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Abstract In recent times, several hints of lepton flavor universality (LFU) violation have been observed
in semileptonic B decays at the level of (2 → 3)σ, both in the rare flavor changing neutral current (NC)
transitions b → s�� and charged current (CC) transitions b → c�ν. Although the recent results from LHCb
on the measurement of the LFU violating observables RK(∗) associated with b → s�� transition are in
agreement with the Standard Model (SM) predictions, there are several other observables in b → sμμ
processes, which show significant deviations from their SM values. These tantalizing signals point toward
the possible existence of New Physics beyond the Standard Model. Numerous studies have been performed
to understand these anomalies in various new physics models as well as in model-independent approaches.
Since the new physics scales involved in the CC and NC sectors are significantly different from each other,
explanation of these intriguing sets of discrepancies in a coherent manner using a single framework is
rather challenging. We show that the model with a vector leptoquark U1 could be a potential candidate
for successfully accounting for these anomalies.

1 Introduction

Despite the overwhelming success of the Standard Model (SM), still there are many open issues for which it does
not provide any satisfactory explanation. These include the origin of small but non-zero neutrino masses, nature
and existence of the dark matter, observed baryon asymmetry of the universe, etc., demonstrating the presence of
physics beyond the SM. Though the LHC Run-II has marked the start of a new era in terms of energy, luminosity,
and discovery potential, so far, there is no clear evidence for any kind of unambiguous signal of new physics (NP)
beyond the Standard Model (BSM). On the other hand, several intriguing hints of discrepancies between the
observed data and the SM predictions have been reported in the last few years by the B -factory experiments:
Belle, BABAR, and LHCb. These discrepancies are mainly in the form of lepton flavor universality violations in
semileptonic B decays associated with the charged current (CC) transition b → c�ν̄ [1–4] and neutral current (NC)
transition b → s�+�− [5–9], though the later has been substantially weakened in the last year due to the particle
identification problems found at LHCb in the electronic channels [10, 11]. Additionally, there are also quite a
few other deviations at the level of (3 − 4)σ from the SM expectations in the measurement involving b → sμμ
transition, such as the branching fractions of B → K(∗)μ+μ−, Bs → φμ+μ− [12–14], the form factor independent
(FFI) observables P ′

4, 5 in the angular distributions of B → K∗μ+μ− [15, 16], etc. In the absence of any direct NP
signal at the LHC experiment, these tantalizing hints of LFU violating observables play a crucial role in exploring
the BSM physics and thus have attracted immense attention in the last few years.
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2 Anomalies in b → c�ν transitions

In the charged current transitions b → c�ν̄�, sizeable deviations have been observed in the lepton flavor universality
(LFU) violating observables, which are characterized as the ratios of branching fractions

RD(∗) ≡ B(B → D(∗)τ ν̄)
B(B → D(∗)�ν̄)

, (1)

with � = e or μ. These observables are considered to be the clean probes of NP as the hadronic uncertainties
inherent in individual branching fraction predictions canceled out to a large extent. The present world averages of
RD(∗) measurements, performed by the Heavy Flavor Averaging Group (HFLAV) [17]

Rexp
D = 0.357 ± 0.029, Rexp

D∗ = 0.284 ± 0.012,

have 3.3σ deviations (considering their correlation of −0.37) from the corresponding SM predictions RSM
D =

0.298±0.004 (2.0σ) and RSM
D∗ = 0.254±0.005 (2.2σ). In the same line, the measured ratio RJ/ψ ≡ B(Bc→J/ψτν̄)

B(Bc→J/ψμν̄) =
0.71 ± 0.17 ± 0.18 [18] also has 1.7σ deviation from its SM prediction, RSM

J/ψ = 0.289 ± 0.010. In addition, the
recent measurement of the longitudinal polarization of D∗ meson in B0 → D∗−τ+ν̄ by Belle collaboration, FD∗

L =
0.60± 0.08± 0.04 [19], also shows deviation from its SM value 0.46± 0.04 by 1.6σ. These deviations primarily hint
toward the presence of NP in b → cτ ν̄ decay channels.

The effective Hamiltonian responsible for the CC-mediated b → cτ ν̄l quark-level transition is given by [20]

HCC
eff =

4GF√
2

Vcb

[(
δlτ + Cl

VL

)Ol
VL

+ Cl
VR

Ol
VR

+ Cl
SL

Ol
SL

+ Cl
SR

Ol
SR

+ Cl
T Ol

T

]
, (2)

where Cl
X are the Wilson coefficients, with X = VL, R, SL, R, T . These coefficients are zero in the SM and can

arise only in the presence of NP. The corresponding dimension-six four-fermion operators Ol
X are expressed as

Ol
VL(VR) = [c̄LγμbL(bR)][τ̄LγμνlL],

Ol
SL(SR) = [c̄RbL(bR)][τ̄RνlL],

Ol
T = [c̄RσμνbL][τ̄RσμννlL], (3)

where fL(R) = PL(R)f are the chiral fermion (f ) fields with PL(R) = (1 ∓ γ5)/2 being the projection operators.
Numerous studies have been performed in the literature to explain these anomalies both in model-independent
[21–26] and model-dependent [27–33] approaches. Model independent analysis shows that NP contributions having
the same Lorentz structure as the SM operator (OVL

) are the most preferred scenarios [23]. Concerning OVR
, it

gives the additional contributions to RD(∗) as RD ∝ (1 + CVR
)2, whereas RD∗ ∝ (1 − CVR

)2, and hence, it is
arduous to find a common solution to both RD and RD∗ . Though the scalar and pseudoscalar NP structures can
also accommodate the observed anomalies, they are constrained by the lifetime of Bc meson. Large value of tensor
operator predicts small FD∗

L but provides a decent description to the observed data. However, such operators not
easily generated by NP theories at EW scale. In some cases, they appear due to RG evolution from EW scale to
b quark scale, with strong correlation with scalar operators.

3 Anomalies in b → sμ+μ− transitions

The rare decay processes mediated through flavor changing neutral current transitions b → s�+�− are loop sup-
pressed in the SM, and hence are highly sensitive to new NP. In this sector, there are a plethora of observables
which exhibit deviations from their SM predictions at the level of (2−4)σ. The main candidates among them were
known to be the LFU violating observables RK and RK∗ , defined as

RK(∗) =
B(B → K(∗)μ+μ−)
B(B → K(∗)e+e−)

. (4)

In 2014, the measurement on RK = 0.745+0.090
−0.074±0.036, in the low q2 ∈ [1, 6] GeV2 region by the LHCb experiment

[5] attracted considerable attention, as it manifested 2.6σ discrepancy from its SM prediction, which is expected
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to be of order unity. The updated LHCb measurement of RK in the q2 ∈ [1.1, 6] GeV2 bin by combining the Run
1 data with 2 fb−1 of Run 2 data: RLHCb

K = 0.846+0.060+0.016
−0.054−0.014 [7], also had a discrepancy of 2.5σ. Additionally,

the observable RK∗ measured by the LHCb Collaboration in two bins of low-q2 (in GeV2) region [6]

RK∗ =

⎧
⎪⎪⎨
⎪⎪⎩

0.660+0.110
−0.070 ± 0.024, q2 ∈ [0.045, 1.1] GeV2

0.685+0.113
−0.069 ± 0.047, q2 ∈ [1.1, 6.0] GeV2 ,

delineates 2.2σ and 2.4σ deviations from their corresponding SM results. These discrepancies are generally
attributed to the presence of NP in b → sμμ processes. However, in December 2022, LHCb updated their results,
and the new measurements [10, 11] are now almost consistent with the SM predictions

low- q2

⎧
⎪⎪⎨
⎪⎪⎩

RK = 0.994+0.090
−0.082(stat )+0.029

−0.027(syst),

RK∗ = 0.927+0.093
−0.087(stat)+0.036

−0.035(syst) ,

central- q2

⎧
⎪⎪⎨
⎪⎪⎩

RK = 0.949+0.042
−0.041(stat)+0.022

−0.022(syst),

RK∗ = 1.027+0.072
−0.068(stat)+0.027

−0.026(syst) ,

where the q2 interval (0.1 < q2 < 1.1) GeV2 refers to as low-q2, while the interval (1.1 < q2 < 6) GeV2 corresponds
to central-q2.

These new results open up a new window in the exploration of new physics beyond the standard model, which
becomes evident from the fact that there are several other observables associated with b → sμ+μ− transitions, e.g.,
the branching fractions of Bs → φμμ, B → K∗μμ, the FFI observables P ′

4, 5 in B → K∗μμ angular distributions,
which deviate significantly from their SM predictions. These observations lead to the fact, in addition to the
lepton flavor universal new physics component, that contributes equally to both electron and muon channels,
there should be additional new contribution specifically related to the muon sector, as well. Additionally, the recent
results on the branching fraction of Bs → μ+μ− by LHCb and CMS collaborations [34, 35] B(Bs → μ+μ−) =(
3.09+0.46+0.15

−0.43−0.11

) × 10−9, consistent with its SM value B(Bs → μ+μ−)|SM= (3.66 ± 0.14) × 10−9 [36], indicate that
the NP should couple vectorially to the lepton pair, thus, evading any conflict with the above measurements.

The SM effective Hamiltonian responsible for b → s�+�− transition can be expressed as [37, 38]

HSM
eff = − αGF√

2π
VtbV

∗
ts

[
2
Ceff

7

q2
[s̄σμνqν(msPL + mbPR)b] (�̄γμ�) + Ceff

9 (s̄γμPLb)(�̄γμ�) + C10(s̄γμPLb)(�̄γμγ5�)
]
,

(5)

where Ceff
7 , Ceff

9 and C10 are the Wilson coefficients, evaluated at the mb scale. It should be noted that the coef-
ficient Ceff

9 contains both short-distance contributions from the four-quark operators, away from the charmonium
resonance domain, and the long distance part associated with real cc̄ intermediate states.

Prior to the latest results on RK(∗) by LHCb [10, 11], considering new physics contributions present in b → sμ+μ−
processes, the global fit to all the anomalies provides the best-fit values for the preferred solutions as [39]

(i) CNP
9μ = −1.06, (ii) CNP

9μ = −CNP
10μ = −0.44,

(iii) CNP
9μ = −CNP

9′μ = −1.11. (6)

Incorporating the updated LHCb results on RK(∗) , all the anomalies associated with b → sμμ transitions can be
explained in the following two scenarios, with the best-fit values of the Wilson coefficients as [40]:

• Scenario-I: (Cuniv
9 , ΔCbsμμ

9 = −Cbsμμ
10 ).

In this scenario, there will be universal NP contributions both μ and e channels preserving the lepton flavor
universality i.e., Cuniv

9 = Cbsμμ
9 = Cbsee

9 = 0.64±0.22. In addition, there will be extra contributions only to muon
channels, for accommodating the anomalies strictly associated with b → sμμ channels, with the corresponding
best-fit values: ΔCbsμμ

9 = −Cbsμμ
10 = −0.11 ± 0.06.
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• Scenario II: Cuniv
9 = −Cuniv

10 and ΔCbsμμ
9 = −ΔCbsμμ

10 ).
This scenario corresponds to the case, where NP couples purely to left-handed SM fields. The non-zero Cuniv

9 =
−Cuniv

10 can consistently explain the b → sμμ anomalies, while the LFU violating purely muonic contribution to
ΔCbsμμ

9 = −ΔCbsμμ
10 is compatible with zero at 1σ level. The corresponding best-fit values are found to be

Cuniv
9 = − Cuniv

10 = −0.29 ± 0.13,

ΔCbsμμ
9 = − ΔCbsμμ

10 = −0.08 ± 0.07, (7)

with a correlation coefficient ρ = −0.54.

4 Anomalies in b → sνν̄ transitions

The long-standing anomalies associated with the FCNC transitions b → sμ+μ− have been recently augmented by
the first evidence of B+ → K+νν̄ decay from the Belle-II collaboration B(B+ → K+νν̄) = (2.4 ± 0.7) × 10−5

[41] which deviates by 2.8σ from the SM prediction B(B+ → K+νν̄) = (4.29 ± 0.13) × 10−6. Since the ratios
of muon to electron branching fractions in b → s�� transitions, RK(∗) are consistent with lepton universality,
requisite universality violation to address the data could arise from tau-flavors. More general explanations could
also involve lepton flavor violation involving τ lepton in the final state. In addition, this result also indicates the
possible existence of light sterile neutrino [42].

5 Possible NP scenarios for the explanation of flavor anomalies

Attempts to explain one or both sets of anomalies have stimulated an intense theoretical activity, which ranges from
pure Effective Field Theory approaches to the formulation of motivated completions of the SM. As the b → c�ν̄
CC transitions occur at the tree level, while the NC transitions b → s�+�− appear one-loop level, the anomalies
associated with these transitions probe essentially different scales of NP. Thus, finding a common platform for
explaining these anomalies in a coherent manner is rather challenging, e.g., the tree-level contribution with single
mediator like W ′ for b → c�ν and Z ′ for b → s�� transitions will not provide the common solution. However,
some of the leptoquark models with generation-dependent couplings could provide a common explanation to the
observed anomalies in both the sectors. In particular, models containing a TeV-scale vector leptoquark, U1 ∼ (3,
1, 2/3), as the main mediator are particularly appealing. Besides connecting both sets of anomalies, such models
can connect them to an underlying theory of flavor.

5.1 U1(3, 1, 2/3) vector LQ: a possible explanation to the flavor anomalies

The vector leptoquark (VLQ) U1(3, 1, 2/3) is a color triplet and SU(2)L singlet gauge boson with hypercharge 2/3
encountered in many extensions of the SM. This VLQ can explain the anomalies in both b → cτ ν̄ and b → sμ+μ−
transitions [43]. The interaction Lagrangian of U1 LQ with the SM fermions can be written as

LU1
LQ = λL

ijQ̄iLγμLjLUμ
1 + λR

ij d̄iRγμljRUμ
1 + h.c., (8)

where λL, R
ij are the couplings of U1 to quark and lepton pairs, with i , j being the generation indices. The Lagrangian

(8) is written in the weak basis of the fermion fields, which, after transformation into the mass basis and using the
Fierz identities, yields the new Wilson coefficients for the process b → cτ ν̄

CNP
VL

=
1

2
√

2GF Vcb

3∑
k=1

Vk3
λL

2lλ
L
k3

∗

M2
LQ

,

CNP
SR

= − 1
2
√

2GF Vcb

3∑
k=1

Vk3
2λL

2lλ
R
k3

∗

M2
LQ

, (9)
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where MLQ denotes the mass of the leptoquark. The model also provides additional contributions to the b → s�−
i �+j

processes in the form of new Wilson coefficients C
(′)NP
i (i = 9, 10, S, P ), as

CNP
9 = −CNP

10 =
π√

2GF VtbV ∗
tsα

3∑
m, n=1

Vm3V
∗
n2

λL
niλ

L
mj

∗

M2
LQ

,

C ′NP
9 = C ′NP

10 =
π√

2GF VtbV ∗
tsα

3∑
m, n=1

Vm3V
∗
n2

λR
niλ

R
mj

∗

M2
LQ

,

CNP
P = −CNP

S = −
√

2π

GF VtbV ∗
tsα

3∑
m, n=1

Vm3V
∗
n2

λL
niλ

R
mj

∗

M2
LQ

,

C ′NP
P = C ′NP

S =
√

2π

GF VtbV ∗
tsα

3∑
m, n=1

Vm3V
∗
n2

λR
niλ

L
mj

∗

M2
LQ

. (10)

The values of these NP couplings are constrained for a TeV-scale leptoquark, using various flavor observables and
the details can be found in Ref. [43]. For illustration, we consider the example of the presence of new physics which
is vectorial in nature with LL coupling, i.e., it will induce new physics coupling CLQ

V1
to b → cτ ν̄τ transition and

CLQ
9 = −CLQ

10 for b → s�� processes. For constraining the various new Wilson coefficients or LQ couplings, we
consider the following combination of data sets and perform a χ2-fit to obtain their best-fit values:

C-I: Includes measurement on B decay modes with only third-generation leptons in the final state

– C-Ia: Only b → cτ ν̄τ .
– C-Ib: Both b → cτ ν̄τ and b → sτ+τ−.

C-II: Includes measurement on B decay modes with only second-generation leptons in the final state, i.e., b →
sμ+μ−.
C-III: Includes measurement on B decay modes, which decay either to third-generation or second-generation
leptons, i.e., b → cτ ν̄τ , b → sτ+τ− and b → sμ+μ−.

The constraints on new leptoquark couplings are shown in Fig. 1, using different data sets of above discussed
observables and LQ mass MLQ as 1.2 TeV. The constraint plots for the new couplings for C-Ia (left), C-Ib (middle),
and C-II (right) cases are presented in the top panel. The bottom panel of Fig. 1 represents the constraint plots
for C-III in the λL

33 −λL
23 (left) and λL

32 −λL
22 (right) panels. In each plot of Fig. 1, different colors represent the 1σ,

2σ, and 3σ contours and the black dots stand for the best-fit values. The corresponding best-fit values obtained
for various cases are presented in Table 1. It should be noted that the results obtained for C-II and C-III cases
might be slightly changed if we incorporate the updated measurement of RK(∗) .

Thus, it is found that for a TeV-scale VLQ, only the LL-type couplings can simultaneously explain both b →
s�+�− and b → cτ ν̄τ anomalies. In addition, the model predicts significantly large branching fractions for the
lepton flavor violating B -meson and τ -lepton decays, such as Bs → �+i �−

j , Bs → K(∗)�+i �−
j , Bs → φ�+i �−

j , τ → μφ,
τ → μγ, etc., which can be used to test this scenario in the future B -physics experiments, such as LHCb upgrade
and Belle-II. Another interesting feature of the model is that augmenting it with a color-sextet scalar diquark (6,
1, 4/3) can explain the neutrino mass at two-loop level.

6 Conclusion

Semileptonic B meson decays play an important role in exploring physics beyond the Standard Model.
The FCNC-mediated decay processes b → s�+�− occur at one-loop level in the SM and, hence, are quite sensitive

to NP. Deviations at the level of (2-4)σ have been reported in several observables, which include B(B → Kμμ),
B(Bs → φμμ) and P ′

4, 5. It is worth emphasizing that these discrepancies can be coherently explained in a simple
NP scenario without violating the bounds from other observables. In particular, the two leading scenarios are
Cbsμμ

9 = −Cbsμμ
10 and Cuniv

9 with pull values of ∼ 6σ [44].
The tree-level charged current transition process b → cτν have sizable decay rates and the ratios RD(∗) point

toward the violation of LFU. Although, it is possible to explain these anomalies with scalar currents, at the same
time slightly improving the polarization observables, the best fit is achieved via a left-handed NP contribution of
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Fig. 1 Constraints on new VLQ couplings which include only LL type operators (Scenario-I) for different sets of observables.
Different colors represent the 1σ, 2σ, and 3σ contours and the black dot stands for the best-fit value

Table 1 Best-fit values of the LQ couplings for different cases for MLQ = 1.2 TeV

Cases Couplings Best-fit values

C-Ia (λL
33, λL

23) (0.451, 0.631)

C-Ib (λL
33, λL

23) (0.475, 0.595)

C-II (λL
32, λL

22) (0.035, 0.035)

C-III (λL
33, λL

23) (0.56, 0.51)

C-III (λL
32, λL

22) (0.0351, 0.0351)

∼ 10% to the SM operator, i.e., CVL
resulting in a significance of 4σ. Such an operator can be generated in the

leptoquark models, preferably vector leptoquark U1(3, 1, 2/3).
It should be worth emphasizing that if RD(∗) anomalies can be explained through the new physics contributions

arising from left-handed vector current, due to SU(2)L invariance, b → sτ+τ−/b → sντντ processes can also
be significantly enhanced from their SM predictions. The recent Belle results on B(B → Kνν) which has 2.8σ
enhancement from its SM predictions support this scenario. Thus, search for different observables associated with
b → sτ+τ− transitions is highly recommended to corroborate or rule out this scenario.
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25. K. Cheung, Z.-R. Huang, H.-D. Li, C.-D. Lü, Y.-N. Mao, R.-Y. Tang, Revisit to the b → cτν transition: In and beyond
the SM. Nucl. Phys. B 965, 115354 (2021). https://doi.org/10.1016/j.nuclphysb.2021.115354. arXiv:2002.07272

26. M. Blanke, A. Crivellin, S. de Boer, T. Kitahara, M. Moscati, U. Nierste, I. Nǐsandžić, Impact of polarization observables
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