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Abstract Neurons communicate primarily through synapses. A neuron is usually affected by multiple
synapses, which could be chemical/electrical or excitatory/inhibitory ones at the same time. Here, we
make the realistic assumption that a excitatory and inhibitory balanced modular small-world network is
established and focuses on the effects of hybrid chemical and electrical synapses, noise and time delay on
coherence resonance of the constructed network. It is found that when the ratio f of chemical synapses to
electrical synapses approaches odd ratios, coherence resonance is better than those f close to even ratios
for appropriate noise intensities. Furthermore, with f increasing, it is observed that effects of chemical
and electrical synapses on coherence resonance are nearly opposite. It indicates that electrical synapses
are more efficient than chemical ones. Meanwhile, multiple coherence resonances are observed when time
delay is introduced into the network, and it is independent of f . Finally, we demonstrate that coherence
resonance decreases as the number of subnetworks increases, and when the number of subnetworks is larger,
the resonance behaviour weakens or vanishes with increasing f .

1 Introduction

Noise possesses great significance in the investigation
of brain and nonlinear dynamical systems. Especially
in systems of neurons, the transmission of information
by neurons in a noisy environment induces a variety of
collective dynamic behaviours [1, 2], the most promi-
nent of which are stochastic resonance (SR) and coher-
ence resonance (CR). The former is the scenario where
the ratio of the output signal to the noise in a nonlin-
ear system is optimal when driven by both noise and
a weak external signal [3, 4]. The latter refers to the
system’s response to pure noise without external sig-
nal [5, 6], also known as autonomous SR. In the past
decades, SR and CR in biological and neuronal systems
have been an interesting topic and have been exten-
sively investigated [7, 8]. Intriguingly, coherence reso-
nance could indeed enhance neural communication or
enhance weak signal detection by processing informa-
tion and encoding between brain regions [9–11]. There-
fore, investigation of coherence resonance is critical to
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a deeper understanding of the brain and neural net-
works. The research on CR was initially conducted in
an excitable system with Fitz Hugh–Nagumo neuron
[5]. Further development has broadened the scope to
a variety of complex systems and networks consisting
of different neuron models with realistic elements. It
has been observed as spatial coherence resonance in
excitable medium with additive noise [12], the dou-
ble coherence resonance with FitzHugh–Nagumo neu-
ron [13], and multiple firing coherence resonance with
HodgkinCHuxley neurons [14]. On the other hand, it
was revealed that phase noise, bounded noise, and white
noise all have significant effects on coherence resonance
[15–17]. Further topologies have shown that coherence
resonance exists in small-world networks, lattice net-
works and one or two layers of networks [18–20].

Neurophysiological studies have reported that net-
works of cortical neurons in cats and macaque monkeys
exhibit properties of modularity [21, 22]. A modular
network consists of a number of clusters, where most
modules are made up of nearby neurons and the con-
nections within each cluster are densely than among
clusters [23]. It is recognized as a fundamental orga-
nization of neural activity in the brain. Recently, some
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investigations have provided novel insights that commu-
nity structure could facilitate the availability of infor-
mation transmission and predict brain age [24–26]. Fur-
thermore, the existence of small-world structures in
neuron assemblies was confirmed by the modular char-
acteristic [27]. However, there has been less research
on modular neural networks with small-world topology
in the past, and their dynamic behavior is primarily
focused on synchronization or stochastic resonance or
stochastic multi-resonance. [28–31]. Therefore, it makes
great sense to explore the phenomenon of coherence res-
onance in modular neural networks with small-world
topology.

Especially, in the brain, neuronal communica-
tion occurs primarily through two different types of
synapses: chemical and electrical, each of which can
be further subdivided into two types of coupling: exci-
tatory and inhibitory coupling [32, 33]. Early studies
focused on coupling of electrical or chemical excitable
synapses [34, 35]. Subsequent evidences proved that
electrical synapses and chemical synapses could coex-
ist in the nervous system [36–38]. In this vein, the
influences of hybrid electrical and chemical synapses
on neuronal dynamics were the subject of widespread
interest. For example, Kopel et al. found that chemi-
cal and electrical synapses play a supplementary role in
adjusting synchronization [39]; Yu et al. reported that
hybrid electrical and chemical synapses promoted the
transmission of information in neuronal activities [40].
However, these studies of hybrid electrical and chem-
ical synapses only considered the excitatory synaptic
input. More interesting evidence has recently confirmed
that the normal function of cortical neuronal networks
requires a homeostatic control that relies on a func-
tional balance of excitatory–inhibitory synaptic inputs
in a ratio of approximately 4 : 1 [41–43]. Here, we refer
to it as the E–I balanced state for simplicity. Yet, corre-
sponding to this, studies of hybrid excitatory–inhibitory
synapses have focused solely on chemical coupling [14,
44] or electrical coupling [19, 45], without taking into
account the E–I balanced state or the coexistence of
electrical and chemical synapses. Given these issues,
questions are automatically brought out what are the
effects of the hybrid electrical and chemical synapses
on coherence resonance in the E–I balanced state and
how they affect the behaviors of modular small-world
neuronal networks.

In addition, time delay is designed to account for as
an significant factor in our work. For biological neu-
ron, the limited speed of propagation and the trans-
mission of information from dendrites and synapses can
inevitably produce time delays [46, 47]. In the nervous
system, the investigation of time delays is of great value
and has attracted a great deal of attention in the last
few years. A large body of researches have revealed
that time delay has a significant impact on dynamic
behaviour. For example, it was demonstrated that spa-
tiotemporal order of coupled neural networks could be
enhanced or destroyed by time delay [48, 49], as well as
synchronization transitions could be induced by time
delay in neural networks [50–52]. Most importantly,

time delay could induce a series of resonance behav-
iors, including coherence resonance [53, 54], stochastic
resonance [7, 55] and stochastic multi-resonance [56,
57]. Particularly, in previous studies, we proposed the
new concept of partial time delay and shown that mul-
tiple synchronization transitions and stochastic multi-
resonance could be induced with changes of the proba-
bility of partial time delay [58, 59].

Inspired by these facts, to expand the scope of coher-
ence resonance over complex neural networks and to
incorporate realistic neurophysiological features into
models of neural networks, we developed a modular
small-world network in E–I balanced state, in which all
neurons are subjected to hybrid electrical and chemical
synaptic inputs simultaneously and in noisy and time
delayed environments. This paper is structured as fol-
lows. In Sect. 2, we mainly present the mathematical
model and measurement method of characterizing the
coherence resonance behavior. The results of the neural
network are exhibited in detail in Sect. 3. Finally, there
is a brief discussion in Sect. 4 and some conclusions in
Sect. 5.

2 Mathematical model and measure

2.1 The topology of neuronal network

In these contexts, then how do we evolve a modular
network with hybrid electrical and chemical synapses
in E–I balanced state? Since subnetworks of modular
network can be regular networks, small-world networks
or scale-free networks, we implement the small-world
topology on both inter and intra-subnetwork. Firstly,
for the intra-subnetwork topology, starting with a ring
network with N nodes, each node is connected to its
K = 6 nearest neighbors. In accordance with the pro-
cedure suggested by Watts and Strogatz [60], each con-
nection is reconnected to another node at random with
probability p and without self-loop. Since p > 0.3
rewired networks have random network characteristics
[60], we set rewiring probability p = 0.1 in each sub-
network. Then for the inter-subnetwork topology, we
hypothesise that the number of subnetworks is M and
that the subnetworks are also arranged in a ring, in
which the neurons in each subnetwork are randomly
connected to several pairs of neurons in their two closest
subnetworks. Suppose that different subnetworks are
connected low probability pinter, i.e., there are pinterN

2

links among different subnetworks. Here, the number of
nodes of each subnetwork N is related to the number of
subnetworks M and the size of modular network. Thus,
if the size of the modular network is fixed, changes in
pinter and M could result in changes in the number of
interconnects between the different subnetworks. The
size of the modular networks used in this paper was set
to MN = 200 and pinter = 0.02.

Next, the modular networks are tuned to have a
hybrid of electrical and chemical synaptic coupling,
and to maintain excitatory and inhibitory synapses
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Fig. 1 Schematic presentation of the considered network architecture. The whole network consists of M = 3 subnetworks,
each of them containing N = 20 neurons. Within each subnetwork, each node is connected to its K = 4 neighbors. There are
four connections amongst neurons from different subnetworks. The black line represents chemical synaptic coupling and the
blue line represents electrical synaptic coupling, f = 0.9. In the balanced state, the probability of excitatory and inhibitory
synapses is approximately 4 : 1, fE−I = 0.8, where the lines labeled by the red text are the inhibitory connections and the
rest are the excitatory connections

in E–I balanced state. Initially, the network coupling
takes the form of purely excitatory electrical synaptics.
Subsequently, the synapse switches from excitatory to
inhibitory with probability fE−I . Given that the ratio
of excitatory to inhibitory synapses is approximately
4 : 1 in the balanced state [41], we set fE−I = 0.8 to
ensure that the network is in an E–I balanced state.
Finally, based on this, electrical synapses are converted
to chemical ones with probability f and ensure that
different subnetworks are connected to each other with
chemical synapses. Here, we denote f as the probability
of chemical synapses, which represents the ratio of the
number of chemical synapses to the number of electrical
synapses roughly as f% : (1−f)%. The primary reason
for this setup is differences in the structure and mech-
anisms of transmission between electrical and chemi-
cal synapses, with electrical synapses interconnecting

at a distance of 3.5 nm compared with 30 nm for chem-
ical synapses [61–63]. An example of a modular net-
work topology for balanced small-world neural systems
among M = 3 interconnected subnetworks is shown in
Fig. 1.

2.2 Neuronal model

The Rulkov map model [64], which has the capability
to generate extraordinary complexity as well as fairly
specific neural dynamics [65], is employed to describe
the local single neuron and is formulated as following
discrete equations:

x
L, i(t + 1) =

α

1 + x2
L, i(t)

+ y
L, i(t) + σξ

L, i(n)

+ IE
L, i(t) + IC

L, i(t)
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y
L, i(t + 1) = y

L, i(t) − βx
L, i(t) − γ, (1)

where x
L, i(n)is a fast dynamic variable associated with

the membrane potential of the ith neuron in the Lth
subnetworks; y

L, i(n)denotes the slow dynamic variable
related to gating variables. n refers to the discrete time
indicator. The system parameter α controls the local
dynamics of a individual neuron, in which all neurons
occupy an excitable steady state for 0 < α < 2 and
exhibit regular bursting oscillations or periodic spiking
for α > 2. In this work, we fix α = 2.3 so that all
unites are in a periodic spiking state in the absence of
other stimulus. The system parameters β, γ are set to
0.001. One of the stimulus is channel noise ξi(n), which
is assumed to be Gaussian noise with 〈ξi(n)ξj(m)〉 =
δijδmn. σ defines the noise intensity.

IE
L, i(t) is the coupling current received by electrical

synapses, which is formulated as follows:

IE
L, i(t) = ge

∑

j=1

A
L
(i, j)(x

L, j (t − τ) − x
L, i(t)) (2)

where ge represents the coupling strength of electrical
synapses between the neurons within each subnetwork.
For excitatory electrically synapses, ge = 0.005; while
for inhibitory electrically synapses ge = −0.005. The
matrix A

L
= A

L
(i, j) is the intra-connectivity matrix

of the Lth subnetwork. In the Lth subnetwork, when the
ith neuron is connected to the jth neuron, we assume
A

L
(i, j) = A

L
(j, i) = 1; otherwise A

L
(i, j) = A

L
(j,

i) = 0 and A
L
(i, i) = 0. τ is one of the main parameters

investigated, which defines the time delay between the
ith neuron and the jth neuron.

Similarly, IC
L, i(t) is the coupling current received by

chemical synapses, which can be expressed as

IC
L, i(t) = − gc

⎡

⎣
∑

j=1

B
L
(i, j)(x

L, i(t) − v)Γ(x
L, j (t))

+
∑

J

∑

j=1

C
L, J (i, j)(x

L, i(t) − v)Γ(x
J , j (t))

⎤

⎦

(3)

where gcrepresents the coupling strength of neuronal
chemical synapses within or between subnetworks, tak-
ing gc = 0.003. The matrix B

L
= B

L
(i, j)is also an

intra-connectivity matrix of the Lth subnetwork: if ith
neuron is connected to jth neuron within the Lth sub-
network, B

L
(i, j) = B

L
(j, i) = 1; otherwise B

L
(i,

j) = B
L
(j, i) = 0and B

L
(i, i) = 0. While the matrix

C
L, J = C

L, J (i, j)denotes the interconnection of neu-
rons between different subnetworks: if the ith neuron
within the Lth subnetwork is connected to the jth neu-
ron within the Jth subnetwork, C

L, J (i, j) = C
L, J (j,

i) = 1; otherwise C
L, J (i, j) = C

L, J (j, i) = 0. v is the
reversal potential of the synapse. For excitatory chemi-
cally synapses, v = 0.2; while for inhibitory chemically
synapses v = −1.9. Chemical synaptic current with

time delay is simulated by the sigmoidal function:

Γ(xj(t)) = 1/(1 + exp(−λ(xj(t − τ) − Θs))) (4)

where Θs is regarded as the threshold beyond which
postsynaptic neurons are subjected to the action of
presynaptic neurons, and is set as Θs = −1.0. λ = 30 is
a constant rate at which excitation or inhibition onsets.

2.3 Measure

To quantitatively evaluate the intensity of the response
between the output of the studied neuronal network
and the input signal from the neurons, we compute the
Fourier coefficient Q , which is defined as

Qsin =
1

NTT

NTT∑

t=1

2X(t)sin(2πt/T ),

Qcos =
1

NTT

NTT∑

t=1

2X(t)cos(2πt/T ), (5)

Q =
√

Q2
sin + Q2

cos, (6)

where X(t) =
1

MN

∑MN

i=1
xi(t)is the mean-field of the

network; NTT is the operation period and NT = 300,
T = 820; 2π/T is the frequency of the pulse train. We
use Q as a resonance factor, and it follows that larger
Q means higher degree of the resonance of the entire
neuronal network. Thus, Q is also called as response
amplitude of the neuronal systems.

3 Results

For simplicity, in what follows we study a modular E–I
balanced neural network consisting of two small-world
subnetworks, i.e., M = 2. First, we focus on the com-
bined effects of noise and hybrid synapses on coherence
resonance for time delay τ = 0. Second, influences of
τ on coherence resonance are investigated as the prob-
ability of chemical synapses f is different. Finally, the
dependence of the coherence resonance on the electri-
cal and chemical coupling strengths is given for different
probability of chemical synapses f .

3.1 Combined effects of noise and hybrid synapses
on coherence resonance for the time delay τ = 0

To decipher the coherence resonance, in this subsec-
tion, we focus first on the combined effects of noise and
hybrid synapses with no time delay, namely, τ = 0.
The initial values of gc = 0.003 and ge = 0.005 are
set to keep the modular balanced network in a weakly
coherence resonance state. The probability of chemical
synapses is initially set to f = 0.1, and Fig. 2 shows
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Fig. 2 Space-time plots of xi(t) obtained for τ = 0 at different noise intensity σ. a σ = 0.001, b σ = 0.015, c σ = 0.02,
d σ = 0.025, e σ = 0.05.i = 1 − 100 indicates neurons of the first subnetwork and i = 101 − 200 denotes neurons of the
second subnetwork. Other parameter values: f = 0.1, gc = 0.003, and ge = 0.005. In all panels, the system size is MN = 200

Fig. 3 Temporal evolution
of the mean field X (t) for
τ = 0 at different noise
intensity σ corresponding to
Fig. 2. (a) σ = 0.001,
(b) σ = 0.015, (c) σ = 0.02,
(d) σ = 0.025, (e) σ = 0.05
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the spatiotemporal patterns of the membrane poten-
tials for all neurons at different noise intensity σ. The
obtained results present that the smaller noise intensity
σ fails to make two subnetworks spiking synchronously
(Fig. 2a, b). When σ is increased to moderate values,
e.g.,σ = 0.025, temporal dynamics of two subnetworks
change to that of an ordered state (see panel (c)).
With further increases of σ, the firing correlation of
two subnetworks gradually weakens and engenders dis-
order. We, therefore, conjecture that there exists some
intermediate noise intensities σ to make the subnet-
works spiking synchronously. The corresponding tem-
poral evolution of the mean field X (t) is presented in
Fig. 3. From this figure it can be shown much more
clearly that the spiking trains from the neuron cluster
between two subnetworks are stronger and more reg-
ular for the intermediate noise intensities σ as shown
in Fig. 3c); whereas the smaller and larger σ could
reduce or turbulence the spiking trains, as can be seen
in Fig. 3a, b, d, e.

It is of interest to assess these observations quantita-
tively, we plot the dependence of the Fourier coefficient
Q with respect to noise intensity σ and the probability
of chemical synapses f in a two dimensional parameter
space, as exhibited in Fig. 4. Clearly, there are some
regions of blocks colored red or yellow, where means
Q takes the larger values. Viewing this plot from the
horizontal direction, i.e., f ∈ [0, 1], we then see that
the regions colored by red or yellow are mostly cen-
tred in σ ∈ [0.01, 0.03], which is indicative of a strong
resonance response. Whereas σ < 0.01 as the colour
shifts darker, indicating the value of Q decreases and
the coherence resonance becomes weaker. A broad dark-
blue band as long as σ > 0.03 is observed, indicating
that the coherence resonance of the system is lowest
and that the noise intensity σ and the probability of
chemical synapses f have little effect on the coherence
resonance. In addition, if one looks a little more closely,
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Fig. 4 Dependence of Fourier coefficient Q with respect to
noise intensity σ and the probability of chemical synapses
f . Other parameter values: gc = 0.003 and ge = 0.005

it happens that some closed blocky regions with a red-
dish yellow tinge appear at intervals around the line
σ = 0.02, and the ratio of the number of synapses
represented by the corresponding f occurs by chance
in the vicinity of the odd ratio, which is an intriguing
phenomenon.

To better inspect the above demonstrations, we
respectively plot the variation of Q versus noise inten-
sity σ when the ratio f of the number of chemical
to electrical synapses takes on different odd and even
ratios. In this case, the critical cases for f = 1 (all chem-
istry) and f = 0 (all electric) are shown in the Fig. 5a, b,
respectively, for the sake of comparison. Figure 5a corre-
sponds to the case where f takes on different odd ratios,
from which Q can be seen increases to rise to a max-
imum as σ is increased to approximately 0.02. Then,
with σ increasing further, Q decreases to a minimum
gradually. As a contrast, from Fig. 5b corresponding to
different even ratios f , it can be seen that the general
trend of the curve is similar to that when f is odd ratios
(Fig. 5a). The obvious difference, however, is that the
maximum values of Q are smaller just with the excep-
tion of f = 0, which states that system’s coherence res-
onance with even ratios f is significantly weaker than
that with odd ratios f . Particularly for f = 0, where
all of the neurons in the modular network are coupled
via electrical synapses, an optimum noise intensity of
σ = 0.025 exists to ensure that the system’s coherence
resonance lies at a higher level, a result which is con-
sistent with previous findings in fully electric coupling
networks(see reference [66, 67]). Moreover, from Fig. 5b,
we note that as σ increases, although the maximum of
Q is much smaller than that of Fig. 5a, there are two
optimal values of noise intensity σ for Q to reach local
maxima, of which one is at relatively small noise inten-
sity σ = 0.015 and the other is at relatively large noise
intensity σ = 0.025.

Furthermore, to further elucidate this detail, we take
the even ratio f = 0.2(chemical : electrical = 2 : 8)
for specific presentation. Figure 6 shows the spatiotem-
poral patterns of membrane potentials of all neurons
observed on the network for different noise intensity σ
on f = 0.2. The temporal evolution of the mean field
X (t) corresponding to Fig. 6 is illustrated in Fig. 7.
Hence, we can find a lot more that there definitely
exist two best noise intensities σ = 0.015 and 0.025(
see Fig. 6b, d), such that the system’s coherence res-
onance attains a local maxima. And compared to the
case where f is odd ratios, e.g., f = 0.1(chemical :
electrical = 1 : 9) respectively shown in Figs. 2 and
3, it can be demonstrated that when the ratio f of the
number of chemical synapses to electrical synapses is
odd ratios, the coherence resonance induced by noise
intensity and hybrid synapses is significantly stronger
than the case when f is even ratios.

In conclusion, combined with the above analysis,
it can be seen that no matter what the ratios f of
the number of chemical synapses to electrical synapses
are odd or even, some intermediate noise strengths σ
exist to make the coherence resonance of subnetworks
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Fig. 5 a Dependence of Fourier coefficient Q on noise intensity σ at different odd ratios f of the number of chemical to
electrical synapses. b Dependence of Fourier coefficient Q on noise intensity σ at different even ratios f of the number of
chemical to electrical synapses

Fig. 6 Space-time plots of xi(t) obtained for τ = 0 at different noise intensity σ. a σ = 0.001, b σ = 0.015, c σ = 0.02,
d σ = 0.025, e σ = 0.05. i = 1 − 100 indicates neurons of the first subnetwork and i = 101 − 200 denotes neurons of the
second subnetwork. Other parameter values: f = 0.2, gc = 0.003, and ge = 0.005. In all panels, the system size is MN = 200
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Fig. 7 Temporal evolution
of the mean field X (t) for
τ = 0 at different noise
intensity σ corresponding to
Fig. 6. a σ = 0.001,
b σ = 0.015, c σ = 0.02,
d σ = 0.025, e σ = 0.05
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with hybrid synapses are at a higher level. In particu-
lar, at appropriate noise intensities σ, coherence reso-
nance generated by odd ratios of chemical and electrical
synapses is stronger than that generated by even ratios.

3.2 Effects of both time delay and hybrid synapses
on coherence resonance.

According to the former subsection, we see that the
optimal noise intensity σ is centralized to [0.01, 0.025]
for the network with hybrid synapses. Thus, in this
subsection we set σ = 0.018, and add time delay to
the modular balanced network discussed earlier, inves-
tigating the effects of time delay and hybrid synapses
on coherence resonance. We begin by calculating the
dependence of the Fourier coefficient Q on τ for several
different chemical synapse probabilities f , as illustrated
in Fig. 8a. As can be seen, Q was able to reach four local
maxima appearing roughly at τ = 0, 800, 1700, 2500
and is independent of the value of f , which suggests that
time delay may elicit the emergence of multiple coher-
ent resonances. Indeed, the optimal value of Q appears
intermittently at roughly integer multiples of the inher-
ent oscillation period of the neuronal dynamics under
consideration, equaling T = 820. In addition, somewhat
more interesting is the fact that as the time delay τ is
increased, the peak heights located at approximate inte-
ger multiples of the delay are shifted to slightly higher
values, except for τ = 0.

Furthermore, to account for the visual inspection
above at a glance, the dependence of Q on f and τ
is presented in Fig. 8b. One can observe that coherence
resonances clearly qualify as narrow shaped regions,

appearing roughly at integer multiplies of τ = 820.
Evidently, the resonance phenomenon prevails regard-
less of f in τ − f parameter plane. It is clear that as
the time delay τ increases, the regions of optimal τ
become broader and the corresponding colors gradually
turn blue and yellow, indicating that the value of Q is
becoming larger. It’s worth noting that when the time
delay is around τ = 0, the Q values are larger, either
in red or blue, primarily because we set up the system
initially. We can, therefore, further conclude that time
delay plays a dominant role in the modulation of coher-
ence resonance in modular networks. If the time delay τ
lies at approximately an integer multiple of the intrinsic
period of the oscillation, they can induce the multiple
coherent resonances and have nothing to do with the
ratio of the number of chemical and electrical synapses.
As the integer multiple time delay τ increases, the reso-
nance behavior is enhanced, while in other cases it could
weaken or deteriorate the system’s resonant behaviour.

3.3 Effects of the coupling strength and hybrid
synapses on coherence resonance

In light of the results obtained above, we knew that
coherence resonance almost occurs almost when the
time delay is an integer multiple of the inherent period
of the system. We then take the optimally fixed value
σ = 0.018 as before and set the time delay τ = 820.
The chemical coupling strength gc and the electrical
coupling strength ge are regarded as control parame-
ters. Here f is split into three cases for investigation,
being small as 0.1, intermediate as 0.5 and large as 0.9,
respectively. From the overall insight in Fig. 9, there are
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Fig. 8 a Dependence of Fourier coefficient Q with respect to time delay τ for different probability of chemical synapses
f . b Dependence of Fourier coefficient Q both on τ and f . Other parameter values: σ = 0.018, gc = 0.003 and ge = 0.005.

regions of band resonance with large values of Q , and
these regions progressively decrease as the proportion of
chemical synapses f increases. Comparing three cases,
as f increases, the optimal resonant regions correspond-
ing to gc and ge decrease gradually. Besides, the spans of
the optimal electrical coupling strength ge are all wide.
However, the span of the optimal chemical coupling
strength gc diminishes bit by bit and the best is only
in a certain interval with increasing f . It is suggested
that although chemical coupling and electrical coupling
are complementary, as the proportion of the chemical
synapse f increases, the synergistic region between the
two synapses gradually decreases. The electrical synap-
tic coupling is slightly influenced by the synaptic ratio
f , but the chemical coupling is more sensitive and there
is only a range of chemical coupling interval that allows
the system to respond optimally, indicating that electri-
cal coupling is more efficient than chemical coupling in
E–I balanced modular small-world neuronal networks.

To further elucidate how f affects the coupling behav-
iors about the two synapse types, we respectively calcu-
lated the dependence of Q on f and gc and the depen-
dence of Q on f and ge, presented in Fig. 10. Figure 10a
shows that with the increasing values of f , the optimal
resonant regions with gc and f decrease gradually, it
is only when gc is smaller that relatively strong res-
onances will appear. However, in the case of varying
values of f and ge in Fig. 10b, compared with chemical
coupling, most of the electrical coupling can induce the
network to produce stronger resonance behaviors, and
the resonant regions with ge and f increase gradually
with increasing f . In this context, the coupling behav-
ior of the two synapses is nearly opposite as f increases,

and electrical coupling is more effective than chemical
coupling. Thus, one can understand that the decrease of
optimal resonant regions corresponding to gc and ge as f
increases in Fig. 9 is primarily due to the chemical cou-
pling. Indeed, the efficiency of electrical and chemical
coupling were different in different complex network of
neurons. Some studies have shown that nonlinear chem-
ical coupling is more efficient than linear electrical cou-
pling for vibrational resonance in hybrid small-world
neuronal networks [68]. Whereas there are also stud-
ies indicated that electrical synapses are more efficient
than chemical synapses for the SR in scale-free networks
[69]. However, in this paper we demonstrate that elec-
trical coupling is more efficient than chemical coupling
for the CR in modular small-world neuronal networks
with E–I balanced state. This is primarily due to the
fact that the electrical coupling is the continuous inter-
actions, which can better regulate the firing rate than
the selective interactions among the chemically coupled
neurons. Furthermore, as f increases, more chemical
synapses are added to the E–I balanced modular net-
works, and the increase in coupling strength of chemi-
cal synapses results in subthreshold fluctuations of the
mean field potential, eventually leading to decreased Q
values and weaker resonance.

4 Discussion

Nowadays, it is an accepted fact that clusters are often
associated with specific brain regions, and the number
and architecture of the subnetworks reveal how many
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Fig. 9 Dependence of Fourier coefficient Q on the chemical coupling strength gc and the electrical coupling strength ge for
different probability of chemical synapses f . a f = 0.1; b f = 0.5; c f = 0.9. Other parameter values: τ = 820, σ = 0.018

diverse tasks it can implement [70]. In this context, we
present an analysis of the number of subnetwork in the
case of M > 2. Here, the size of the modular network is
held constant, the total number of neurons stays fixed
at MN = 200, and the number of subnetworks M is
taken as a control parameter. The variation of Q with
respect to both M and τ for three cases of f is shown
in Fig. 10. A similar result can be obtained from this
graph when multiple coherent resonances appear inter-
mittently in integer multiples of the intrinsic intrin-
sic period of oscillation of the system. The larger the
integral time delay, the stronger the coherence reso-
nance. However, it is worth noting that the modifica-
tion depends on the number of subnetworks M . When
the number of subnetworks M ≤ 5, there is a signifi-
cant coherence resonance and the resonance is enhanced
with increasing f ; alternatively, when M > 5, the reso-
nance decreases with versus the variation of M and will
diminish or disappear as f is sufficiently large. To more
clearly observe these conclusions, Fig. 11 further illus-
trates that the number of subnetworks could affect the
degree of resonance of the modular networks and that

the degree of resonance can be diminished when the
constituent neurons are dispersed over a larger number
of subnetworks.

This may be explained by the fact that when there
are fewer subnetworks within the modular network,
many neurons are assembled together and chemical
synapse activates its role in long time, at which point
the neurons exhibit stronger communicative and clus-
tering behaviour, such that as the number of chem-
ical synapses in the network increases, the resonant
behaviour of the system subsequently enhanced. Con-
versely, when there are more subnetworks, communi-
cation with each other is compromised as neurons are
dispersed into a larger number of clusters. This is cou-
pled with the fast signaling rate of electrical synapses,
which play a major role in the network at this time.
Thus, as the number of chemical synapses in the net-
work increases, i.e., as the number of electrical synapses
decreases, resonant behaviour diminishes or disappears.
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Fig. 10 Individual influences of electrical and chemical coupling strengths. a Variation of Fourier coefficient Q with the
chemical coupling strength gc and f by a fixed chemical coupling strength gc = 0.003. b Variation of Fourier coefficient Q
with the electrical coupling strength ge and f by a fixed chemical coupling strength ge = 0.005. Other parameter values:
τ = 820, σ = 0.018

5 Summary

In sum, by introducing biological features into the
model, such as the properties of modules and the
small-world, E–I balanced state, the hybrid electrical
and chemical synapses, noise, time delay, the coupling
strength as well as the number of subnetworks, we
have presented how different neurophysiological fac-
tors impact the coherence resonance. The evidence has
showed that there are a few intermediate noise inten-
sities σ to make the coherence resonance at a higher
level. Yet remarkably, when the ratio f of the num-
ber of chemical synapses to electrical synapses is close
to odd ratio, the resonance behaviour at appropriate
noise intensities σ is better than those near the even
ratio. In addition, by introducing the time delay to the
coupling scheme, it is shown that time delay can induce
the multiple coherence resonance. The larger the inte-
gral time delay, the stronger the coherence resonance
and independent of the ratio f of chemical and electri-
cal synapses. Besides, although it was previously shown
that nonlinear chemical coupling is more efficient than

linear electrical coupling, we have demonstrated that
the coupling behavior of the two synapses is nearly
opposite as f increases, indicating that electrical cou-
pling is more efficient than chemical coupling for the
CR in modular small-world neuronal networks with E–I
balanced state. Moreover, the coherence resonance is
impacted by the number of subnetworks M . When M is
the smaller, resonance behaviour becomes stronger as f
increases; whereas when M is the larger, the resonance
behaviour weakens or vanishes gradually with increas-
ing f . This behavior is mainly due to the nature of the
electrical and chemical synapses as well as the commu-
nication mechanism of the cluster network. Our studies
expand the scope of coherence resonance and account
for the fact that neuronal networks maintain an exci-
tatory–inhibitory (E–I) balanced state as an economi-
cal choice, in addition to the fact that modular neural
networks can facilitate the availability of information
transmission. We, therefore, wish these results to con-
tribute to the understanding of the role of coherence
resonance behaviour in neuronal systems.
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Fig. 11 Contour plot of Fourier coefficient Q on the number of subnetworks M and the time delay τ for different probability
of chemical synapses f . a f = 0.1; b f = 0.5; c f = 0.9. Other parameter values: σ = 0.018, gc = 0.003 and ge = 0.005

Fig. 12 Dependence of
Fourier coefficient Q on the
number of subnetworks M
for different time delay τ .
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