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Abstract The attitude determination system is an important subsystem for most satellite missions. Atti-
tude estimation is often performed using Kalman filters. In particular, for nanosatellites or CubeSats
missions, a compromise between precision in the results and low computational load must be achieved, due
to design constraints, such as reduced size and cost. In this work, it is proposed to evaluate the performance
in attitude determination of a central difference Kalman filter, and compared to an extended Kalman filter.
The application of the Kalman filter in non-linear problems requires the calculation of partial derivatives
matrices (Jacobian matrices) of the dynamics or measurements, originating the extended version of the
filter. In some cases, this calculation may be analytically impossible, complex, or even very computation-
ally expensive. The central difference filter formulation uses a polynomial interpolation to avoid computing
these Jacobian matrices. The same set of simulated data was applied to both extended and central dif-
ference filters, and the results were compared to the true values given by the simulation. The data were
simulated considering a CubeSat 3U equipped with gyroscopes, magnetometers, and sun sensor, and the
attitude was parametrized by quaternions. The values estimated by the filters are attitude quaternions and
gyroscope deviations (bias). Performance was analyzed in terms of quaternion and gyroscope bias errors,
and computational load. Finally, the analysis shows the comparative advantages and disadvantages of the
central difference filter to the extended Kalman filter and the unscented Kalman filter.
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1 Introduction

The CubeSat standard [1] emerged as a concept to allow university students and researchers to gain access to
space exploration in a faster and less costly way. This standard opened the possibility for small space missions to
be developed with reduced time, development, and launch costs. The ease of access to space that this standard
provides allows different sectors to use it in a wide range of projects, such as technical demonstration, scientific,
educational, and commercial, and in increasing quantities [2].

This standardization allows a CubeSats mission to be planned, built, and operated generally in a few years,
using standardized COTS (commercial off-the-shelf) components [3], and the launch is conducted as a secondary
payload in commercial launchers. On the other hand, the total mass, volume, and available electrical power are
quite restricted and, hence, introduce some technological challenges.

Regarding the Attitude Determination and Control System (ADCS), one of the problems in its development
for nanosatellites is the need to use small, lightweight, and low-cost sensors and actuators that meet the con-
struction constraints of the CubeSat standard. COTS sensors tend to have high noise levels. Therefore, attitude
determination methods must be designed to minimize the impact of these noises.

For nanosatellite or CubeSat missions, however, there must be a compromise between precision and low com-
putational load due to design constraints, such as reduced power, size, and cost. Therefore, onboard attitude
determination methods have generally been algebraic, such as TRIAD [4] and QUEST [5], due to the low compu-
tational burden. [6] and [7] present a redundant attitude determination system based on the QUEST method.

Approaches based on Kalman filtering rely on system dynamics and noise statistics to attain better accuracy,
especially when dealing with high noise level COTS components. For the non-linear attitude estimation problem,
the extended Kalman filter (EKF) is probably the most widely used at present. [8] proposed the MEKF formulation
to deal with quaternions. CubeSat missions have implemented this method e.g., in [9–11].

The application of the Kalman filter in non-linear problems requires the calculation of partial derivatives matrices
of the dynamics or measurements, originating the extended version of the filter. In some cases, this calculation
can be analytically complex or computationally expensive. The formulation of the central difference filter uses
polynomial interpolation to avoid computing these partial derivatives [12, 13].

However, with advances in embedded processor technology and FPGAs (Field-Programmable Gate Array), more
efficient algorithms can be implemented onboard. In the unscented Kalman filter (UKF) [14], partial derivatives
matrices are substituted by a set of sigma points [15]. The following is a list of known partial derivatives. The
computational burden is greater, but in many cases the estimation is more accurate. [16] and [17] use this approach.

Another formulation, the Central Difference Kalman filter (CDKF), also avoids the calculation of derivatives
matrices. The CDKF is based on Sterling’s polynomial interpolation formula to deal with nonlinearities [13]. CDKF
has shown improved accuracy, compared to UKF, when used with COTS components [18]. Other approaches, like
particle filtering, have shown competitive results [19].

In this work, it is proposed to evaluate the performance of attitude determination of a central difference Kalman
filter and compare it with an extended Kalman filter, in its multiplicative form [20] and an unscented Kalman
filter [21].

Data were simulated for a 3U CubeSat equipped with a magnetometer, sun sensor, and gyroscopes as attitude
sensors, and results are shown in terms of quaternion errors and Euler angle errors.

2 Central difference Kalman filter

Extended Kalman Filters (EKF) are widely used in non-linear estimation problems. EKF requires the calculation
of Jacobian matrices, which can be difficult to obtain or computationally expensive to perform in a given system.
The unscented Kalman filter (UKF) was proposed in [14] and used a set of sampling points (called sigma points)
which when propagated through a non-linear system, captures the posterior mean and covariance accurately to
the 2nd order [15].

The Central Difference Kalman Filter (CDKF) is also an estimator that avoids the calculation of derivatives
in the Jacobian matrix. The CDKF is based on Sterling’s polynomial interpolation formula that deals with non-
linearities [13]. Subsequently, the number of filter adjustment parameters was reduced, from 3 in UKF to 1 [22].
In this work, CDKF is implemented based on the sigma points approach [15]. This filter uses the scaling weight
factor h =

√
3 and H which indicates the Householder triangularization. The algorithm is shown below, using

L = 6 states.

1. Calculate sigma points χk−1:
χk−1 =

[
x̂+

k−1 x̂+
k−1 + hSk−1(i)x̂

+
k−1 − hSk−1(i)

]
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and Sk−1 =
√

P̂
+

k−1

• x̂+
k−1 and P̂

+

k−1 are estimated state and covariance from previous epoch
• Sk−1(i) is the i -th column of matrix Sk−1, with 1 ≤ i ≤ L.

2. Proceed time updated sigma points χk|k−1:
χk|k−1 = f(χk−1)

• Time update function f is described in Sect. 3.

3. Calculate the central difference matrix S−
x, k:

S−
x, k = H

[
S
(1)
x, k S

(2)
x, k SQ, k

]

•

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S
(1)
x, k(i) = w

(c)
i

(
χk|k−1(i) − χk|k−1(i + L)

)

S
(2)
x, k(i) = w

(c)
0

(
χk|k−1(i) + χk|k−1(i + L)

−2χk|k−1(0)
)

SQ, k =
√

Qk

• (i) means column index of a given matrix, 1 ≤ i ≤ L.
• Qk is the process noise covariance matrix.

4. Calculate a priori state x̂−
k and covariance P̂

−
k :⎧

⎨
⎩

x̂−
k =

∑L
i=0 w

(m)
i χk|k−1(i)

P̂
−
k = S−

x, k

(
S−

x, k

)T

5. Recalculate sigma points:
χ∗

k =
[
x̂−

k x̂−
k + hS−

x, k(i) x̂−
k − hS−

x, k(i)
]
, 1 ≤ i ≤ L

6. Obtain measurements sigma points Υk:
Υk = g(χ∗

k)

• Measurement update function g is described in Sect. 3.

7. Calculate predicted measurements ŷ−
k :

ŷ−
k =

∑L
i=0 w

(m)
i Υk(i)

8. Calculate the central difference matrix for measurements Sv, k:

Sv, k = H
[
S
(1)
y, k S

(2)
y, k SR, k

]

•

⎧
⎪⎪⎨
⎪⎪⎩

S
(1)
y, k(i) = w

(c)
i (Υk(i) − Υk(i + L))

S
(2)
y, k(i) = w

(c)
i (Υk(i) + Υk(i + L) − 2Υk(0))

SR, k =
√

Rk

• (i) means column index of a given matrix, 1 ≤ i ≤ L.
• Rk is the measurement noise covariance matrix.

9. Calculate cross-covariance matrices Pyy, k and Pxy, k:⎧
⎪⎨
⎪⎩

Pyy, k = S−
y, k

(
S−

y, k

)T

Pxy, k = S−
x, k

(
S
(1)
y, k

)T

10. Measurement update:⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kk = Pxy, k

[
Sv, k(Sv, k)T

]−1

x̂+
k = Kk

(
yk − ŷ−

k

)

P̂
+

k = S+
x, k

(
S+

x, k

)T

• S+
x, k = H

[
S−

x, k − KkS
(1)
v, k KkSv, k

]
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• Kk is the Kalman gain, and x̂+
k and P̂

+

k are measurement updated state increment and covariance, respec-
tively.

• yk is the measurement vector.

11. Estimates of quaternion q̂+
k and bias β̂

+

k :⎧
⎨
⎩

q̂+
k =

[
x̂+
1:3, k 1 − (

x̂+
1:3, k

)T
x̂+
1:3, k

]T

⊗ q̂−
k

β̂
+

k = β̂
−
k + x̂+

4:6, k

• x̂+
1:3, k refers to portion of quaternion increment in state vector, and x̂+

4:6, k refers to portion of bias increment
(see Eq. 7) in state vector.

• ⊗ means quaternion multiplication operation.

Weight parameters in steps 3, 4, 7 and 8 are:

⎧
⎪⎪⎨
⎪⎪⎩

w
(m)
0 =

h2 − n

h2
, w

(m)
i =

1
2h2

, i ≥ 1

w
(c)
0 =

√
h2 − 1
2h2

, w
(c)
i =

1
2h

, i ≥ 1

Indexes k−1 and k represent previous and current epochs, respectively, minus sign (−) means propagated state
before measurement update and plus sign (+) means state after measurement update.

3 Models

The satellite is assumed to be Earth-pointed, so the attitude is determined by the orientation of the satellite body
system relative to the orbital system. The orbital system is centered on the center of mass and keeps its z axis
pointing in the nadir direction, x axis parallel to the satellite velocity vector, and y axis completes the system.
The attitude is given by the quaternion that transforms the orbital coordinate system to the satellite system, qb

o.
The satellite is modeled as a rigid body, with a uniformly distributed mass 3U CubeSat. Dynamic and kinematic

models are obtained by:

ω̇ib = J−1
[
N − S(ωib)Jωib

]
(1)

q̇b
o =

1
2
Ω(ωob)qb

o (2)

where vector ωib represents the angular velocity of the body frame to the inertial frame, ωob represents the angular
velocity of the body frame to orbital frame, J is the inertia matrix, and N represents the total torque actuating
on the satellite in the body frame. This torque includes perturbation torques (gravity gradient, radiation pressure,
atmospheric drag), and the control torque generated by magnetic coils. All quantities are written in the body
frame. S(ω) is a skew-symmetric matrix which performs a vectorial product:

S(ω) =

⎡
⎣

0 − ωz ωy

ωz 0 − ωx

−ωy ωx 0

⎤
⎦ (3)

and

Ω(ωob) =
[

S(ωob) ωb
ob

−(ωob)
T 0

]
(4)

Angular velocities ωib and ωob are related:

ωib = ωob + ωio

= ωob + A
(
qb

o

)[
0 −ωo 0

]T (5)
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Here, A
(
qb

o

)
is the transformation matrix from orbital to body system and ωo is orbital angular velocity.

[8] introduced a multiplicative algorithm to EKF using an error quaternion δq̄, which represents a small rotation
from the predicted to the expected attitude [20]:

δq̄ = q ⊗ q̂−1 (6)

State vector is formed by quaternion increment δq, which is the vector part of the error quaternion δq̄ in Eq. (6),
and gyroscope bias β. Thus, there are L = 6 states:

x = [δq β]T (7)

The multiplicative form maintains a unitary quaternion norm (as used in quaternion estimate of step 11, Sect. 2),
and this reduced representation avoids a singular covariance matrix. Additionally, quaternion estimate q̂ can be
retrieved from increment δq whenever needed using Eq. (6) and in step 11.

To perform a discrete estimation, the model equation (2) can be written in discrete form as follows [20, 23]:

{
q̂−

k+1 = Θ
(
ω̂+

k

)
q̂+

k

β̂
−
k+1 = β̂

+

k

(8)

with ω̂+
k = ωm − β̂

+

k and

Θ
(
ω̂+

k

)
=

⎡
⎣cos

(
1
2‖ω̂+

k ‖Δt
)
I3×3 − S

(
ψ̂+

k

)
ψ̂+

k

−
(
ψ̂+

k

)T

cos
(
1
2‖ω̂+

k ‖Δt
)
⎤
⎦

ψ̂+
k =

sin
(
1
2‖ω̂+

k ‖Δt
)
ω̂+

k

‖ω̂+
k ‖ (9)

where ‖·‖ represents the vector norm, ωm is the gyroscope measurement, and Δt is the update interval. Equation
(8) constitute the time update function (function f in step 2, Sect. 2).

Measurements from the sun sensor and magnetometer are used to update quaternions and gyroscope bias in
the filter. The measurements are taken in the body frame, while the expected measurements are calculated in the
inertial frame, using simplified models as if these values were computed in the spacecraft onboard computer.

The Sun’s position in the inertial frame is calculated using a simplified model described in [6]. Prediction of
sun sensor measurement is given by taking the unity vector pointing to the Sun ŝi, and transforming to the body
frame by attitude quaternion qb

o:

ŝb = A
(
qb

o

)
A(qo

i )ŝ
i (10)

where ŝb is the predicted sun sensor measurement in the body frame, A(q) represents a transformation matrix
related to quaternion q [24], ŝi is the unity vector pointing to the Sun, written in the inertial frame.

qo
i depends on the orbital position, and since orbit determination is not part of this work, qo

i is assumed to be
known.

Magnetometer measurements are calculated in a similar way as Eq. (10). A 5th-order truncated IGRF-13 gives
the magnitude of Earth’s magnetic field in the inertial frame and then transformed to the body frame. [6] also
brings this procedure.

m̂b = A
(
qb

o

)
A(qo

i )m̂
i (11)

These predicted values, Eqs. (10) and (11), compose the filter update function (function g in step 6):

g
(
qb

o

)
=

[
m̂b

ŝb

]
(12)
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Table 1 Initial orbital elements

Semi-major axis 500 km Right ascension of ascending node 30◦

Eccentricity 0 Argument of perigee 10◦

Inclination 35◦ Initial mean anomaly 0◦

Table 2 Initial parameters for simulation

Euler angles [20 15 − 10] [◦]

Angular velocity [ − 3.5 1.5 − 2.5] [◦/s]

Gyro bias [0.035 − 0.009 0.026] [rad/s]

Table 3 Filter initialization parameters

q̂+
0 [0 0 0 1]T

β̂
+

0 [0 0 0]T [rad/s]

σm = 1 · 10−6 [T]

Rk σs = 0, 04 [rad]

σω = 4, 89 · 10−3 [rad/s1/2]

Qk σβ = 3, 14 · 10−4 [rad/s3/2]

The filter uses these simplified models because, in practice, they are computed onboard, and used in measurement
updates of the filter (step 6 of the algorithm) to retrieve predicted measurement vectors from sigma points.

Vector yk is composed of sensor measurements in the body frame, simulated as described in Sect. 4.
Process and measurement noise covariance matrices are given, respectively, by:

Qk =

[(
σ2

ωΔt + 1
3σ2

βΔt3
)
I3×3 − 1

2σ2
βΔt2 I3×3

− 1
2σ2

βΔt2 I3×3 σ2
βΔt I3×3

]
(13)

and

Rk =
[
σ2

mI3×3 03×3

03×3 σ2
sI3×3

]
(14)

4 Simulation

The simulated satellite was defined as a 3U CubeSat, total mass of 3.3 kg, and size of 10 × 10 × 30 cm, and the
resulting inertia matrix was J = diag

[
0.0275 0.0275 0.0055

]
kg m2. The orbit was circular, with an altitude of

500 km. Complete orbital elements are shown in Table 1.
Attitude determination measurements were delivered by a dedicated coarse sun sensor, a 3-axis magnetometer,

and a 3-axis gyroscope.
The sun sensor measurements were generated by adding a white noise at azimuth and elevation angles, relative

to the satellite body, from the modeled sun position. The standard deviation of white noise was 0.035 rad. The
sun’s position model is described in [25], and the eclipse model is described in [26].

The magnitude of Earth’s magnetic field was calculated using the IGRF-13 model [27], and magnetometer
measurements were generated by adding a white noise on each magnetometer axis, with a standard deviation of
3 · 10−7 T.

Gyroscope measurements were simulated as the sum of the true vehicle rotation rate, constant bias (given in
Table 2), and white noise with a standard deviation of 5 · 10−3 rad/s.

The sensors’ noise standard deviation values are consistent with COTS components.
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Fig. 1 Attitude errors with CDKF

This simulation was carried out for 5 orbital periods. A B-dot controller, driven by magnetic torquers, is actuating
the entire period. Sensors have a sampling rate of 1 Hz. Initial values of Euler angles (ZYX convention) and angular
velocity are shown in Table 2.

Kalman filters initial values were initialized as shown in Table 3.

5 Results and discussion

Results are presented in terms of quaternion errors at each epoch k :

q̂err, k = qb
o ⊗ (

q̂+
k

)−1
(15)

Here, qb
o is the attitude quaternion given by simulation, and q̂+

k is the estimated attitude quaternion. Results are
also presented in terms of Euler angle errors, defined as the difference between estimated and simulated Euler
angles.

Figure 1 shows results of attitude estimation using the CDKF (described in Sect. 2). In Fig. 1a, the vector part
of the quaternion error is shown. The scalar part is calculated in such a way as to maintain the quaternion unity
norm, and it is not shown. In Fig. 1b, corresponding Euler angle errors are presented.

Filter covariances for each state are shown in Fig. 2.
Table 4 shows error statistics (mean and standard deviation, std.dev.) for quaternions, Euler angles, and esti-

mated gyroscope bias errors. All statistics are calculated after filter convergence and excluding eclipse periods.
To compare CDKF performance, attitude estimation results from the EKF and UKF are shown. Figures 3 and

4 show errors for EKF and UKF, in terms of quaternion and Euler angles, respectively.
Statistics for EKF and UKF are shown in Tables 5 and 6, respectively.
The occurrence of large initial errors in CDKF is due to the satellite entering an eclipse before the filter converges.
CDKF can estimate gyroscope bias more accurately than both EKF and UKF, so the attitude cannot be

reliable during eclipses using these filters. When the bias is accurately estimated, the attitude can be obtained
from magnetometer measurements alone. This can be observed in subsequent eclipse periods. However, some
strategies for estimating or monitoring the bias during eclipses should be considered. Nevertheless, no strategy
was adopted as this is outside the scope of this work.
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Fig. 2 Covariance of CDKF

Table 4 Quaternion, Euler angles, and bias errors statistics for CDKF

Quaternions Euler angles [◦] Bias [10−3 rad/s]

Mean Std. dev. Mean Std. dev. Mean Std. dev.

qerr, 1 0.0004 0.0144 ψ −0.052 1.192 β1 −0.145 0.488

qerr, 2 −0.0086 0.0131 θ 0.991 1.501 β2 0.036 0.146

qerr, 3 0.0004 0.0104 φ −0.040 1.650 β3 0.124 0.375

5.1 Processing time

Figure 5 shows processing time, and Table 7 presents the mean and standard deviation for each filter. The sigma
point approach has improved precision in estimates, but its computational burden is also higher. CDKF shows a
processing time slightly smaller than UKF, although both filters are based on the sigma point approach.

6 Conclusion

In this work, an attitude and gyroscope bias estimation method using CDKF was implemented, and the results
were compared with those obtained using EKF and UKF.

In terms of precision, estimates of Euler angles in CDKF have a standard deviation of 1.5◦, and in EKF, 1.5◦
to 3.5◦. UKF has slightly higher values than CDKF, of about 1.5 to 2◦. The precision of bias estimation is about
10 times smaller for CDKF, 0.5 · 10−3 rad/s. UKF and MEKF are about 4 · 10−3 and 3 · 10−3 rad/s, respectively.

Processing time is adequate for all filters for real-time applications. However, CDKF presents a processing time
6 times larger than MEKF, but smaller than UKF. In CubeSats, a dedicated processor may be considered for
onboard attitude determination.

During eclipse periods and lack of information from sun sensors, estimation may be impaired. A possible way
to estimate the attitude during eclipses is to ensure that the bias estimate is accurate so that the gyroscope
measurements do not deteriorate substantially during this period. Otherwise, it is necessary to adopt a different
strategy to estimate the attitude and biases during eclipses.

In future work, a method must be developed to ensure that a reliable attitude can be obtained. Future work
could also include testing this filter on an actual processor and using real data.
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Fig. 3 Attitude errors with EKF

Fig. 4 Attitude errors with UKF

Table 5 Quaternion, Euler angles, and bias errors statistics for EKF

Quaternions Euler angles [◦] Bias [10−3 rad/s]

Mean Std. dev. Mean Std. dev. Mean Std. dev.

qerr, 1 0.0002 0.0247 ψ −0.046 1.306 β1 −0.197 3.651

qerr, 2 0.0041 0.0132 θ 0.464 1.450 β2 −0.053 0.948

qerr, 3 −0.0005 0.0107 φ 0.040 3.461 β3 −0.039 1.602
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Table 6 Quaternion, Euler angles, and bias errors statistics for UKF

Quaternions Euler angles [◦] Bias [10−3 rad/s]

Mean Std. dev. Mean Std. dev. Mean Std. dev.

qerr, 1 −0.0001 0.0170 ψ −0.178 1.535 β1 −0.182 3.071

qerr, 2 0.0079 0.0160 θ 0.905 1.805 β2 0.198 4.043

qerr, 3 −0.0015 0.0130 φ −0.017 1.988 β3 −0.163 3.002

Fig. 5 Processing time

Table 7 Processing time for each filter

Processing time [ms]

Mean Std. dev.

CDKF 0.87 0.23

EKF 0.15 0.13

UKF 1.13 0.26
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11. A. Finance, C. Dufour, T. Boutéraon, A. Sarkissian, A. Mangin, P. Keckhut, M. Meftah, In-orbit attitude determination
of the UVSQ-SAT CubeSat using TRIAD and MEKF methods. Sensors 21 (2021). https://doi.org/10.3390/s21217361

12. D.-J. Lee, K.T. Alfriend, Additive divided difference filtering for real-time spacecraft attitude estimation using modified
Rodrigues parameters. J. Astronaut. Sci. 57(1 & 2), 93–111 (2009)

13. M. Nørgaard, N.K. Poulsen, O. Ravn, New developments in state estimation for nonlinear systems. Automatica 36,
1627–1638 (2000)

14. S. Julier, J. Uhlmann, H.F. Durrant-Whyte, A new method for the nonlinear transformation of means and covariances
in filters and estimators. IEEE Transa. Autom. Control 45(3), 477–482 (2000). https://doi.org/10.1109/9.847726

15. R. van der Merwe, E.A. Wan, S.I. Julier, Sigma-Point Kalman filters for nonlinear estimation and sensor-
fusion–applications to integrated navigation. In: AIAA Guidance, Navigation, and Control Conference and Exhibit.
American Institute of Aeronautics and Astronautics, Providence, USA (2004). https://doi.org/10.2514/6.2004-5120

16. K. Vinther, J. Anad, K.F. Larsen, R. Wisniewski, Inexpensive CubeSat attitude estimation using quaternions and
unscented Kalman filtering. Autom. Control Aerosp. 4(1) (2011)

17. R.V. Garcia, H.K. Kuga, M.C.F.P.S. Zanardi, Unscented Kalman filter for determination of spacecraft attitude using
different attitude parameterizations and real data. J. Aerosp. Technol. Manag. 8(1), 82–90 (2016). https://doi.org/10.
5028/jatm.v8i1.509

18. L. Cao, X. Chen, A.K. Misra, Central difference predictive filter for attitude determination with low precision sensors
and model errors. Adv. Space Res. 54, 2336–2348 (2014). https://doi.org/10.1016/j.asr.2014.08.017

19. W.R. Silva, R.V. Garcia, P.C.P.M. Pardal, H.K. Kuga, M.C.F.P.S. Zanardi, L. Baroni, The extended H∞ particle filter
for attitude estimation applied to remote sensing satellite CBERS-4. Remote Sens. 15(4052) (2023). https://doi.org/
10.3390/rs15164052

20. L. Baroni, Kalman filter for attitude determination of a CubeSat using low-cost sensors. Comput. Appl. Math. 37(S1),
72–83 (2017). https://doi.org/10.1007/s40314-017-0502-5

21. L. Baroni, Attitude determination by unscented Kalman filter and solar panels as sun sensor. Eur. Phys. J. Spec. Top.
229, 1501–1506 (2020). https://doi.org/10.1140/epjst/e2020-900158-2

22. P. Han, H. Gan, W. He, D. Alazard, F. Defay, Y. Briere, Aircraft attitude estimation based on central difference Kalman
filter. In: 11th International Conference on Signal Processing (ICSP 2012), Beijing, China, pp. 294–298 (2012). https://
doi.org/10.1109/ICoSP.2012.6491658

23. F.L. Markley, J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination and Control. Springer, New York
(2014). https://doi.org/10.1007/978-1-4939-0802-8

24. A. Tewari, Atmospheric and space flight dynamics. Birkhäuser, Boston (2007). https://doi.org/10.1007/978-0-8176-44
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