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Abstract In this paper, we explore into the stochastic thermodynamics of a finite-tape information ratchet
system. By determining the entropy production of the tape-ratchet system, we derive the information
processing second law obeyed by the system. We found that the entropy production takes the form of
the non-adiabatic component in both the transient and stationary regime, with the adiabatic component
vanishes. The out-of-equilibrium stochastic behaviour is thus driven by non-adiabatic entropy production,
with the occurrence of spontaneous relaxation from nonequilibrium initial state and the switching operation
of the finite-tape information ratchet system. The observed nonequilibrium processes include (1) work
extraction by assimilating excess heat from the heat reservoir when the information ratchet functions as
an engine, or (2) dissipating work as excess heat into the heat reservoir when the information ratchet acts
as a Landauer eraser. In particular, we observe the phenomenon of irreversible work conversion into excess
heat as the information ratchet operates in the nonequilibrium stationary state.

1 Introduction

The idea of Maxwell demon has put forth the pos-
sibilities of work extraction from a single heat bath
through the process of information processing [1, 2].
There is no violation of the second law of thermody-
namics here. The new element is Landauer’s principle
where heat is dissipated as information is erased from a
memory (i.e., memory is reset to a particular state) [3],
with the implication of the converse: conversion of heat
from the heat bath to work when the memory is ran-
domized. These telltale features of thermodynamics of
information processing have been exhibited in feedback-
controlled systems [4–6], or in systems that interact
with an information reservoir [7–11]. The latter takes
the form of an autonomous information ratchet which
rectifies heat to deliver work independent of any exter-
nal driving sources. On the other hand, work expendi-
ture is required to erase information in the information
reservoir (represented by an infinite tape) with a con-
comitant dissipation of heat.
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Recently, we considered an information ratchet that
interacts with a finite-tape while being connected to a
work and a heat reservoir [12]. Such a system could cor-
respond to real-world natural systems like DNA tran-
scription [13], or to the artificial nanoscale heat engine
[14]. While the finite-tape information ratchet can act
functionally as an engine or as an eraser, it eventually
equilibrates into a “dud ” due to its limited informa-
tional capacity [12]. Nonetheless, useful work can be
accrued during the transient phase and we found that
by harnessing correlation, a memoryful ratchet accu-
mulates more work. Moreover, correlation is observed
to have the effect of driving the ratchet to a nonequi-
librium steady state, where work is continuously drawn
down from the work reservoir and converted to heat
which is dissipated wastefully into the heat reservoir
[15].

In our earlier papers [12, 15], we studied the stochas-
tic dynamics of the finite-tape information ratchet
through a Markovian transition process, and proved
that the ratchet obeys the information processing sec-
ond law (IPSL) at both the transient and steady-
state regime. We also demonstrated that correlation
enhances work extraction through two ratchet designs
by direct evaluation of the stochastic energetics. How-
ever, we have not framed the investigations in these
papers from the formal perspective of stochastic ther-
modynamics which would give clear constraints on
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Fig. 1 Schematic of the finite-tape information ratchet

allowable transition between equilibrium or nonequi-
librium states. By examining the finite-tape informa-
tion ratchet through stochastic thermodynamics in the
present paper, we aim to gain a more comprehensive
view on the thermodynamics of information processing
of this paradigmatic example. This is to be achieved
by determining the entropic production of the infor-
mation ratchet from the framework, where we first
derive the IPSL obeyed by the system and then express
the work done on the system explicitly in terms of
thermodynamic and informational quantities. We show
that the results of [12, 15] follows directly from this
framework and are consistent with it, with the latter
giving more precise description of the analytical out-
come and the underlying physical mechanism involved.
The organization of the paper is as follows. In Sect.
2, we first introduce the operation of the finite-tape
information ratchet, and then in Sect. 3, describe its
evolution in terms of stochastic thermodynamics. In
Sect. 4, we determine the entropy production of the
ratchet, and from which derive the Information Pro-
cessing Second Law (IPSL) obeyed by it in both the
transient and stationary regime. By examining the adi-
abatic and non-adiabatic components of entropy pro-
duction in Sect. 5, we studied into the different entropic
production behaviour of the ratchet as it converges
towards either the equilibrium or nonequilibrium sta-
tionary state. Through the notion of the nonequilib-
rium free energy, we uncover the generic thermody-
namic behaviour and function of the finite-tape infor-
mation ratchet by connecting entropy production to
the work output of the tape-ratchet system in Sect. 6.
Finally, Sect. 7 gives a brief discussion before we con-
clude the paper.

2 Finite-tape information ratchet

A schematic of the finite-tape information ratchet is
illustrated in Fig. 1. It shows a ratchet interacting with

a work reservoir and a heat reservoir, in addition to a
tape with a string of bits that circulates back to itself.
Our convention is that heat Q and work W are positive
when they flow to their reservoir, respectively. Qualita-
tively, the tape operates cyclically as follows.

Initially, the ratchet and the tape have no interac-
tion with each other. At this stage, we assume that the
ratchet and the tape do not retain any energy indi-
vidually. The first process of the cycle is the attach-
ment of the ratchet to a bit of the tape. During this
process, the ratchet is connected to the work reser-
voir. Work is then extracted by the ratchet to be con-
verted to the internal energy of the tape-ratchet sys-
tem. Let this amount of work performed by the work
reservoir during the attachment process be −Wa. The
next stage of the cycle is the thermal transition process.
During this process, the tape-ratchet system interacts
with the heat bath or heat reservoir, changing the com-
bined bit-ratchet state. This process is mediated by the
transfer of an amount of heat −Q from the heat reser-
voir to the tape-ratchet system, corresponding to the
change of internal energy of the tape-ratchet system.
At the end of this process, the total internal energy
of the tape-ratchet system is −Wa − Q. After thermal
transition, the next process of the cycle is the detach-
ment of the ratchet from the earlier attached bit. In
this process, the ratchet is connected to the work reser-
voir once more. Because the ratchet and the tape do
not retain any energy individually when not attached
to each other, all of the internal energy −Wa − Q is
transferred to the work reservoir. Therefore, the work
performed by the work reservoir during the detachment
process is −Wd = Wa + Q. The final step of the cycle
is the shifting of the tape by one bit so that the ratchet
will interact with the next bit of the tape in the next
cycle. We refer to this process as switching. During
switching, there is no interaction whatsoever between
the ratchet, tape, heat reservoir, and work reservoir.
Therefore, there is no exchange or flow of energy dur-
ing the switching process. The total amount of work
performed by the work reservoir in one cycle is, there-
fore, −W = −Wa −Wd = −Wa +Wa +Q = Q. In other
words, the work reservoir loses an amount of mechanical
energy equivalent to the amount of heat gained by the
heat reservoir. Note that the converse is also true, i.e.,
W = −Q. In this case, the amount of mechanical energy
gained by the work reservoir is equal to the amount of
heat lost by the heat reservoir. Thus, the work produc-
tion is equivalent to the heat −Q extracted from the
heat reservoir.

3 Stochastic Thermodynamics

Let us now characterize the discrete-time stochastic
evolution of the finite-tape information ratchet. First,
we specify the joint tape-ratchet states of the ratchet
by the probability distribution p. For an information
ratchet with NR ratchet states and a tape of L bits, p is
a 2LNR ×1 vector. Second, the cyclical operation of the
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ratchet interacting with a bit is captured by the matrix
O(L). This operation involves both a thermal transition
sub-step and a switching sub-step. In the thermal tran-
sition sub-step, a transition matrix M (L) of a discrete-
time Markov chain accounts for the stochastic transi-
tion of the bit-ratchet state due to thermal transition.
On the other hand, during the switching sub-step, a
switching matrix S(L) moves the tape one-step to the
left, with the output bit shifts from the leftmost end
to the rightmost end of the tape. Thus, the operation
O(L) is a composite two-step process:

O(L) = S(L)M (L), (1)

where the matrices O(L), M (L) and S(L) all have the
same dimension of 2LNR × 2LNR. The stochastic evo-
lution is thus given by

p′ = O(L)p, (2)

where

p̃ =M (L)p, (3)

p′ =S(L)p̃. (4)

Note that the M (L) matrix is constructed from the M (1)

matrix, which is a left stochastic matrix of the 1-bit
tape. Furthermore, we assume that M (1) is a tridiagonal
matrix. See Ref. [12, 15] for the construction of M (L)

and S(L).
As our finite-tape ratchet system is autonomous

without external energy perturbation, there is no over-
all change to the energy level of the system due to work
considering both the thermal and switching sub-steps
together. The ratchet essentially mediates energy trans-
fer between the heat reservoir and the work reservoir as
described in the last section. The energy that is effec-
tively being transferred is heat when the tape-ratchet
system interacts with the heat reservoir during the ther-
mal transition sub-step. This heat energy is converted
to (or from) the gravitational potential energy which is
capable of doing work in the work reservoir.

We assume that the mediation of energy transfer by
the tape-ratchet system is performed through its energy
levels. In the design of the tape-ratchet system, there is
interaction energy resulting from the coupling between
the ratchet and a bit from the tape. The magnitude of
this interaction energy depends on the combined bit-
ratchet state. Therefore, different bit-ratchet states can
be designed to have different levels of energy. The inter-
action energy can also be thought of as the internal
energy of the tape-ratchet system.

In our set-up, we have fixed the energy levels ΔEji ≡
Ej − Ei of our tape-ratchet system, where Ei corre-
sponds to the energy of the interacting bit-ratchet state
i of the tape-ratchet system. Then, the transition from
state i to state j corresponds to an exchange of heat

with the heat reservoir. Hence, we expect the fulfill-
ment of the condition of detailed balance:

M
(1)
ji peqi = M

(1)
ij peqj , (5)

by the stochastic transition from state i to state j quan-
tified by the transition probability M

(1)
ji , which is the

(j , i)-entry of the left stochastic thermal transition
matrix M (1) for a 1-bit tape. Note that the probabilities

peqi =
e−βEi

∑
k e−βEk

= exp[β(F − Ei)], (6)

are given by the canonical ensemble in equilibrium sta-
tistical mechanics with β ≡ 1/kBTr being the inverse
temperature, Tr the temperature of the heat bath, and
F its Helmholtz free energy. These equations then lead
to

Mij

Mji
=

peqi
peqj

= exp[β(Ej − Ei)], (7)

where we have withheld the superscript (1) to sim-
plify notation. In fact, Eq. (7) continues to hold for
the matrix M (L) since detailed balance holds within the
interacting bit-ratchet and not with the non-interacting
bits. Note that subsequent Mij is assumed to con-
tain the superscript (L) unless otherwise specified. This
equation implies

ΔEji ≡ Ej − Ei = kBTr ln
(

Mij

Mji

)

. (8)

Specifically, the interaction with the work reservoir to
accumulate (or expend) the mechanical energy from the
work conversion (with −Q = W earlier) occurs during
the attachment of input bit to and detachment of out-
put bit from the ratchet.

Thus, the expected work production W in a single
bit-ratchet interaction at any arbitrary time can be
expressed as

W = ΔE = kBTr

∑

i, j

Mjipi ln
(

Mij

Mji

)

, (9)

which is the sum of the respective work Wji ≡
kBTr ln(Mij/Mji) (originating from thermal transition
i → j) weighted by the corresponding probability Mjipi

for such a transition to occur. By setting kBTr = 1 to
simplify the W expression, we have

W =
∑

i, j

Mjipi ln
(

Mij

Mji

)

. (10)

We emphasise that the probabilities pi here are the
instantaneous probability distribution which is contin-
uously evolving as the information ratchet operates. It
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is not the canonical distribution peqi above which is used
to define the energy level of the tape ratchet system.

Next, the change in entropy of the tape-ratchet sys-
tem is evaluated by the Shannon entropy:

ΔH = H(p′) − H(p) =
∑

i

pi ln pi −
∑

j

p′
j ln p′

j .

(11)

Because S(L) is a permutation matrix, its operation
according to Eq. (4) is basically a reordering of prob-
abilities in p̃ without changing its values. Thus, p̃ and
p′ have the same elements, and H(p̃) = H(p′). Hence,
we have

ΔH =
∑

i

pi ln pi −
∑

j

p̃j ln p̃j . (12)

Now, by inserting
∑

j Mji = 1 into the first-term on the
right of Eq. (12) and applying Eq. (3) to the second-
term on the right, we obtain

ΔH =
∑

i

⎛

⎝
∑

j

Mji

⎞

⎠pi ln pi −
∑

j

(
∑

i

Mjipi

)

ln p̃j ,

=
∑

i, j

Mjipi ln
(

pi

p̃j

)

. (13)

Note that the symbol Δ represents the change of its
associated variable within a thermal transition sub-
step. The variable is not to be taken as additive within
the full time-step.

Let us illustrate the operation of the finite-tape infor-
mation ratchet through an explicit example. For this,
we consider a two-state ratchet, i.e., NR = 2, with the
following tridiagonal thermal transition matrix M for
L = 1:

MT2S
1-bit =

⎛

⎜
⎜
⎜
⎝

0 ⊗ A 0 ⊗ B 1 ⊗ A 1 ⊗ B

0 ⊗ A ε 1 − p 0 0
0 ⊗ B 1 − ε 0 q 0
1 ⊗ A 0 p 0 1 − ε

1 ⊗ B 0 0 1 − q ε

⎞

⎟
⎟
⎟
⎠

,

(14)

where the interacting bit-ratchet state B⊗R is indicated
with B = {0, 1} and R = {A, B}. Figure 2 illustrates
the Markov transitions between these interacting bit-
ratchet states in the form of a state transition diagram
with transition probabilities parametrized by (p, q, ε).
This ratchet design is termed the T2S tape-ratchet sys-
tem, which has also been exemplified in [12, 15].

Because we assume that O(L) is a regular matrix,
the stochastic dynamics will converge to a stationary
distribution, i.e., π = O(L)π, in the long time limit by
the Perron-Frobenius theorem. In consequence, ΔH =
0 in the steady state. Moreover, the stationary state

Fig. 2 Transition state diagram of the interacting bit-
ratchet state B ⊗ R of the T2S tape-ratchet system with
the corresponding transition probabilities

is observed to take either of the following two forms
through Eqs. (2), (3) and (4):

π = M (L)π, π = S(L)π (15)

or

π̃ = M (L)π, π = S(L)π̃. (16)

Eq. (15) implies that π = peq. Therefore, the T2S tape-
ratchet system is at equilibrium in the steady state if
it takes the first form (Eq. 15), since the thermal tran-
sition sub-step has converged to the canonical distri-
bution. On the other hand, if the tape-ratchet system
were to take the second form (Eq. 16), it would have
reached a nonequilibrium stationary state whose out-of-
equilibrium dynamics results from the switching oper-
ation.

4 Information processing second law

By considering the information ratchet with its finite-
tape, heat reservoir, and work reservoir as an isolated
system, its total entropy production is given as follows:

ΔStot = kBΔH +
Q

Tr
≥ 0. (17)

Note that the first term describes the entropy change
due to the tape-ratchet system, while the second term
indicates the entropy change of the heat reservoir (with
temperature Tr) due to an amount of heat Q flows into
it. There is no entropy change for the work reservoir.

Because Q = −W , and by making the system of
equation dimensionless (i.e. leaving out kBTr), we have:

ΔH − W ≥ 0, (18)

which is the information processing second law for the
finite-tape information ratchet [12].

Alternatively, we can also consider the tape-ratchet
sub-system of the finite-tape information ratchet as a
non-isolated system. In this context, the entropy change
ΔS of the tape-ratchet system can be expressed as a
sum of two components:

ΔS = ΔeS + ΔiS. (19)
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The first component ΔeS is the entropy flow into the
tape-ratchet system, while the second component ΔiS
is the entropy production of the tape-ratchet system.

With ΔS = ΔH, ΔeS = −Q (where we have again
left out kB and Tr to the respective entropies), and
using W = −Q, we obtain the entropy production ΔiS
from Eq. (19) as follows:

ΔiS = ΔH − W. (20)

Because

ΔiS ≥ 0, (21)

we again obtain the information processing second law
given by Eq. (18). Moreover, by inserting Eqs. (10) and
(13) into Eq. (20), we observe that the entropy produc-
tion ΔiS of the tape-ratchet system takes the form:

ΔiS =
∑

i, j

Mjipi ln
(

Mjipi

Mij p̃j

)

. (22)

5 Adiabatic and non-adiabatic entropy
production

We can break the entropy production given by Eq.
(22) into a discrete-time version of adiabatic entropy
production ΔaS and non-adiabatic entropy production
ΔnaS [16–19] as follows:

ΔiS = ΔaS + ΔnaS, (23)

where

ΔaS =
∑

i, j

Mjipi ln

(
Mjip

st
i

Mijpstj

)

, (24)

and

ΔnaS =
∑

i, j

Mjipi ln
(

pstj pi

p̃jpsti

)

. (25)

Our purpose of decomposing entropy production into
these two basic components is to observe the man-
ner in which the finite-tape information ratchet system
is being brought out of equilibrium. Specifically, non-
adiabatic entropy production results from the system
being driven out of equilibrium while adiabatic entropy
production arises from the action of steady nonequilib-
rium constraints.

It is straightforward to show that ΔaS ≥ 0 and
ΔnaS ≥ 0 (see Appendix A.1 for a proof), which con-
forms with Eq. (21). With psti being the stationary dis-
tribution of the thermal transition sub-step M which is

a tridiagonal matrix in our design as indicated in Sect.
3, we have

psti = peqi , (26)

where peqi is the thermal equilibrium distribution. In
consequence, ΔaS = 0, because Mjip

eq
i = Mijp

eq
j due

to detailed balance, which shows that the information
ratchet is not subjected to any nonequilibrium con-
straint in the steady state. This implies that

ΔiS = ΔnaS, (27)

with the out-of-equilibrium dynamics of the system
being driven by the initial state and the switching oper-
ation.

It is possible to split ΔnaS into the following entropic
terms:

ΔnaS = ΔSex + ΔH, (28)

where ΔSex is the excess entropy change and it is equal
to

ΔSex =
∑

i, j

Mjipi ln
(

pstj
psti

)

. (29)

Furthermore, ΔSex = Qex/Tr, where Qex is the excess
heat [18, 20, 21]. It is easy to see that Eq. (25) is
obtained by combining Eqs. (13) and (29). Note that
ΔnaS ≥ 0 implies ΔSex + ΔH ≥ 0 which is the second
law of steady-state thermodynamics of Hatano and Sasa
[22]. At the steady state, ΔH = 0 for the finite-tape
information ratchet, leading to

ΔnaS = ΔSex, (30)

which is illustrated in the insets of Figs. 3 and 4.
There are two stochastic behaviour for the finite-tape

information ratchet. It either converges to an equilib-
rium stationary state (see Fig. 3) or a nonequilibrium
stationary state (see Fig. 4 for L �= 1). In the former
case, we have ΔnaS = ΔSex = 0 in the steady state
where the excess heat Qex is zero. But before reach-
ing the steady state, ΔnaS > 0 in the transient phase
as the information ratchet relaxes to the steady state
from a nonequilibrium initial state [18]. For the latter
case where the ratchet approaches the non-equilibrium
stationary state (except for L = 1), we again observe
transient relaxation to the steady state with ΔnaS > 0.
However, unlike the former case, ΔnaS continues to
be positive at the steady state. This results from the
switching operation which drives the system out of equi-
librium leading to an irreversible flow of excess heat Qex

to the heat bath. The origin of this excess heat energy
is the −W from the work reservoir to be discussed in
the next section.
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Fig. 3 Non-adiabatic entropy production of the memoryful
T2S tape-ratchet system [12, 15] with stochastic dynamics
that converges to the equilibrium stationary state. The tran-
sition probabilities of the ratchet are fixed at (p, q, ε) = (0.2,
0.3, 0.25). Entropy production is observed to be larger for
longer tape length as it converges to zero in the steady state.
The inset shows the entropic evolution of the system for
L = 3. The ratchet is observed to operate as an engine here
with ΔH > 0 and positive work (W = −ΔSex > 0) accrued.
Note that ΔnaS = ΔSex + ΔH at each time point

6 Work under nonequilibrium conditions

Let us now take the perspective where the second
law is applied when the system is under the condi-
tion of nonequilibrium. This is expressed by relating the
entropy production ΔiS to the change in the nonequi-
librium free energy of the information ratchet system
ΔF which is defined as follows [23–25]:

ΔF = ΔE − TrΔS. (31)

Using Eq. (19), we have

ΔF =ΔE − TrΔeS − TrΔiS

=ΔE + Q − TrΔiS

= − TrΔiS, (32)

where we have employed Eq. (9) to obtain ΔE + Q =
W + Q, and noting that Q = −W , ΔE + Q vanishes.
This leads to:

ΔiS = −ΔF , (33)

where we have suppressed Tr. Noting that ΔiS ≥ 0, we
have

ΔF ≤ 0. (34)

Fig. 4 Non-adiabatic entropy production of the memory-
ful T2S tape-ratchet system [12, 15] with transition prob-
abilities fixed at (p, q, ε) = (0.2, 0.3, 0.9). The stochastic
dynamics of the ratchet converges to an equilibrium sta-
tionary state for L = 1 and to a non-equilibrium stationary
state for L �= 1. Entropy production is observed to maintain
at a positive value both in the transient and steady state
regime for the nonequilibrium stationary states. The inset
shows the entropic evolution of the system for L = 2. The
ratchet is observed to act as an eraser here with ΔH < 0
and an expenditure of work (i.e., W = −ΔSex < 0). Note
that ΔnaS = ΔSex + ΔH at each time point

Using the fact that the nonequilibrium free energy dif-
fers from the equilibrium free energy by a change in an
informational term I [26], we can express ΔF in the
following manner:

ΔF − ΔF eq = TrΔI, (35)

with

I = kB

∑

i

pi ln
(

pi

peqi

)

. (36)

I is also known as the relative entropy between the dis-
tribution pi and the distribution peqi . Because ΔF eq =
0 due to the finite-tape information ratchet being
autonomous and interact with a single heat reservoir,
we have

ΔF = ΔI, (37)

where we again suppress the temperature Tr. Thus,

ΔiS = −ΔI, (38)
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or

ΔI ≤ 0. (39)

Note that

ΔI =
∑

i

p̃i ln
(

p̃i

peqi

)

−
∑

j

pj ln

(
pj

peqj

)

, (40)

where kB has been suppressed.
Moreover, according to Eqs. (27) and (28), together

with Eq. (38), we have

ΔI = −ΔSex − ΔH. (41)

For the equilibrium stationary state of the finite-tape
information ratchet [15] where it obeys

peq = Mpeq, (42)

with peq being its equilibrium probability, Eq. (39)
implies that the ratchet tends towards the canonical
distribution since I ≥ 0. On the other hand, in the case
of nonequilibrium stationary state [15] where

p̃neq = Mpneq, (43)

with pneq = Sp̃neq and p̃neq �= pneq, the ratchet main-
tains in the nonequilibrium steady state with ΔI <
0. Overall, the result in Eq. (34) indicates that the
tape-ratchet system tends to lower its free energy.
And because of Eq. (37), we see that this reduction
behaviour results from its being away from equilibrium
and the tendency of the ratchet relaxing towards equi-
librium at a time scale that depends on the design of the
ratchet system [12]. Thus, nonequilibrium initial condi-
tion of the ratchet is essential for the ratchet to act as
an engine due to its autonomous nature.

Finally, equating Eqs. (20) with (33), (38), as well as
Eqs. (27) and (28), we obtain

W = ΔH + ΔF = ΔH + ΔI = −ΔSex. (44)

Note that an alternative proof of part of this equa-
tion is given in Appendix A.2. At the steady state, the
finite-tape information ratchet converges to a station-
ary probability distribution as discussed at the end of
Sect. 3, with the consequence of ΔH = 0. In this case,
we have

W = ΔI. (45)

If the stationary distribution is the equilibrium proba-
bility distribution, Eq. (45) indicates that W = 0. On
the other hand, if the ratchet converges to a nonequi-
librium stationary state, Eq. (39) shows that W < 0.
The latter indicates that a flux of energy flows from the
work reservoir to the heat reservoir, which is a repre-
sentative feature of a system out-of-equilibrium. Note
that these results conform to those of [15], and we have
proven them here using a different method.

Under normal operating condition, we expect the
finite-tape information ratchet to assimilate heat from
a single heat bath which is converted to work, i.e. (posi-
tive) work production, when ΔH > −ΔI > 0 according
to Eqs. (44) and (39). Thus, in order to extract work,
the information ratchet needs to write information into
the tape with an entropy increase ΔH that exceeds
the associated decrease in relative entropy ΔI. This is
the engine regime of the finite-tape information ratchet.
Conversely, to erase information from the tape such
that ΔH < 0, Eqs. (39) and (44) imply that W < 0.
Thus, work needs to be drawn from the work reser-
voir for the information ratchet to acts as an eraser,
with heat generated in the erasure process being dissi-
pated to the heat reservoir. This is where the finite-tape
information ratchet makes contact with the Landauer
principle. Finally, when −ΔI > ΔH > 0, we observe
that W < 0. In this case, work is expended even though
the entropy of the tape-ratchet system increases. This
is the regime of ‘dud’.

Interestingly, we observe from Eq. (44) that the
work is negative of the excess entropy, or more pre-
cisely, the negative of the excess heat Qex. In the case
when the finite-tape information ratchet operates as
an engine and converges to the equilibrium stationary
state, −Qex flows from the heat reservoir to the work
reservoir (see inset of Fig. 3) before it approaches zero
in the steady state. The extracted work is thus obtained
through the accumulation of −Qex. Conversely, if the
finite-tape information ratchet were to act as an eraser
while approaching a nonequilibrium stationary state,
we notice that −W = Qex flows from the work reservoir
to the heat reservoir in both the transient and steady-
state regime (see inset of Fig. 4). Thus, heat dissipation
here is that of the excess heat Qex.

7 Discussion and conclusion

By determining the entropy production of the finite-
tape information ratchet, we uncovered Eq. (44) and
from which obtain the expected result that the inac-
cessible part of work is given by the entropy produc-
tion ΔiS. To reach optimal work W = ΔH, we require
ΔiS = 0 but this would imply the system is in the
equilibrium state since ΔiS = −ΔI. At the equilib-
rium state, W = ΔH = 0 and the system acts as a
dud.

For our finite-tape information ratchet system, it is
more precise to express the change of entropy as fol-
lows: ΔH = ΔHBR + ΔC, where ΔHBR is the entropy
change of the interacting bit-ratchet state, and ΔC is
the change in correlation between the interacting bit-
ratchet state and the rest of the non-interacting bits.
This formulation leads to

W = ΔHBR + ΔC + ΔI, (46)

through Eq. (44). Next, let us apply two of our results
in [15]: (i) W ≤ ΔHBR and (ii) ΔC ≥ 0. The result in
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(i) leads to

ΔC ≤ −ΔI (47)

through Eq. (46). Considering the steady state with
ΔC > 0, Eq. (47) indicates that −ΔI > 0, which
signifies the presence of a nonequilibrium stationary
state. On the other hand, if the finite-tape informa-
tion ratchet were to converge to an equilibrium sta-
tionary state, we will have −ΔI = 0, and this implies
through Eq. (47) and (ii) that ΔC = 0. Interestingly,
we have proven the same two key outcome of [15] here
using a different approach. Moreover, ΔC is known to
have the connotation of modularity dissipation [27, 28].
Modularity dissipation arises from the loss of global
correlations during modular operation. Because our
information ratchet operates modularly with interac-
tion occurs mainly between bit B and ratchet R, it
suffers from modularity dissipation. This is exhibited
by the additional positive contribution of ΔC in the
entropy production of the information ratchet system:
ΔiS = ΔHBR − W + ΔC.

In conclusion, the stochastic thermodynamic formal-
ism provides key insights into the physical consequences
of nonequilibrium conditions on the thermodynamic
functioning of the information ratchet system, which
is as yet unaccounted for in our earlier works [12, 15].
First, the formalism shows that an additional amount
of ΔI (see Eq. 44) has to be included in the work
done on the information ratchet system as a result
of nonequilibrium effects. Second, it demonstrates that
the entropy production in our information ratchet sys-
tem is given solely by the non-adiabatic component,
with the out-of-equilibrium dynamics of the system
driven by the switching operation and the nonequilib-
rium initial state. Moreover, the fact that the entropy
production of the information ratchet is non-adiabatic
implies that the flow of heat into (or out) of the informa-
tion ratchet when it functions as an engine (or eraser)
is the excess heat −Qex (Qex) of nonequilibrium ther-
modynamics [20]. In particular, when the information
ratchet operates at the nonequilibrium stationary state,
the formalism reveals that the process of conversion of
work into excess heat is irreversible [29]. These out-
come from stochastic thermodynamics clearly illustrate
the out-of-equilibrium operations of the information
ratchet system, and we expect even more interesting
results if we were to expand our treatment to ratchet
design where the adiabatic entropy production is posi-
tive with nonzero housekeeping heat [30]. We believe
further investigation along this line with Markovian
dynamics that violate detailed balance will yield new
organizing principles and thermodynamic behaviour
from the finite-tape information ratchet system, which
we will pursue as future work.
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Appendix A mathematical proofs

A.1 Positivity of the adiabatic and non-adiabatic
entropy production

By using − ln x ≥ 1 − x, we see that

ΔaS =
∑

i, j

Mjipi ln

(
Mjip

st
i

Mijpst
j

)

= −
∑

i, j

Mjipi ln
(

Mijp
st
j

Mjipsti

)

≥
∑

i, j

Mjipi

(

1 − Mijp
st
j

Mjipsti

)

=
∑

i, j

Mjipi −
∑

i, j

pi

Mijp
st
j

psti

=
∑

i

pi

∑

j

Mji −
∑

i

pi

psti

∑

j

Mijp
st
j

=
∑

i

pi −
∑

i

pi

psti
psti

=1 −
∑

i

pi

=1 − 1
=0,

where we have used
∑

i pi = 1 and
∑

j Mji = 1. Simi-
larly, we observe that

ΔnaS =
∑

i, j

Mjipi ln
(

pstj pi

p̃jpsti

)

= −
∑

i, j

Mjipi ln

(
p̃jp

st
i

pstj pi

)

≥
∑

i, j

Mjipi

(

1 − p̃jp
st
i

pstj pi

)

=
∑

i, j

Mjipi −
∑

i, j

Mji
p̃jp

st
i

pstj

=
∑

i

pi

∑

j

Mji −
∑

j

p̃j

pstj

∑

i

Mjip
st
i
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=
∑

i

pi −
∑

j

p̃j

pstj
pstj

=1 −
∑

j

p̃j

=1 − 1
=0.

A.2 ΔE = W = ΔH + ΔI

First, we note that

ΔE =
∑

ij

Mjipi(Ej − Ei). (A1)

Because Ej − Ei = ln(Mij/Mji) according to Eq. (8),
we have

ΔE =
∑

ij

Mjipi ln
(

Mij

Mji

)

= W , (A2)

based on Eq. (10). Also,

ΔE =
∑

ij

Mjipi(Ej − Ei)

=
∑

ij

MjipiEj −
∑

ij

MjipiEi

=
∑

ij

MijpjEi −
∑

ij

MjipiEi

=
∑

i

∑

j

MijpjEi −
∑

i

∑

j

MjipiEi

=
∑

i

p̃iEi −
∑

i

piEi

= −
∑

i

p̃i ln
(

e−Ei

Z0

)

+
∑

j

pj ln
(

e−Ej

Z0

)

= −
∑

i

p̃i ln peqi +
∑

j

pj ln peqj , (A3)

where peqi = e−Ei/Z0 with Z0 =
∑

i e−Ei .
From Eq. (40), we have

ΔI =
∑

i

p̃i ln

(
p̃i

peq
i

)
−

∑

j

pj ln

(
pj

peq
j

)

=
∑

i

p̃i ln p̃i −
∑

i

p̃i ln peq
i −

∑

j

pj ln pj +
∑

j

pj ln peq
j

=
∑

i

p̃i ln p̃i −
∑

j

pj ln pj −
∑

i

p̃i ln peq
i +

∑

j

pj ln peq
j

= − ΔH + ΔE, (A4)

where we have used Eqs. (12) and (A3). Thus, we have

ΔE = W = ΔH + ΔI. (A5)
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