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Abstract Local fluctuations in the profile can vary significantly for nonstationarity signals produced, e.g.,
by physiological systems. To correctly identify distinctions between the states of such systems, these fluc-
tuations should be processed thoroughly. In the current study, we apply extended detrended fluctuation
analysis (EDFA) to simulated data with various signal distortions and to electrical activity signals in the
brains of mice under normal conditions and after one day of sleep deprivation. We show that the latter
states can be distinguished by several EDFA scaling exponents, but their performance is scale dependent.
The maximum differences between the states quantified by conventional and extended fluctuation analysis
may be associated with different scale ranges. We conclude that the statistical analysis of local fluctuations
in the signal profile is useful for developing diagnostically significant markers of the system state.

1 Introduction

Fluctuation analysis is widely used in many studies to describe the features of long-range power-law correlations
in experimentally recorded time series. This range of scales is important in solving many diagnostic problems in
physiology, and the ability of quantifying the features of the decay of correlations makes it possible to introduce
informative markers of the system’s behavior [1–4]. The time-varying dynamics of natural systems and the rapid
decrease in the correlation function for random processes limit the use of classical tools when processing physio-
logical signals. Detrended fluctuation analysis (DFA) [5, 6], which involves the procedure of detrending, formally
allows one to ignore the problems of non-stationarity, although even in this case, data preprocessing is important
to obtain more reliable quantitative criteria for the state of the system [7, 8]. In particular, different variants of
nonstationarity affect the estimated characteristics in different ways, and knowledge of the corresponding effects
makes it possible to avoid misinterpretation of the results obtained [9]. A discussion about the effectiveness of the
DFA method in comparison with other variants of fluctuation analysis was undertaken, e.g., in [10, 11].

Natural signals generally have a complex structure and time-varying dynamics. With regard to physiological
systems, for example, the corresponding changes can be caused by processes of adaptation to changing functioning
conditions, and the assumption of approximate stationarity for small fragments of experimental data may not be
fulfilled with an increase in the duration of the analyzed processes. As a consequence, the analysis of experimentally
recorded data should be carried out taking into account the corresponding changes. DFA analyzes the RMS
fluctuations of the signal profile from the trend and does not take into account differences in these fluctuations
for individual data segments. However, the latter can be significant when dealing with transients or intermittent
behavior. Since the same values of the scaling exponent can be obtained both for relatively stationarity data sets
and for highly nonstationari ones, an extended DFA (EDFA) was proposed [12, 13]. It offers an additional measure
of the signal, namely, EDFA considers how the distribution of local fluctuations (for individual segments) changes
when the segment size increases. This measure, introduced in addition to the scaling exponent of the conventional
DFA, provides more complete information about the analyzed process. It may be less informative and not lead to
a significant improvement in the diagnostic capabilities of fluctuation analysis [14]. In the case of changes in the
time-varying dynamics for different physiological states, the introduced EDFA scaling exponent, on the contrary,
can better reveal distinctions between the states of the system under study [15].
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Regardless of the result, a more thorough analysis of fluctuations for different parts of the signal profile seems
to be useful. It does not limit the capabilities of the conventional DFA (and does not change the algorithm for
computing the scaling exponent), but only focuses on additional features of the processes under study associated
with their complex structure. In this paper, we test the EDFA method with a more detailed analysis of signal
profile fluctuations in the presence of nonstationarity, artifacts, and data loss. For this purpose, we consider 1/f -
noise, which plays an important role in physiology, and many acquired datasets have similar spectral properties
in the frequency domain.

Next, we apply this approach to the signals of electrical activity in the brain of mice (electrocorticograms,
ECoG) under conditions of wakefulness and sleep deprivation. Sleep plays an important role in keeping the central
nervous system healthy [16–19]. It affects attention, learning, long-term memory, decision making, etc. [20, 21].
Sleep deprivation for several days is crucial for brain health, but the short-term effects of staying up at night are
less clear.

In the current study, we examine how one day of sleep deprivation is reflected in the correlation features of
ECoG signals quantified using EDFA. We aim to show that the method’s performance is scale dependent, and
the maximum differences between the states quantified by conventional and extended fluctuation analysis may
be associated with different scale ranges. The paper is organized as follows. Section 2 shortly describes the DFA
method with its extension, simulated datasets, experimental procedures and data. The results of statistical analysis
of local fluctuations in the signal profile for simulated and experimental data with their discussion are given in
Sect. 3. Section 4 summarizes the main findings of the given work.

2 Methods and experiments

2.1 Extended DFA

DFA was developed in the works [5, 6], the authors of which focused on the correlation analysis of signals from
living systems and proposed a variant of replacing the decreasing correlation function with an increasing function,
which makes it possible to better analyze the region of long-range correlations. Algorithmically, DFA is a variant of
root mean square random walk analysis that includes a detrending procedure for the signal profile. The transition
to the profile (random walk) of the signal x (i), i = 1, . . . , N

y(k) =
k∑

i=1

x(i). (1)

and its subsequent segmentation into parts of equal length n are carried out in all versions of the fluctuation
analysis. A feature of DFA is the approximation and removal of a local trend yn(k) within each part.

The estimation of the standard deviations of the detrended profile depending on the segment length is used to
obtain an increasing dependence F (n) over a wide range of n

F (n) =

√√√√ 1
N

N∑

k=1

[y(k) − yn(k)]2. (2)

In the presence of scaling, it exhibits a power-law behavior

F (n) ∼ nα. (3)

characterized by the exponent α. The latter can take the same value in different ranges of scales or differ depend-
ing on n. In many research tasks, the region of long-range correlations (large n) is analyzed, but shorter-range
correlations can also be of diagnostic value. For this reason, along with the global exponent, estimates of local
scaling exponents are useful.

Many natural systems are characterized by complex structure of the recorded experimental data. It is associated
both with the presence of a large number of independent rhythmic components, demonstrating differences in
time-varying behavior (a simpler case), and with their cooperative dynamics, accompanied by the appearance of
combinational frequencies, which are also able to demonstrate complex behavior in time (more complex case).
Such a structure can produce strong variability in the detrended signal profile for different segments that occurs,
e.g., when the signal includes a transient process or possesses an intermittent behavior (alternation of segments
with different properties). In this case, the role of some segments becomes decisive, while others will make a small
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contribution to the estimation of F (n). There are other examples of signals, for which a small part of the segments
plays a dominant role. From the point of view of the conventional DFA algorithm, the different role of individual
segments is not taken into account, and averaged root-mean-square fluctuations are estimated. Nevertheless, taking
into account the degree of heterogeneity of the analyzed process is important and can provide useful diagnostic
information about structural changes in signals. In [12, 13], an extended DFA was proposed, the idea of which is a
more careful analysis of the distribution of local fluctuations of a detrended profile. In particular, the behavior of
the standard deviations of local fluctuations Floc (calculated within one segment) often has a power-law dependence
of the form

σ(Floc(n)) ∼ nβ , (4)

and it is described by the scaling exponent β, which generally does not coincide with α. In the presence of strongly
pronounced tails of the distribution of local fluctuations (an increase in the probability of Floc values that are large
in absolute value), estimates of moments or cumulants of a higher order can be useful, for example,

μ(Floc(n))4 =
1
K

K∑

k=1

[
F

(k)
loc (n) − 〈Floc(n)〉

]4
, (5)

μ(Floc(n)) ∼nγ . (6)

2.2 Simulated data

In our study, 1/f noise was chosen as an example of simulated data. This process has statistics characteristic of
many physiological processes in the low-frequency region. To study the influence of various factors on the results
of fluctuation analysis, the following procedures were performed with this signal:

1. Adding a low frequency trend. The cases of linear, quadratic and cubic trend added separately, sequentially
and simultaneously were considered.

2. Adding artifacts. Individual “outliers” or short segments of the process with values increased by several times
were chosen as artifacts.

3. Intermittent behavior, in which white noise was added instead of part of the 1/f noise fragments.
4. Removal of a part of signal fragments with randomly selected durations and locations (the case of data loss).

2.3 Experimental procedures and data

Experimental procedures were performed on ten male mice in accordance with the standard Guide for the Care
and Use of Laboratory Animals and protocols approved by the local commission on bioethics of the Saratov State
University. Two-channel ECoG (Pinnacle Technology, Taiwan) was acquired by means of silver electrodes with a
tip diameter of 2–3 μm. The location of the electrodes was chosen at a depth of 150 μm in coordinates (L: 2.5
mm, D : 2 mm) from Bregma on either side of the midline. The head plate was installed and small burrs were
drilled under inhalation anesthesia with isoflurane. ECoG wire electrodes were inserted into the holes and fixed
with dental acrylic. Experiments were started 10 days later (recovery after this procedure).

Sleep deprivation was performed from 20:00 to 08:00 by analogy with work [22] by bringing new objects and
sounds into the room with mice [23]. Visual monitoring was carried out to confirm that the animals were learning
the objects. ECoG with a sampling rate of 2 kHz was acquired in awake mice one day before and immediately after
sleep deprivation (each recording was four hours long). At the stage of preprocessing, a Butterworth band-pass
filter with cutoff frequencies of 1 Hz and 100 Hz and a notch filter 50 Hz were applied. Artifacts were removed
using the method [24].

3 Results and discussion

3.1 Simulated data

Initially, the stability of the extended DFA method was studied for various factors that complicate the analysis
of the signal structure, including non-stationarity, the presence of artifacts, and data loss. Similar investigations
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Table 1 Numerical values of EDFA scaling exponents for 1/f noise without and with different trends

Exponent Original signal Signal with a trend

Linear Quadratic Cubic Time-varying

α 1.00 1.01 1.01 1.01 0.97

β 1.00 1.01 1.01 1.01 0.96

γ 0.99 1.00 0.99 0.99 0.95

have previously been conducted with conventional DFA. In the case of the extended algorithm, the effect of
nonstationarity on the results of computing the β exponent was discussed earlier, but the moments (or cumulants)
of the distribution of local fluctuations of a higher order were not taken into account. The performed testing on
the example of 1/f noise confirmed the stability of the results of computing the scaling exponent in the presence of
different variants of the polynomial trend added to the test signal both separately and simultaneously (Table 1). In
particular, estimated dependences of the EDFA method in the absence of nonstationarity and with added trends
have no significant distinctions. Differences in the estimates of scaling exponents in this test did not exceed 3–5%,
which is an acceptable result when analyzing signals of relatively short duration. Thus, both for the conventional
DFA method and for its extended version, the results are quite resistant to the presence of a trend. Nevertheless,
this variant of non-stationarity is not particularly difficult and can be eliminated at the pre-processing stage (to
avoid possible problems for signals of a more complex structure). Similar testing was carried out for 1/f noise
with added artifacts (data fragments with a very different range of values) and other types of non-stationarity,
including switching between different behavior (for example, adding small parts of white noise to 1/f noise). It also
showed that the computed characteristics correspond to the expected ones within a small error (in our estimates,
also not exceeding 5%). The same conclusion was made for the case of data loss (exclusion from the signal of
randomly selected segments of different durations). This result is similar to the results of the study [25], which
found significantly less sensitivity to data loss for correlated processes in contrast to anticorrelated ones.

3.2 Experimental data

Despite the results for simulated datasets, in relation to the experimental data, pre-processing was carried out
and included filtering and elimination of artifacts. Even in the case of their not very significant influence on
the estimates of scaling exponents, it was advisable to minimize errors when selecting diagnostically significant
markers of the state of the organism. Before performing statistical analysis for the entire group of laboratory
animals, estimations were performed for individual mice to identify possible differences in ECoG signals caused by
sleep deprivation and establish the range of scales where these differences are most pronounced. The effects of sleep
deprivation have previously been noted in slow-wave dynamics, but they also appear in other frequency ranges.
Using different EDFA scaling exponents, it is possible to better identify distinctions in the signals. For example,
Fig. 1 shows the dependences computed using the EDFA method for the ECoG signals of one mouse (the results
are averaged over two recording channels). According to Fig. 1a, the conventional DFA makes it possible to reveal
differences in the slopes of the lg F vs lg n dependences, and these differences are more noticeable in the initial
parts of the dependences. At the same time, estimates of the local slopes of the dependences used to estimate the
β and μ exponents show more pronounced differences in the region of long-range correlations (Fig. 1b and c).

To quantitatively describe the differences in states, we used the Student’s t test and estimated t within a sliding
window with a value 0.6 along the lg n axis. For each mouse, the results were averaged over the channels, and
statistical differences were assessed between the states before and after sleep deprivation for all 10 animals. The
results are shown in Fig. 2 with the critical value tc = 2.28 (dashed line) and allow us to note several circumstances.

1. Significant differences between states can be diagnosed using all scaling exponents, both the conventional DFA
and the extended approach. For all exponents, it is possible to choose a range of scales in which the values of
t go beyond the black line related to significant differences with p < 0.05.

2. The maximum differences between the states (according to the value t) were found in the range of lg n ∼ 2.3
using the conventional DFA. For the extended method, higher values of t in comparison with the conventional
method were obtained in the range of long-range correlations. For this reason, if we focus only on slow-wave
dynamics, then we can conclude that the extended fluctuation analysis has advantages.

3. The results obtained are an interesting example of how the efficiency of using different scaling exponents can
vary depending on the range of scales. We can conclude that careful consideration of local fluctuations in the
signal profile can be useful in identifying diagnostically significant markers of the state of the physiological
system.
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Fig. 1 Examples of dependences obtained using conventional (a) and extended DFA (b, c) for ECOG signals from one of
the mice in the states before and after sleep deprivation
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Fig. 2 Statistical analysis of differences in states before and after sleep deprivation using Student’s t test and three scaling
exponents of EDFA, namely, the scaling exponent of conventional DFA (α) and two exponents of its extension (β and γ)
computed according to Eqs. (4) and (6). The local values of the scaling exponents are computed within the lg n window
with a length of 0.6 and averaged for each mouse. Student’s t test was applied to compare local values of each exponent for
the whole group (10 mice) in two states (before and after sleep deprivation)
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4 Conclusion

This paper considers applications of extended fluctuation analysis to simulated and experimental data. The main
emphasis is on a more thorough statistical analysis of local fluctuations in the signal profile. The considered
example of 1/f noise shows the stability of the method under signal distortions (trend, intermittency, artifacts,
data loss). Further, the effects of one-day sleep deprivation on the electrical activity of the mouse brain were
studied. It is shown that the EDFA method makes it possible to diagnose changes in the ECoG signals, and
various scaling exponents can be used for this purpose. An interesting result of the study is the different efficiency
of the conventional and extended methods depending on the range of scales. Thus, the conventional method
revealed more pronounced changes in the region of smaller scales compared to the extended approach. This result
allows us to conclude that statistical analysis of local fluctuations in the signal profile is useful for a more complete
description of structural changes in physiological processes when solving diagnostic problems.
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