, constitute important advances in our knowledge of the structure of
Feynman integrals, which are the basic building blocks of perturbative quantum field theory, on which our entire
knowledge of the standard model rests. By bringing in methods from algebraic geometry and applying them to
the concrete problem of Landau and non-landau singularities (such as second type singularity), we have, in our
opinion provided insights into their singularity structure, thereby exploring a new frontier in fundamental physics
that rests on mathematics, and is independent of whether the interactions arise from the SM or beyond.

We remark that the calculation becomes tedious as the number of propagators increases and thus the procedure
asks for proper optimization and automation. There are other works that can be done in connection with the
present analysis. The analysis of the two-loop case is not complete due to several technical difficulties. Another
important direction which was not presented in the current analysis is the construction of the Kronecker index
table [29] to determine the ‘full sheet structure’ of these integrals. This table would give us the knowledge of the
sheet structure in an algebraic manner as has been shown for a simple unitary integral in [29]. The construction
of the Kronecker index table requires the construction of vanishing cycles. A way to construct such vanishing
cycles for various one loop examples has been outlined in [37] and [38]. The Kronecker table also allows us to
apply Picard–Lefschetz theorem [29, 39], which is further crucial in determining the full sheet structure of these
integrals..

A further application of the Picard–Lefschetz theorem is the calculation of the discontinuity around a singularity.
In [29], a generalized version of Cutkosky’s discontinuity formula is discussed along with an example of unitarity
integral which can be extended to cases shown in this paper. Another important analysis is the calculation of the
homology group related to these Feynman integrals. For the one-loop cases, it is called the decomposition theorem
and is presented in [29]. For the two-loop cases, a detailed analysis using Double Box integral as example, but
without momentum conservation, is presented in [12]. Similar analysis related to the computation of homology
groups, motivated by, and for further use in, Feynman integrals has also been studied in [40]. We would also like
to mention the recent work [41, 42], where analysis of Landau equations and a proof of Cutkosky’s theorem for
massive Feynman integrals were presented using related techniques used here. Thus, the techniques used here
based on compactifying the Feynman integrals and analysing them in the compactified space, provide a universal
framework to study the analytic properties of Feynman integrals.
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Appendix: A toy example

In this appendix, we consider a toy example to demonstrate the method. We consider the following one-dimensional
version of the bubble integral

I2 =
∫
R

dk

(k2 − m2
1)((k − p)2 − m2

2)
. (A.1)
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Here, the integration cycle is R and the ambient space is C, so we use the compactification procedure outlined in
Sect. 2.2. Compactifying the propagators, we get the following

S1 =
x2(−m2

1 − 1) + x3(−m2
2 + 1)

x2 + x3
,

S2 =
−2px1 + x2(p2 − m2

2 − 1) + x3(p2 − m2
1 + 1)

x2 + x3
, (A.2)

and the new ambient space W is given by

W = {(x1, x2, x3)|x2
1 + x2

2 − x2
3 = 0} ⊂ CP2.

Similarly, we have dk → dx1
x2+x3

. This gave rise to an effective denominator

S3 = x2 + x3. (A.3)

The singularities of integral (A.1) correspond to the following two cases

1. When S1 and S2 meet in non-general position in W . This case is similar to the case of the Bubble Integral in
Sect. 3. We get the two singularities: p2 = (m1 + m2)2 and p2 = (m1 − m2)2.

2. When S1, S2 and S3 meet in non-general position in W . This case is similar to the Bubble Integral case and
we get p2 = 0.

The situation for the S1 and S2 meeting in non-general position (for real x1, x2, x3) is as shown in Fig. 7. We
can also look at the situation in the real (x1, x2)-plane (with x3 = 1). The situation of general and non-general
positions is shown in Fig. 8. We note a special feature of the intersection of these surfaces is the ‘vanishing cycle’.
In the plots shown in Fig. 8, notice that the green circle is divided into four parts in Fig. 8a and into three parts in
Fig. 8b. The region that vanishes due to the meeting of the surfaces at non-general position is called the ‘vanishing
cycle’. So whenever the surfaces meet at non-general position it corresponds to the vanishing of a cycle.

Fig. 7 S1 and S2 (in blue and yellow color, respectively) meeting in non-general position in W (in green)
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Fig. 8 a S1 and S2 meeting in general position in W . b S1 and S2 meeting in non-general position in W , corresponding
to singularity p2 = (m1 + m2)

2. The plots shows the situation shown in Fig. 7 in (x1, x2)-plane with x3 = 1
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