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Abstract The phase diagram of a system with two order parameters, with n1 and n2 components, respec-
tively, contains two phases, in which these order parameters are non-zero. Experimentally and numeri-
cally, these phases are often separated by a first-order “flop” line, which ends at a bicritical point. For
n = n1+n2 = 3 and d = 3 dimensions (relevant, e.g., to the uniaxial antiferromagnet in a uniform magnetic
field), this bicritical point is found to exhibit a crossover from the isotropic n-component universal critical
behavior to a fluctuation-driven first-order transition, asymptotically turning into a triple point. Using a
novel expansion of the renormalization group recursion relations near the isotropic fixed point, combined
with a resummation of the sixth-order diagrammatic expansions of the coefficients in this expansion, we
show that the above crossover is slow, explaining the apparently observed second-order transition. How-
ever, the effective critical exponents near that transition, which are calculated here, vary strongly as the
triple point is approached.

1 Introduction

Phase diagrams involving two competing order param-
eters, with n1 and n2 components, arise in a variety
of physical systems. As the temperature is lowered
from the disordered phase, one can approach each of
these ordered phases, via a phase boundary. These two
boundaries meet at a multicritical point, which can be
bicritical, tetracritical or triple (Fig. 1) [1–3]. As seen in
Fig. 1, the triple point is not really ‘critical’ or ‘multi-
critical’; however, it is the meeting point of three first-
order lines, and it neighbors three phases. It is also
reached from the bicritical point. Therefore, we list it
together with the ‘true’ multicritical points. The nature
of this multicritical point has been under debate for a
long time. in particular, the ε−expansions for the renor-
malization group (RG) fixed points (FPs) correspond-
ing to these multicritical points, and the critical expo-
nents in their close vicinity, have been expanded to fifth
order in ε and then resummed for estimating their val-
ues in three dimensions (d = 3). [4] The resulting num-
bers agreed with those found by other methods, e.g.,
a resummation of the sixth-order perturbative (diver-
gent) expansions in the original field-theory coefficients
at d = 3 [5], recent bootstrap calculations [6], Monte
Carlo simulations [7] and high-temperature series [8].
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All the above calculations derived only the critical
exponents at the FPs. It turns out that in some cases,
the RG flow away from the unstable isotropic FP (see
below) is slow, and sometimes it reaches regions far
from this FP, with effective critical exponents which
are distinct from those calculated at that FP. Although
such effective exponents were calculated to second order
in the coupling constants for the tetracritical point [9],
they were not yet calculated for the crossover from
bicritical to triple points. In Refs. [11–13], we extended
the above calculations, and presented an accurate RG
analysis of such systems close to their multicritical
points, confirming that for n = n1 + n2 = 3 in d = 3
dimensions, it can either be tetracritical, described by
the biconical FP, or a triple point, characterized by a
slow RG flow away from the isotropic n−component
FP. Since the (stable) biconical FP is very close to the
(unstable) isotropic FP, the effective exponents do not
change much during the RG flow between them, and the
tetracritical point is more or less understood. However,
the triple point case requires following the RG trajec-
tory away from the isotropic FP for many RG itera-
tions. Since this flow is very slow, Refs. [11–13] used
resummed sixth-order expansions of the derivatives of
the β̄ functions (see below) at the isotropic FP, yielding
accurate estimates for the effective exponents, which
vary along the RG trajectory. It turned out that the
effective exponents change significantly before the triple
point is reached. The slow flow indicates that in many
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cases, the triple point may never be reached, and then
one may mistakenly identify the multicritical point as
a bicritical one, alas with unusual effective exponents.

As we discuss below, a general four-spin Hamilto-
nian can be isotropic in spin space, ad it can become
anisotropic in many ways. In the description above, the
isotropy was broken by the terms which separate the
two order parameters, with n1 and n2 components. An
alternative symmetry breaking is to add a term with
cubic symmetry in spin space, v

∑n
i=1 S4

i . [10] As we
discuss below, both anisotropies share the same stabil-
ity exponent. In Ref. [11] we demonstrated the above
RG calculation for the cubic case, and showed that all
the RG trajectories approach the same universal line.
Some effective critical exponents were then calculated
for that case in Ref. [12]. Reference [13] used group
theoretical arguments, to show that the universal flow
line mentioned above is in fact also reached for the case
of O(1)

⊕
O(2) symmetry, relevant to the multicritical

points of interest here. The present paper extends those
calculations, by calculating the effective exponents for
this case. Qualitatively, the results are similar to those
of the cubic case. However, unlike that case, for 2 + 1
components we need two sets of exponents, ν‖,⊥ and
η‖, ⊥.

1.1 The XXZ case

Most of our results refer to the most ubiquitous exam-
ple of the uniaxially anisotropic XXZ antiferromagnet
in a uniform magnetic field, with n1 = 2, n2 = 1.
Other examples are mentioned in Refs. [11, 13]. A uni-
axially anisotropic XXZ antiferromagnet has long-range
order (staggered magnetization) along its easy axis, Z.
A magnetic field H‖ along that axis causes a spin-flop
transition into a phase with order in the transverse
plane, plus a small ferromagnetic order along Z. Exper-
iments [14–16] and Monte Carlo simulations on three-
dimensional lattices [17–19] typically find an appar-
ent bicritical phase diagram in the temperature-field
T − H‖ plane [Fig. 1(a)]: a first-order transition line
between the two ordered phases, and two second-order
lines between these phases and the disordered (para-
magnetic) phase, all meeting at an apparent bicritical
point .

The field theoretical analysis is based on the
Ginzburg–Landau–Wilson (GLW) Hamiltonian density
[1], H(r) = H0 + U2 + U4, with

H0(r) = ( | ∇S |2 +r | S |2 )/2, (1)

U2 = g[ | S‖ |2 − | S |2 /3], (2)

U4 = u‖ | S‖ |4 +u⊥ | S⊥ |4
+ 2u× | S‖ |2| S⊥ |2, (3)

with the local three-component (n = 3) staggered mag-
netization, S(r) ≡ (S⊥(r), S‖(r)). Here, r = (T−Tc)/Tc

measures the distance from the critical temperature.

For g = 0 and u‖ = u⊥ = u× = u, H reduces to the
isotropic Wilson-Fisher Hamiltonian [20–22], which has
an (isotropic) FP at u = u∗, I .

1.2 Renormalization group

After � iterations of the RG, the size of the system
becomes L ⇒ L(�) = L/e�, and the correlation length
becomes ξ ⇒ ξ(�) = ξ/e� (in units of the lattice con-
stant). In addition, various scaling operators, Oa, e.g.,
Si and S2

i , are rescaled, Oa = Za(�)Oa, with scaling
factors Za which depend on �. [20–22] This maps H to
H(�), with renormalized coefficients, e.g., r(�), g(�),
ui(�). The RG studies the recursion relations which
yield the trajectories of these coefficients in the param-
eter space, and the fixed points of these trajectories.

Using ξ ∼| t |−ν , where t is the scaling field related
to r and ν is the ‘isotropic’ exponent for the corre-
lation length, we continue iterating until min[L(�f ),
ξ(�f )] = 1. Thus, �f is the smaller of ln L and −ν ln | t |.
In real or numerical simulations, �f grows with the sys-
tem’s finite size and/or by the temperature range which
is used. At � = �f , all fluctuations have been eliminated
and one can solve the problem using the mean-field Lan-
dau theory [21]. Reaching �f requires the full RG flow
of the system’s Hamiltonian.

The main RG calculations involve the recursion rela-
tions for the three coefficients in U4,

∂ui

∂�
= β̄i[ε, u‖, u⊥, u×]. (4)

When ∂ui/∂� = 0, these recursion relations yield four
FPs, the Gaussian (u‖ = u⊥ = u× = 0, the isotropic
(u‖ = u⊥ = u× = u∗, I), the decoupled (u× = 0), and
the biconical FPs. In three dimensions, the locations
of these fixed points, and the critical exponents in their
vicinity, took some time to find, mainly because of diffi-
culties to extrapolate the recursion relations down from
d = 4 to d = 3, given as divergent series in ε = 4−d and
in the u’s. One way to overcome this is to use resumma-
tion techniques, e.g., by taking into account the singu-
larities of the series’ Borel transforms [4], and extrap-
olating the results to ε = 1. These showed that for
n = d = 3 the only stable FP is the biconical one, which
is very close to the unstable isotropic one. The results
for the critical exponents agreed with a resummation of
the sixth-order perturbative (divergent) expansions in
the original field-theory coefficients at d = 3 [5], with
recent bootstrap calculations [6], with Monte Carlo sim-
ulations [7] and with high-temperature series [8].

Since the biconical and isotropic FPs are very close
to each other, we decided to study in detail the recur-
sion relations in the vicinity of the isotropic FP. To first
order in the us, we need the three exponents of its sta-
bility in the space of the us. It turns out that the associ-
ated eigenvectors of these recursion relations are given
by group theory. In our case, [O(n) ⇒ O(n1)

⊕
O(n2)],

group theory shows that these eigen-operators are [4,
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g=0
g=0 d

Fig. 1 Possible phase diagrams for the XXZ antiferromagnet in a longitudinal magnetic field. a Bicritical phase diagram.
b Tetracritical phase diagram. c Diagram with a triple point. Thick lines—first-order transitions. Thin lines—second-order
transitions. The first-order transition lines between the ordered phases and the disordered paramagnetic phase turn into
second-order ones at tricritical points (small empty circles). After Refs. [2, 3]

7, 23–25]

P4, 0 ≡| S |4, P4, 2 ≡| S |4 [x − n1/n],

P4, 4 ≡| S |4 [
n1n2

(n + 2)(n + 4)

+ x(1 − x) − n1(1 − x) + n2x

n + 4
], (5)

where x = S2
‖/ | S |2. For n = 3 = 2 + 1, the corre-

sponding stability exponents (agreed by all the extrap-
olations) are [6]

λ0 ≈ −0.78, λ2 ≈ −0.55, λ4 ≈ 0.01. (6)

Rewriting Eq. (3) as

U4 = (u∗, I + p0)P4, 0 + p2P4, 2

− p4P4, 4, (7)

the linear recursion relations for the coefficients pi and
their solutions are

dpi/d� ≈ λipi ⇒ pi(�) = pi(0)eλi�,
i = 0, 2, 4. (8)

Group theory also identifies the eigenvectors, which
yield the exact relations

δu‖ = p0 + (70p2 + 24p4)/105,

δu⊥ = p0 − (35p2 − 9p4)/105,
δu× = p0 + (35p2 − 72p4)/210, (9)

where δui = ui − u∗, I , i = ‖, ⊥, ×. These linear
expressions can easily be generalized to any n1 and n2.

The largest (negative) exponent λ0 corresponds to
the stability within the O(3)−symmetric case, P4, 0.
In our case, the exponent λ2 corresponds to a term
which splits the O(3) isotropic symmetry group into

O(1)
⊕

O(2). Similar to U2, P4, 2 ‘prefers’ ordering of
S‖ or of S⊥. At the multicritical point, the O(3) sym-
metry must be preserved, and therefore below we set
p2 = 0.

Since λ4 > 0, the isotropic FP is unstable at d = 3,
and the small λ4 > 0 represents the slow crossover away
from the isotropic FP. Examples of the flow trajectories
in the p0 − p4 are show in Fig. 2. For some range of the
parameters, the RG flow reaches slowly the less sym-
metric FP (biconical or cubic), and the bicritical phase
diagram should be replaced by the tetracritical diagram
[26]. Alternatively, the iterations first flow slowly and
remain near the isotropic FP, and then flow quickly
towards the triple point, beyond which the transition
becomes fluctuation-driven first order. Neither of these
agrees with the experiments or the simulations.

Indeed, the same value of λ4 was also found for the
crossover from the isotropic to the cubic FP [5–7, 10, 11,
27, 28]. In fact, the most general space of even quartic
terms contains fifteen coefficients uabcd, which split into
groups of 1 + 5 + 9. All the coefficients in each group
have the same stability exponent. The cubic v and our
p4 both belong the the group of size 9, and therefore
their qualitative behavior is similar.

2 Our calculation

Expanding Eq. (4) to second order in the deviations
from the isotropic FP,

∂ui

∂�
=

∑
CabcL

i
abc(δu‖)

a(δu⊥)b(δu×)c, (10)

with the integers a, b, c = 0, 1, 2, 1 ≤ a + b + c ≤ 2,
Cabc = (δa2 + δb2 + δc2)/2, and e.g.,

Li
100 =Resum

[ ∂β̄i

∂u‖

]

{uj=u∗, I}
,
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Li
011 =Resum

[ ∂2β̄i

∂u⊥∂u×

]

{uj=u∗, I}
,

Li
020 =Resum

[ ∂2β̄i

∂(u⊥)2
]

{uj=u∗, I}
. (11)

The derivatives are calculated at the isotropic FP.
Using the known ε-expansion of u∗, I , they are obtained
as sixth order polynomials in ε, which are then
resummed—using the methods explained, e.g., in Ref.
[11]. The resulting values are listed in the Supplemen-
tary Material [29].

Diagonalizing the 3 × 3 matrix of the linear terms in
Eq. (10), we recover Eq. (8). The resulting numerical
values of the eigenvalues λis, are found to be very close
to the numbers in Eq. (6), which was based on the full
sixth-order recursion relations and on other accurate
calculations. Also, the eigenvectors turn out to be very
close to the exact Eq. (5). We next use Eq. (9) to replace
Eq. (10) by quadratic equations for the ps. As stated
above, at the multicritical point, we set g = 0 and p2 =
0. In this case, we are left with the RG flow in the p0−p4
plane, and we generalize the calculation of Ref. [11]. We
first replace p0 by the nonlinear scaling field q0, which
obeys

dq0/d� ≈ λ0q0 ⇒ q0(�) = q0(0)eλ0� (12)

to all orders in the ps. This is achieved by writing

q0 = p0 + z20p
2
0 + z11p0p4

+ z02p
2
4 + . . . , (13)

and choosing the z s so that the higher-order coefficients
in dq0/d� vanish [29]. Substituting Eq. (12) into dp4/d�,
we find

dp4
d�

= λ4p4 + Aλ0q0(�)p4 − Bp24, (14)

where B = 0.144(11) and A = 2.369(67). [29] Rewriting
this as a differential equation in 1/p4, writing x = eλ0�

and 1/p4(x) = e−Axx−λ4/λ0W (x), yields

dW/dx = [B/λ0]e
Ãxxλ4/λ0−1, (15)

with the solution

W (�) =
eÃ

p4(0)
+

(−Ã)−λ4/λ0B

λ0

×
(
Γ[λ4/λ0, −Ã] − Γ[λ4/λ0, −Ãeλ0�]

)
, (16)

where Ã = Aq0(0), and Γ[s, z] is the incomplete gamma
function. From Eq. (13), the quadratic approximation
gives

p0 ≈ q0 − z20q
2
0 − z11q0p4 − z02p

2
4. (17)

Fig. 2 Flow trajectories in the p0 −p4 plane for several ini-
tial points. Four of them (presented within the legend bar)
are used as initial points for analysis of effective exponents.
The trajectories are constructed on the basis of Eqs. (17)
and (16). The dots indicate integer values of �. The blue
thick line is the universal asymptotic line, when q0 = 0. The
letters B and I correspond to the biconical and isotropic
(p∗, I

4 = 0) fixed points, respectively

This equation, together with Eqs. (12) and (16), gen-
erates the trajectories in the p0 − p4 plane, shown in
Fig. 2.

For large �, x = eλ0� is small, and Γ[s, z] = −zs/s +
O[1], so that Γ[λ4/λ0, −Ax] ∝ eλ4�. This result can be
obtained directly: For � > �1 we can neglect q0(�) in
Eq. (14). The solution to this equation is then

p4(�) =
p4(�1)e

λ4(�−�1)

1 + Bp4(�1)[eλ4(�−�1) − 1]/λ4

. (18)

Indeed, this dependence of p4 on � is approached for all
p0(0) and large �. The corresponding asymptotic line,
given by q0 = 0, depends only on the coefficients zab in
Eq. (13) and on B . Since these numbers all follow from
the derivatives of the β̄-functions at the isotropic FP,
they are all universal . Therefore, the asymptotic line is
also universal.

Since λ4 is very small, the variation of the second
term in the denominator with � is slow. In our case,
B > 0, implying a slow variation in p4(�) for posi-
tive p4, approaching the biconical FP p∗,B

4 = λ4/B =
0.057(51). This value of p∗,B

4 agrees with the full solu-
tion of the original sixth order recursion relations,
justifying our quadratic approximation. In contrast,
for p4(0) < 0, p4(�) becomes more and more neg-
ative. At first, it decreases slowly, not far from the
isotropic FP, but when eλ4� becomes of order unity,
this decrease becomes faster (the points at integer �
become less dense), and p4(�) diverges at � = �2, when
[eλ4(�2−�1) − 1]/λ4 ≈ (�2 − �1) = −1/[Bp4(�1)]. This
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Fig. 3 The function p4(�), Eq. (18) for B = 0.144, λ4 =
0.0082, q0(�1) = 0 and different p4(�1), especially high-
lighted in the flow diagram. Thick dots correspond to the
values of �, when the corresponding p4 = −35u∗, I/8 =
−1.75. At this (approximate) point, the transition becomes
first order and the bicritical point becomes a triple point

value is larger for smaller | p4(�1) | [and, therefore, also
for smaller | p4(0) |]. Within our quadratic approxima-
tion, we are not allowed to follow this solution beyond
some finite value, say p4 < −.8. Although Figs. 2 and 3
show larger values of | p4(�) |, those parts can only be
take qualitatively; it is reasonable that a full solution
will also continue downwards, on the asymptotic tra-
jectory.

For large �, away from criticality (T 
= Tc), we can
neglect p0(�) and approximate the free energy by its
Landau expression,

F = r(�) | S |2 /2+ | S |4 (u∗, I−
p4(�)[2/35 + x(1 − x) − (1 + x)/7]). (19)

For p4(�) < 0, the last term in minimal at x = 1, when
the square brackets become −8/35. However, the total
quartic term becomes negative when p4 = −35u∗, I/8 ≈
−1.75, and then the transition becomes first order, iden-
tifying the triple point. Interestingly, this is exactly the
same value found for the cubic case [11].

3 Effective critical exponents

So far, we discussed only the recursion relations for the
quartic spin terms, U4. To obtain the physically measur-
able critical exponents we now return to the quadratic
terms, which contain r(�) and g(�). Although these are
the correct linear scaling fields, it is also convenient to
write the quadratic terms as

( | ∇S |2 +r‖ | S‖ |2 +r⊥ | S⊥ |2 )/2, (20)

where r‖ = r − n1g and r⊥ = r + n2g are the tem-
perature parameters associated with the spins S‖ and
S⊥.

At the isotropic FP, g = 0, and the two r ’s have
the same recursion relation. However, these relations

change at order u2
i , [1, 4, 9]

∂ri/∂� = (2 − ηi)ri + O[{ui}]. (21)

The different prefactors of the first terms result from
the different rescaling factors of the operators S2

‖ and
| S⊥ |2, with ηi = O[u2

i ]. Technically, these are obtained
from keeping the coefficient of the gradient term equal
to 1.

The ηis describe the power law decay of the cor-
relation functions at Tc. Generally, the Fourier trans-
form of the two point correlation function, Gii(q) ≡
〈Si(q)q)Si(−q)〉, obeys the generalized scaling relation
[30, 31]

Gii(t, q) = e(2−ηi)�Gii(e
�/νt,

e�φ/νg, e�q), (22)

where i = ‖ or ⊥. Here, t and g are the nonlinear scal-
ing fields related to r and g . Note: the exponent ν is
still isotropic; there is only one correlation length at the
multicritical point. All the other critical exponents can
be derived from these exponents, e.g., γi = (2 − ηi)ν
(obtained from Gii(t, 0) ∼ t−γi) and α = 2 − dν. The
exponent φ is the crossover exponent connected with
the flow away from the multicritical point towards pos-
itive or negative g (upper or lower phases in Fig. 1. All
the effective exponents 1/ν, φ/ν, η‖ and η⊥ can be
derived from the recursion relations of the two-points
correlation functions. [32] As before, we expand the cor-
responding renormalization factors in powers of ε and
the pis, express the coefficients in terms of u∗, I and
resum these sixth-order ε−expansions to obtain expan-
sions of these four exponents to second order in the pi.

Given the solutions pi(�) from the previous section,
we have derived the four effective exponents as func-
tions of �. The effective exponents are given by

χi = χi
00 + χi

10q0 + χi
20q

2
0 + χi

01p4

+ χi
11q0p4 + χi

02p
2
4, (23)

where χi = ν, φ and η‖,⊥. The coefficients are pre-
sented in Table 1, and the results are plotted in Fig. 4.
Due to our quadratic approximations, these plots stop
at p4(�) = −.8. However, the qualitative large varia-
tions are expected to continue towards the triple point.

Note: For the small initial values of p4, all the expo-
nents stay close to their isotropic FP values for a large
range of �. This may explain the experimental and
numerical observed results. However, as the correlation
length increases the effective exponents deviate strongly
from their isotropic values, until eventually the transi-
tion becomes first order at the triple point. Also, at
the isotropic FP, we must have η‖ = η⊥, and indeed

η
‖
00 = η⊥

00. Interestingly, η
‖
02 and η⊥

02 have opposite
signs. Since these terms dominate at large �, the devi-
ation between the two η’s increases as the triple point
is approached
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Fig. 4 Dependence of effective critical exponents ν, φ, η‖,
and η⊥ on the RG flow parameter �, based on the four col-
ored trajectories in Fig. 2. Different lines correspond to dif-
ferent initial values p4(0) and p0(0). Due to our quadratic
approximation, all the plots stop at p4(�) = −.8

Table 1 Numerical values of coefficients entering Eq. (23)

Coeff. Value Coeff. Value

ν00 0.70428(76) η
‖
00 0.03762(85)

ν10 0.731(10) η
‖
10 0.1914(22)

ν01 −0.0004(16) η
‖
01 0.00038(22)

ν11 −0.0009(69) η
‖
11 −0.0081(32)

ν20 2.369(61) η
‖
20 0.630(18)

ν02 −0.0610(24) η
‖
02 −0.00517(70)

φ00 1.2614(16) η⊥
00 0.03762(85)

φ10 0.983(16) η⊥
10 0.1942(27)

φ01 −0.2021(39) η⊥
01 0.00038(63)

φ11 −0.203(12) η⊥
11 −0.0033(87)

φ20 3.314(83) η⊥
20 0.684(20)

φ02 −0.1110(34) η⊥
02 0.0106(14)

4 Conclusions

Our accurate renormalization group calculations in the
vicinity of the isotropic fixed point show that for a range
of parameters, when p4(0) < 0, the asymptotic multi-
critical point for the n = 2 + 1 order parameters must
cross over from the isotropic FP behavior to the triple
point and the fluctuation-driven first-order transition.
Our calculated flow trajectories also allow us to calcu-
late the effective critical exponents, which remain close
to their isotropic values for a range of system sizes or
correlation lengths, but then show large deviations as
these length grow larger. Our results are qualitatively
similar to those found for the cubic case, [11] and must
also describe many other apparent bicritical points. [13]

Supplementary Information The online version con-
tains supplementary material available at https://doi.org/
10.1140/epjs/s11734-023-00971-w.
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