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Abstract We propose a fractional-order prey-predator model with delay and harvesting. Comparatively,
only a few analyses are made to explore the impact of harvesting on population fluctuation due to time delay
and fractional order. Thus, our focus is whether harvesting effort can stabilize or destabilize the system
by varying the fractional order or keeping it fixed. We have observed that fractional order influences
the delayed system and the number of stability switching differently in the case of either predator or
prey harvesting. Both fractional order and predator harvesting have a destabilizing effect, whereas prey
harvesting has a stabilizing effect on the system. In addition, we observed stability switching induced by
predator harvesting while keeping the delay fixed. Moreover, in the case of predator harvesting, when the
carrying capacity of prey exceeds a certain threshold, the number of switching regions increases significantly.
For yield maximization, we observe that maximum sustainable yield (MSY) exists for predator harvesting
only; however, yield at MSY produces stable stock only when the time delay is minimal.

1 Introduction

Time delay plays a significant role in investigating the
dynamic relationship between predator–prey interac-
tion. Delay arises in different forms, such as temporal
delay, maturation delay, gestation delay, dispersal delay,
etc. But maturation and gestation delays are common
and unavoidable in a predator–prey interaction (Kar
and Matsuda [19], Chakraborty et al. [8], Dubey et al
[11]). Gourley and Kuang [13] reported that delay is the
cause of oscillation in a stage-structured prey-predator
model. Rihan et al. [33] discussed a delayed model of
two prey and one common predator with the Allee effect
at prey growth rate. They showed that at the primary
stage with low population density, the small change in
the Allee threshold makes the system highly sensitive,
and this sensitivity decreases with time.

In general, predators react differently to variations
in prey density. The rate of prey intake per predator
as a function of prey density is a functional response,
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and it plays an essential role in the ecological sys-
tem. Two kinds of functional responses, prey-dependent
and predator-dependent, are common in the ecologi-
cal literature. The prey-dependent functional response
is the intake rate of a single predator to the prey
species (see in [15]). While the predator-dependent
functional response is the intake rate of a single preda-
tor depending on prey and predator density (see in
[28]). The latter type of functional response is also
called ratio-dependent functional response because it
has the ratio of prey species to the predator species [3,
21]. Alsakaji et al. [2] have discussed a prey-predator
model with Monod-Haldane and Holling type II func-
tional response.

Many researchers have been interested in fractional-
order dynamical systems, particularly in science
and engineering. Beyond the traditional integer-order
dynamical systems, the fundamental difference with the
fractional-order systems is that it consists of a non-local
and weakly singular kernel [1, 43]. Thus, the system has
infinite memory, more degrees of freedom, and long-
range interactivity in space and time [4, 5, 34, 37]. In
ecology, problems have memory and spatial interaction
in the long run. Humans utilize their memory with the
experiences of the past. Biological organisms also fol-
low the same. Therefore, fractional dynamics happen
due to carrying memory in most biological organisms
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and their inheritance. The carrying memory is a pro-
cess where the biological component for the current and
future development of the population dynamics carries
out the history. These are the main reason behind the
importance of fractional order dynamics rather than the
integer order. Incorporating fractional order in dynam-
ics makes the system much more realistic and complex,
which can improve the biological system [9]. The flexi-
bility of the fractional order system in stability analy-
sis is high rather that of the integer order system [20,
32]. Caputo and Atangana-Baleanu fractional deriva-
tive operators are used in fractional order prey-predator
models with Holling type-II functional response and
Lotka-Volterra response function in different tropic lev-
els (see [30, 31]). Recently, few researchers have incorpo-
rated fractional order in the prey-predator model with
delay [9, 35, 40], and without delay, [26, 29, 38], which
improves the dynamics into a large number of results.
Sekerci [39] observed that climate change affects the
dynamics of the fractional-order prey-predator model.
The fractional order contributes to ecology and epi-
demiology [24, 25] and eco-epidemiology [14, 36].

Harvesting has a substantial impact on the dynamic
evolution of a population. Depending on the nature of
the applied harvesting strategy, the long-run stationary
density of the population may be significantly smaller
than the long-run static density of a population in the
absence of harvesting. Harvesting can also lead to incor-
porating a positive extinction probability and, there-
fore, to potential extinction in finite time. Thus, har-
vesting strongly influences the evolution of the dynamic
system. Moreover, it is a user-dependent property since
we can regulate the dynamics externally. Mainly two
kinds of harvesting are studied constant-yield harvest-
ing and constant-effort harvesting. Some authors like
Kar [17], Martin and Ruan [27], and Barman and Ghosh
[6] studied the delayed prey-predator model with har-
vesting. They showed that harvesting has a substan-
tial impact on delayed prey-predator dynamics. Ho
and Ou discuss the stability switching on the Lotka-
Volterra type predator–prey model [14]. Barman and
Ghosh [6] depicted the effect of explicit harvesting on
the delayed dynamical system with the Holling type-II
response function. Moreover, the impact of harvesting
on fractional order prey-predator models without delay
is studied by [16, 26, 38, 41, 42]. But from the above
literature survey, we observe that the impact of harvest-
ing in a delayed fractional-order prey-predator model is
studied only by Song et al. [40]. They have taken the
prey-predator model with the linear functional response
and showed the impact of harvesting and the static bal-
ance. Also, we found that no one explicitly discussed
the effect of harvesting on fractional order delay prey-
predator model with Holling type-II intake rate by the
predator.

Due to the over-exploitation of marine species, many
management tools are now being used to face this chal-
lenge. Among these, maximum sustainable yield (MSY)
is used frequently, allowing harvesting to be carried on
sustainably. Many researchers have studied the signifi-
cance of MSY on single and multi-species systems [12,

18, 22]. Few have also assessed the shortcomings of MSY
as it does not involve environmental fluctuations or eco-
nomic factors, and conservation biologists regard it as
unsafe and misused.

Thus, from the above literature study, we observe
that fewer studies were made on harvesting in a delayed
fractional-order dynamical system. No one explicitly
discussed the impact of fractional order and harvest-
ing on time delay and the number of switching for
the Holling type-II response function. Also, MSY is an
important policy that is measured for the future sur-
vival of the population. No such attempts are studied on
the delayed fractional-order prey-predator model with
harvesting. This motivates us to construct and ana-
lyze a delayed fractional order model with Holling type-
II response function and harvesting. Most researchers
used the time delay as a control parameter to analyze
the prey-predator dynamics. But, the time delay is an
internal property and is a slow process compared to
harvesting. Hence corresponding to invariant time delay
harvesting can vary and be controlled.

Thus in our paper, we intend to study the following
important issues:

(i) whether the time delay and stability-switching of
the prey-predator model are affected by fractional
order and harvesting.

(ii) whether harvesting effort or fractional order or
both have any effect of stabilizing or destabilizing
the system.

(iii) whether prey or predator harvesting always gives
the stable, steady state at MSY level.

This paper is organized as follows: In Sect. 2, we for-
mulate a delayed prey-predator model and analyze the
model dynamics for both the unharvested and har-
vested system and Hopf-bifurcation. In Sect. 3, we dis-
cuss the numerical simulation with the aid of delay
and a number of switching changes for fractional order
unharvested system, individual harvesting, and har-
vesting of both the tropic levels. The simultaneous
effect of fractional order and individual harvesting is
discussed. Also, we focus on the MSY policy elabo-
rately. Section 4 provides some discussion and conclud-
ing remarks.

2 The model

We consider a predator–prey model with Holling type-II
trophic function for the issues raised in the introductory
portion. The time delay induced in the logistic growth
term of prey species. Harvesting is used as a control
parameter for a delayed system.
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Dθx(t) = rx(t)
(

1 − x(t − τ)
k

)
− px(t)y(t)

1 + qx(t)
− E1x(t),

Dθy(t) =
spx(t)y(t)
1 + qx(t)

− s0y(t) − E2y(t),

(2.1)

where Dθ, 0 < θ ≤ 1 is the Caputo fractional deriva-
tive, τ is the measure of maturation time-delay of prey
species with the initial conditions x(t) = φ(t) > 0 and
y(t) = ψ(t) > 0 for t ∈ [−τ, 0], r is the growth rate of
prey species, k is the carrying capacity, p is the con-
sumption rate of the predator, q is the half-saturation
constant of prey species, s is the conversion rate of the
predator, s0 is the death rate of the predator, E1 and E2

are the harvesting efforts of prey and predator species
respectively.
Primary tools:

Definition 1 [20] The Riemann-Liouville (R-L) frac-
tional integral operator of order θ of a continuous func-
tion g ∈ L1(R+) is defined as

Iθg(t) =
1

Γ(θ)

∫ t

0

(t − η)(θ−1) g(η) dη,

where Γ(.) is the Gamma function for, θ > 0.

Definition 2 [20] The Caputo fractional derivative of
order θ > 0, m − 1 < θ < m,m ∈ N is defined as

Dθg(t) =
1

Γ(m − θ)

∫ t

0

gm(η)
(t − η)(θ+1−m)

dη

=I(m−θ)gm(t).

Lemma 2.1 [23] Consider the following fractional dif-
ferential system with Caputo derivative

DθY = AY, Y (0) = Y0

with θ ∈ (0, 1], Y ∈ R
m and A ∈ R

m×m. The charac-
teristic equation of the system is det(λθI − A) = 0. If
all of the roots of the characteristic equation have neg-
ative real parts, then the zero solution of the system is
asymptotically stable.

Lemma 2.2 [10] Considering the fractional delayed
differential system with Caputo derivative,

DθY (t) = AY (t) + BY (t − τ),
Y (t) = φ(t), t ∈ [−τ, 0]

with θ ∈ (0, 1], Y ∈ R
m and A,B ∈ R

m×m and
τ ∈ R

+(m×m). If all of the roots of the characteristic
equation have negative real parts, then the zero solu-
tion of the system is asymptotically stable.

2.1 Fractional order delayed predator–prey model
without harvesting

In this section, we describe and analyze the stability
of the fractional order delayed predator–prey system
without harvesting. For this purpose we consider E1 =
0, E2 = 0 in equation (2.1) and obtain,

Dθx(t) = rx(t)
(

1 − x(t − τ)
k

)
− px(t)y(t)

1 + qx(t)
,

Dθy(t) =
spx(t)y(t)
1 + qx(t)

− s0y(t).

(2.2)

The equilibrium point of the above system is
(0, 0), (k , 0), and (x∗, y∗), where x∗ = s0

ps−qs0
and

y∗ = r
p (1 + qx∗)(1 − x∗

k ). Hence for both the species to
co-exist, ps − qs0 > 0,and x∗ < k.

To find the local stability of the co-existing equilib-
rium, we perturb the system about the interior equi-
librium (x∗, y∗). The transformation u(t) = x(t) − x∗
and v(t) = y(t) − y∗ in equation (2.2), we obtain the
linearized system as,

Dθu(t) = − px∗

1 + qx∗ v(t) − rx∗

k
u(t − τ),

Dθv(t) =
psy∗

(1 + qx∗)2
u(t).

(2.3)

The associate characteristic equation of the above-
linearized system is given by

λ2θ + a1λ
θe−λτ + a2 = 0, (2.4)

where a1 = rx∗
k > 0 and a2 = p2sx∗y∗

(1+qx∗)3 > 0.

Lemma 2.3 When τ = 0, the interior equilibrium
point (x∗, y∗) of the system (2.2) is locally asymptoti-
cally stable.

Proof When τ = 0, the associate characteristic equa-
tion (2.4) takes the form,

λ2θ + a1λ
θ + a2 = 0. (2.5)

From Lemma 2.1, if all of the roots consist of negative
real parts, i.e., �(λ) < 0, then the interior equilibrium
(x∗, y∗) of system (2.2) with τ = 0 is locally asymptot-
ically stable.

Now, we consider z = λθ, then the system (2.5) turns
to

z2 + a1z + a2 = 0. (2.6)

From notion of complex analysis, we obtain that the
condition �(λ) < 0, in the characteristic equation (2.5)
can be transformed to |arg(z)|> θπ

2 in Eq. (2.6). Since
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a1 > 0 and a2 > 0, both the roots z1 and z2 of equa-
tion (2.6) has negative real part satisfying the condition
|arg(z)|> θπ

2 . Hence this completes the proof. �

Now we will discuss the stability nature of the system
for τ > 0. We want to find the value of positive ω such
that λ = ±iω satisfies. Putting λ = iω in the character-
istic Eq. (2.4) and separating real and imaginary parts,
we get

ω2θ cos (θπ) + a2 = −a1ω
θ cos (ωτ − θπ

2 ),
ω2θ sin (θπ) = a1ω

θ sin (ωτ − θπ
2 ).

(2.7)

Squaring and adding the above two equations in (2.7),
we get

ω4θ − (a2
1 − 2a2 cos (θπ))ω2θ + a2

2 = 0. (2.8)

Considering w = ω2θ in Eq. (2.8), we can rewrite the
form as

w2 − (a2
1 − 2a2 cos (θπ))w + a2

2 = 0. (2.9)

Now we consider a few conditions as follows.
P1. (a2

1 − 2a2 cos (θπ)) ≤ 0, P2. (a2
1 −

2a2 cos (θπ)) > 0, P3. 0 < (a2
1 − 2a2 cos (θπ)) <

2a2, P4. (a2
1 − 2a2 cos (θπ)) > 2a2, P5. (a2

1 −
2a2 cos (θπ))2 − 4a2

2 < 0, P6. (a2
1 − 2a2 cos (θπ))2 −

4a2
2 > 0.

Theorem 2.4 If P3 holds, then the co-existing equi-
librium (x∗, y∗) of system (2.2) is locally asymptotically
stable for each τ ≥ 0, i.e., both predator and prey will
eventually be stable.

Proof From Lemma 2.3, we obtain that all of the roots
of equation (2.4) consist of negative real parts for τ = 0.
The main objective is to find the nature when τ > 0. It
is obvious that λ = 0 cannot be the root of the equation
(2.4). For this purpose we will put λ = ±iω(ω > 0) in
(2.4) and after few steps we get Eq. (2.9).

If condition P1 holds, then no positive roots will
occur for equation (2.9). If condition P3 holds, then P2
and P5 are satisfied and the Eq. (2.9) has no positive
roots. Thus, when P3 is satisfied, the equation (2.8) has
no positive roots. This indicates that each root of char-
acteristic Eq. (2.4) has negative real parts for τ > 0.
With the help of Lemma 2.2, we can say that the exis-
tence of co-existing equilibrium point (x∗, y∗) is locally
asymptotically stable for each τ ≥ 0. �

If P4 hold, then the other two inequality P2 and P6
are both satisfied. Hence, the equation (2.9) has two
unique positive roots. After solving the above quadratic
Eq. (2.9) and replacing ω2θ in place of w , we obtain

ω± =

⎛
⎜⎝

(a2
1 − 2a2 cos (θπ))±

√
(a2

1 − 2a2 cos (θπ))2 − 4a2
2

2

⎞
⎟⎠

1
2θ

.

(2.10)

The Eq. (2.7) gives the values of τ±
n (n = 0, 1, 2, ...) for

each ω±as

τ±
n =

1
ω±

[
arccos

(
ω2θ

± cos θπ + a2

−a1ωθ±

)
+

θπ

2
+ 2nπ

]
,

n = 0, 1, 2, ... (2.11)

The above analysis shows that one or more pair of eigen-
values has real parts zero at τ = τ±

n . Now we will check
whether the real part of each eigenvalue changes or not
near τ±

n and how they change. We use the transversal-
ity condition that specifies the rate of change of the real
part of eigenvalues.

Now,

(
d(Reλ)

dτ

)−1∣∣∣∣
λ=iω,τ=τ±

n

=
θ (ω4θ − a2

2)
ω2{(a2 + ω2θ cos θπ)2 + ω4θ sin2 θπ}

(2.12)

and

sign

(
d(Reλ)

dτ

)−1∣∣∣∣
λ=iω,τ=τ±

n

= sign(ω4θ − a2
2)

= sign(ω2θ − a2).
(2.13)

Therefore,

(
d(Reλ)

dτ

)−1∣∣∣∣
λ=iω+,τ=τ+

n

> 0,

(
d(Reλ)

dτ

)−1∣∣∣∣
λ=iω−,τ=τ−

n

< 0.

(2.14)

The above two conditions in (2.14) say that the real
part of each eigenvalue is zero at τ±

n . But, the rate of
change of the real part of eigenvalues becomes positive
or negative accordingly τpasses through τ+

n and τ−
n .

Thus, Hopf-bifurcation occurs at τ±
n .

Now, we can use the following lemma for finding the
number of eigenvalues when λ crosses the imaginary
axis.
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Lemma 2.5 The characteristic equation F (λ, τ) =
λ2θ + a1λ

θe−λτ + a2 = 0, where a1 > 0, a2 > 0 pro-
vides simple roots on the imaginary axis.

Proof If possible, let us consider λ = iω is the root of
F (λ, τ) = 0 are not simple. Now putting λθ = h for
changing the domain from fractional order to integer
order in F (λ, τ) = 0, we get G(h, τ) = h2+a1he−h

1
θ τ +

a2 = 0. Now, ∂G
∂h = 0 implies that G1(h, τ) = 2h +

a1e
−h

1
θ τ [1 − τ

θ h
1
θ ] = 0. From G(h, τ) = 0 we obtain

a1e
−h

1
θ τ = − (h2+a2)

h and replacing in G1(h, τ) = 0
we get h2 − a2 + τ

θ (h2 + a2)h
1
θ = 0. Then by putting

h = (iω)θ and equating the real part zero, we get
a2 = ω2 cos θπ. But, |cos θπ|≤ 1,∀θ ∈ [0, 1). Thus a2

is not always positive, which contradicts our assump-
tion. This completes the proof. �

Remark Since ω− < ω+, τ+
n+1 − τ+

n = 2π
ω+

< 2π
ω−

=
τ−
n+1 − τ−

n for n = 0, 1, 2, ...
This condition expresses that the distance between two
consecutive τ−

n is greater than the distance between two
consecutive τ+

n . Hence it implies that two consecutive
members of {τ+

n }∞
n=0 must lie between two consecutive

member of {τ−
n }∞

n=0 (see [7]).
Now we will establish theorems on stability for the

increasing delay.

Theorem 2.6 When τ±
n ’s are in order τ+

0 < τ+
1 < τ−

0 ,
then system will be stable in [0, τ+

0 ). Hopf-bifurcation
occurs at τ = τ+

0 , and the system will always be unsta-
ble for τ > τ+

0 .

Proof Consider τ+
0 < τ+

1 < τ−
0 . At τ = 0, the system

exhibits stable behavior (see Lemma 2.3). But when
τ > 0, then corresponding to each τ+

0 there exists a
simple root λ = iω+ (from Lemma 2.5). Since the com-
plex conjugate of the eigenvalue is pairwise, λ = ±iω+

is the eigenvalue corresponding to τ+
0 .

The first condition of (2.14) implies that at τ = τ+
0

the eigenvalues cross the imaginary axis from the left to
the right plane (positive real part) for increasing delay
and near to τ+

0 . Thus the system becomes unstable. As
the delay is further increased, at τ = τ+

1 yet another
pair of eigenvalues of the form λ = ±iω+ is present.
From a similar transversality condition of (2.14), the
system is unstable.

Now at τ = τ−
0 , the corresponding eigenvalues are

λ = ±iω−. Thus the second condition of (2.14) tells
us that the said pair cross the imaginary axis giving
a negative real part of the eigenvalue. But there are
still positive real parts of the eigenvalue when τ passes
through τ+

1 , and hence the system remains unstable.
For every τ±

n , only one pair of eigenvalues crosses
the imaginary axis, and consecutive eigenvalue can not
appear for τ−

n (see Remark). Hence instability occurs
for every τ > τ+

0 . �

Another important theorem we can define regarding
stability-switching of the system (2.2) as follows.

Theorem 2.7 If 0 < τ+
0 < τ−

0 < τ+
1 < τ−

1 < ... <
τ+
k̄

< τ+
k̄+1

< τ−
k̄

< ... where k̄ is an positive inte-
ger. Then k̄ number of switching occurs from stable to
unstable and back to stable, and finally, for τ = τ+

k̄

system becomes unstable. Further, at τ = τ±
n Hopf-

bifurcation occur.

Proof We consider first three order of given inequality
τ+
0 < τ−

0 < τ+
1 , where τ+

0 , τ−
0 , τ+

1 are the time delays
exhibits as Hopf-bifurcation points. The system shows
stable behavior at τ = 0 (from Lemma (2.3)). When
delay is increasing at τ = τ+

0 , a pair of eigenvalues
λ = ±iω+ of (2.4) will appear on the purely imaginary
axis. The transversality condition at τ = τ+

0 says that
the real part of the eigenvalue will be positive when
τ passes through τ+

0 . Thus the system will no longer
persist in a stable state.

Again, if we increase the delay, there corresponds to
an eigenvalue λ = ±iω− of τ−

0 , the transversality con-
dition at τ = τ−

0 implies the real part of the eigenvalue
is negative when τ passes through τ−

0 . Thus the sys-
tem becomes stable. So stability-switching occurs (i.e.,
stable to unstable and back to a stable state) at the pos-
itive equilibrium of system (2.2) with increasing delay.

Similarly, for other τ ≤ τ−
k̄

the stability switching
will be continued till τ < τ+

k̄
(k̄=number of switching),

occur. If the delay parameter satisfying τ+
k̄

< τ+
k̄+1

<

τ−
k̄

, the Theorem 2.6 tells that the system is always
unstable for τ > τ+

k̄
. �

2.2 Fractional order delayed predator–prey model
with harvesting

In this section, we discuss the case E1 �= 0 and E2 �=
0 of Eq. (2.1). This system has a co-existing equi-
librium (x̄∗, ȳ∗), where x̄∗ = s0+E2

ps−q(s0+E2)
and ȳ∗ =

1+qx̄∗

p

[
r(1 − x̄∗

k ) − E1

]
. For feasibility of the equilib-

rium point, 0 < E1 < r
(
1 − x̄∗

k

)
and 0 < E2 < ps

q − s0.
Now we perturbed the system (2.1) around the unique
equilibrium (x̄∗, ȳ∗). By using transformation u(t) =
x(t) − x̄∗, v(t) = y(t) − ȳ∗, we get the linear form as

Dθu(t) = − px̄∗

1 + qx̄∗ v(t) − rx̄∗

k
u(t − τ),

Dθv(t) =
psȳ∗

(1 + qx̄∗)2
u(t),

(2.15)

which gives the characteristic equation as

λ2θ + ā1λ
θe−λτ + ā2 = 0, (2.16)

where ā1 = rx̄∗
k > 0 and ā2 = p2sx̄∗ȳ∗

(1+qx̄∗)3 > 0.
For τ = 0, we follow the same procedure as discussed

in the unharvested system in Lemma 2.3. This implies
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that all the roots of Eq. (2.16) have negative real parts
when τ = 0.

Again when τ �= 0, from Eq. (2.16) we observe that
λ = 0 cannot be the root of (2.16). Let λ = iω(ω > 0),
be the roots of Eq. (2.16). Then,

ω2θeiθπ + ā1ω
θe−i(ωτ− θπ

2 ) + ā2 = 0. (2.17)

Separating real and imaginary parts we get,

ω2θ cos (θπ) + ā2 = −ā1ω
θ cos (ωτ − θπ

2
),

ω2θ sin (θπ) = ā1ω
θ sin (ωτ − θπ

2
).

(2.18)

The above equation leads to a polynomial in ω as,

ω4θ − (ā1
2 − 2ā2 cos (θπ))ω2θ + ā2

2 = 0. (2.19)

We consider two conditions as, P7. ā1
2−2ā2 cos (θπ) <

2ā2, P8. ā1
2 − 2ā2 cos (θπ) > 2ā2. If P7 holds, then

equation (2.19) has no positive roots.
Again if P8 holds, then also two inequalities ā1

2 −
2ā2 cos (θπ) > 0 and (ā1

2 − 2ā2 cos (θπ))2 − 4ā2
2 > 0

satisfied. Therefore, Eq. (2.19) has two positive roots
as follows

ω± =

(
(ā1

2 − 2ā2 cos (θπ)) ±
√

(ā12 − 2ā2 cos (θπ))2 − 4ā22

2

) 1
2θ

.

(2.20)

From the first equation of (2.18) we can rearrange it as,

τ±
n =

1
ω±

[
arccos

(
ω2θ

± cos (θπ) + ā2

−ā1ωθ±

)
+

θπ

2
+ 2nπ

]
,

n = 0, 1, 2, ... (2.21)

Similar analysis as section 2.1 leads to few conclusions
if P8 satisfied. These are

(i) λ = iω(ω > 0) is a simple root of (2.16),
(ii) the transversality condition hold

(d(Reλ)
dτ )−1|λ=iω+,τ=τ+

n
> 0 and

(d(Reλ)
dτ )−1|λ=iω−,τ=τ−

n
< 0,

(iii) since ω− < ω+, τ+
n+1 − τ+

n = 2π
ω+

< 2π
ω−

=
τ−
n+1−τ−

n for n = 0, 1, 2, ..., there exists a positive
integer k̄ which makes the following inequality in
group formed: 0 < τ+

0 < τ−
0 < τ+

1 < τ−
1 < ... <

τ+
k̄

< τ+
k̄+1

< τ−
k̄

.

Thus, two sets T+ = [0, τ+
0 ) ∪ (τ−

0 , τ+
1 )... ∪ (τ−

k̄−1
, τ+

k̄
)

and T− = (τ+
0 , τ−

0 ) ∪ (τ+
1 , τ−

1 )... ∪ (τ+
k̄−1

, τ−
k̄−1

) ∪
(τ+

k̄
,+∞) are respectively determined for the stable and

unstable state of the system. For τ ∈ T+, all the roots

of the characteristic Eq. (2.16) have negative real parts.
While for τ ∈ T−, the Eq. (2.16) has at least one root
with a positive real part.

From the above content, we can conclude the results
as follows.

Theorem 2.8 The following statements are true for
system (2.1):

1. If P7 hold, then coexisting equilibrium of system
(2.1) is locally asymptotically stable for τ ≥ 0.

2. If P8 hold, then there exists positive integer k̄
such that the coexisting equilibrium point (x̄∗, ȳ∗)
switches k̄ times from stability to instability and
back to stability, i.e., (x̄∗, ȳ∗) is locally asymptoti-
cally stable for τ ∈ T+ and unstable for τ ∈ T−.

2.3 The impacts of harvesting

This section is devoted to discussing the impacts of har-
vesting on system (2.1). Here, the condition of existence
of the coexisting equilibrium 0 < E1 < r

(
1 − x̄∗

k

)
and

0 < E2 < ps
q − s0 must hold. We shall describe the

change of equilibrium component with respect to an
individual or both harvesting as follows.
Predator harvesting: For this case E1 = 0

leads the positive equilibrium point of system (2.1)
as (x̄∗, ȳ∗), where x̄∗ = s0+E2

ps−q(s0+E2)
and ȳ∗ =

1+qx̄∗

p

[
r(1 − x̄∗

k )
]
. It is observed that both x̄∗ and ȳ∗

are continuously differentiable function of E2. Then, we
get

dx̄∗

dE2
=

ps

{ps − q(s0 + E2)}2 > 0,

dȳ∗

dE2
=

r

p

(
q − 1 + 2x̄∗q

k

)
dx̄∗

dE2
> or < 0

according as k − 1
q >or< 2x̄∗.

Therefore, when E2 increases x̄∗ monotonically
increases. But, ȳ∗ monotonically increases or decreases
according as k− 1

q >or< 2x̄∗. If we increase the effort of
harvesting, prey biomass will increase, whereas preda-
tor biomass will conditionally increase or decrease.
Predator biomass will increase or decrease when the
difference between carrying capacity and the inverse of
the half-saturation constant of prey species is greater
or less than double of equilibrium component x̄∗.

Prey harvesting: For E2 = 0, the coexisting equi-
librium point of the system (2.1) is given by (x̄∗, ȳ∗),
where x̄∗ = s0

ps−qs0
and ȳ∗ = 1+qx̄∗

p

[
r(1 − x̄∗

k ) − E1

]
. It

is obvious that x̄∗ and ȳ∗ are continuously differentiable
with respect to E1. Then we obtain

dx̄∗

dE1
= 0,

dȳ∗

dE1
= −1 + qx̄∗

p
< 0.
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Fig. 1 Effect of fractional order in unexploited dynamics (2.2) for the parameter set r = 2, k = 15, p = 0.5, q = 0.01, s =
0.5, s0 = 0.8, τ = 1.3, becomes (i) unstable for θ = 1, and (ii) locally asymptotically stable for θ = 0.9

Hence, when E2 increase then x̄∗ remains unchanged
while ȳ∗ decreases. Thus when prey harvesting
increases, the density of prey remains unchanged,
whereas the predator density will decrease.
Both prey and predator harvesting: When both

E1E2 �= 0, then both x̄∗ and ȳ∗ are continuously differ-
entiable function of E1 and E2. By partial differentia-
tion, we get

∂x̄∗

∂E1
= 0,

∂ȳ∗

∂E1
= −1 + qx̄∗

p
< 0

∂x̄∗

∂E2
=

ps

{ps − q(s0 + E2)}2 > 0,

∂ȳ∗

∂E2
=

r

p

(
q − 1 + 2x̄∗q

k

)
∂x̄∗

∂E2
> or < 0

according as k − 1
q >or< 2x̄∗.

Thus prey density remains unchanged, and preda-
tor density goes towards extinction when effort E1

increases. Again, when E2 increases, prey density
increases, but predator density will increase or decrease
according to the difference in carrying capacity and
inverse of half-saturation of prey species greater or less
than double of equilibrium component x̄∗.

3 Numerical simulation

All simulations on analytical results are done with the
help of MATLAB. Also, the predictor-corrector scheme
is used to plot time series.

3.1 Without harvesting

In this section, we will describe the dynamics of the
unharvested system (2.2). First, we focus on the dynam-
ical nature of the system (2.2) for θ = 1. We consider
the initial condition x(t) = 1, y(t) = 3, t ∈ [−τ, 0). For
the parameter set r = 2, k = 15, p = 0.5, q = 0.01, s =
0.5,and s0 = 0.8 the equilibrium point E∗ is unstable
when θ = 1 (Fig. 1(i)) and asymptotically stable when
θ = 0.9 (Fig. 1(ii)).

Moreover, the delay is also affected by θ. Also for
same parameter set we observe that, for τ ∈ [0, τ+

0 ) ∪
(τ−

0 , τ+
1 ) = [0, 1.17) ∪ (5.23, 5.86) system is asymptoti-

cally stable and unstable for τ > 5.86. Thus, one sta-
bility switching occur. We observe from Table 1 that
switching numbers varies as θ changes. These are also
shown in Fig. 2. The colored region is the region of
stability concerning fractional order θ. The region is
decreasing with θ.

Again in Fig. 2, if delay τ start from [τ+
0 (1), τ+

0 (0)] =
[1.17, 2.31] on the τ±

n −axis and we increase the frac-
tional order (θ) then stable region enters into the unsta-
ble region after crossing critical fractional order (at
which order changes stable to unstable). Thus, we show
fractional order has a destabilizing effect. From an eco-
logical point of view, when fractional order θ increases,
the carrying memory of the prey-predator will decrease
in the neighbourhood of θ = 1. There is no carrying
memory for θ = 1. When θ = 0.88, prey species carry
a fear of the predator’s attacking place and time as a
memory. Similarly, predators also wait for prey species’
movement, which they observed before. Both prey and
predator awareness are very high when fractional order
quantity is less in numeric value. Thus, the stability
region is high for less fractional order where both the
species consist of highly carrying memory. Hence, the
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Table 1 The delay parameter value τ±
n corresponding to different θ of system (2.2) is listed. The corresponding parameter

set is r = 2, k = 15, p = 0.5, q = 0.01, s = 0.5, s0 = 0.8, E1 = 0, E2 = 0, θ ∈ [0.88, 1]

θ θ = 0.88 θ = 0.9 θ = 1

τ+
n , n =

0, 1, ..., 7

2.31, 7.51, 12.71, 17.92, 23.12,
28.33, 33.53,.

1.94, 6.86, 11.79,16.71,. 1.17, 5.86,.

τ−
n , n =

0, 1, ..., 7

3.41, 9.53, 15.65, 21.78, 27.90,. 3.94, 10.44,. 5.23, 12.21,.

Stable region [0, 2.31) ∪ (3.41, 7.51) ∪ (9.53, 12.71)

∪(15.65, 17.92) ∪ (21.78, 23.12)

∪(27.90, 28.33)

[0, 1.94) ∪ (3.94, 6.86) ∪ (10.44, 11.79) [0, 1.17) ∪ (5.23, 5.86)

Number of
switchings
(m)

m=5 m=2 m=1

time delay τ and the number of switching is affected
by fractional order θ. As per example, we are consider-
ing the population of zebra and lion, then the survival
of the zebra depends on the carrying memory of both
species. But, when the carrying memory of both species
decreases, then the survival rate of zebra decreases.
Thus, the numerical simulation is consistent with the
real-life phenomenon.

3.2 With harvesting

Any ecological system of interacting species is strongly
impacted by harvesting. The coexisting population’s
long-term stationary biomass may be unstable and,
eventually, become extinct depending on the trophic
level at which harvesting is carried on. However, most
ecological models of species interacting over time are
examined using delay as a control parameter. We should

Fig. 2 Time delays τ±
n and number of stability switching

is effected by the fractional order θ for the parameter set
r = 2, k = 15, p = 0.5, q = 0.01, s = 0.5, s0 = 0.8, E1 =
0, E2 = 0, θ ∈ [0.88, 1]

consider harvesting effort as a control parameter to reg-
ulate the system because time delay is an inherent fea-
ture and varies on a very slow time scale, especially for
harvested systems. With this motivation, we will exam-
ine the effects of harvesting on the delayed fractional
order system.

3.2.1 Predator harvesting

Using numerical simulation, we validate the findings in
this section for predator harvesting only (i.e., E1 = 0).
We can take the parameter set as r = 2, k = 30, p =
0.5, q = 0.1, s = 0.5, s0 = 0.8, θ = 0.9, E1 = 0, E2 ∈
[0, 0.38], where k − 1

q > 2x̄∗. The effects of E2 on the
positive equilibrium point and time delay are depicted
in Figs. 3 and 4, respectively. In Fig. 4, the stable region
shrinks as E2 rises, particularly given that one switch
for E2 = 0.38 and eight switching for E2 = 0. Thus,
we can say that the parameter E2 impacts the stabil-
ity switching times. The values of τ±

n with E2 = 0 and
E2 = 0.38 are shown in Table 2 for the convenience
of discussion. Moreover, we note that the simulations
are happening for fixed carrying memory θ = 0.9. It is
implied that when the predator equilibrium increases
with harvesting effort for a fixed memory, the sta-
bility region of the static balance will decrease with
such effort. Again in Fig. 4, if delay τ start from
[τ+

0 (0.38), τ+
0 (0)] = [1.67, 2.83] on the τ±

n − axis and
we increase the harvesting effort, the equilibrium point
shifts from a stable to an unstable region after crossing
the critical effort. Thus, harvesting effort has a desta-
bilizing effect.

For another parameter set r = 2, k = 15, p = 0.5, q =
0.01, s = 0.5, s0 = 0.8, θ = 0.9, E1 = 0, E2 ∈ [0, 1.8],
we can discuss the impact of harvesting effort E2

also. But, where the condition k − 1
q < 2x̄∗ satisfied,

which is discussed elaborately in the section 2.3. Fig-
ures 5 and 6 showed the impact of harvesting effort
E2 on the coexisting equilibrium point and time delay,
respectively. It is noticed that in Fig. 5, the preda-
tor equilibrium decreases, and in Fig. 6, the stable
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Table 2 The delay parameter value τ±
n corresponding to different predator harvesting effort E2 of system (2.1) are listed

for the set r = 2, k = 30, p = 0.5, q = 0.1, s = 0.5, s0 = 0.8, θ = 0.9, E1 = 0

E2 E2 = 0 E2 = 0.38

τ+
n , n = 0, 1, ..., 7 2.83, 9.07, 15.32, 21.57, 25.23, 27.81, 34.06,

40.30, 46.55, 52.80, 59.04,.
1.67, 6.66, 11.65,.

τ−
n , n=0,1,...,7 3.81, 10.76, 17.72, 24.68, 31.63,

38.59, 45.54, 52.50,.
6.10,.

Stable region [0, 2.83) ∪ (3.81, 9.07) ∪ (10.76, 15.32)

∪(17.72, 21.57) ∪ (24.68, 27.81) ∪ (31.63, 34.06)

∪(38.59, 40.30) ∪ (45.54, 46.55) ∪ (52.50, 52.80)

[0, 1.67) ∪ (6.10, 6.66)

Number of switching (m) m=8 m=1

Fig. 3 Equilibrium component x̄∗ and ȳ∗ are effected by
the harvesting effort E2 for the parameter set r = 2, k =
30, p = 0.5, q = 0.1, s = 0.5, s0 = 0.8, θ = 0.9, E1 = 0, E2 ∈
[0, 0.38], k − 1

q
> 2x̄∗

Fig. 4 Time delays τ±
n and number of stability switching is

affected by the predator harvesting effort E2 for the param-
eter set r = 2, k = 30, p = 0.5, q = 0.1, s = 0.5, s0 = 0.8, θ =
0.9, E1 = 0, E2 ∈ [0, 0.38], k − 1

q
> 2x̄∗

Fig. 5 Equilibrium component x̄∗ and ȳ∗ are effected by
the harvesting effort E2 for the parameter set r = 2, k =
15, p = 0.5, q = 0.01, s = 0.5, s0 = 0.8, E1 = 0, E2 ∈
[0, 1.8], k − 1

q
< 2x̄∗

Fig. 6 Time delays τ±
n and number of stability switching is

affected by the predator harvesting effort E2 for the parame-
ter set r = 2, k = 15, p = 0.5, q = 0.01, s = 0.5, s0 = 0.8, θ =
0.9, E1 = 0, E2 ∈ [0, 1.8], k − 1

q
< 2x̄∗
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Fig. 7 Surface of time delays τ = τ±
n and number of sta-

bility switching is affected by the predator harvesting effort
E2 and fractional order θ for the parameter set r = 2, k =
15, p = 0.5, q = 0.01, s = 0.5, s0 = 0.8, θ ∈ [0.9, 0.99], E1 =
0, E2 ∈ [0, 1.8], k − 1

q
< 2x̄∗

region decreases with the increasing harvesting effort
E2. There exists two switching for E2 = 0 and no
switching for E2 = 1.8. Thus, we can say that number
of stability switching is affected by the harvesting effort
E2. In Fig. 6, if we take the delay parameter τ within
the range [τ+

0 (1.8), τ+
0 (0)] = [0.83, 1.94] on the τ±

n −axis
and increases the harvesting effort E2, then the stable
region enters into the unstable region after crossing a
critical effort. The system again shows a destabilizing
effect for predator harvesting.

From Fig. 4 and Fig. 6, we conclude that switch-
ing is comparatively greater in the first than the sec-
ond. In the first case, k − 1

q > 2x̄∗ is satisfied while
k − 1

q < 2x̄∗ is satisfied for the latter. The carrying
memory is fixed as θ = 0.9 in both cases. In Fig. 7, we
take the parameter set, which is the same as in Fig. 6,
but here θ ∈ [0.9, 0.99] is varied. We show the simulta-
neous effect of harvesting effort E2 and fractional order
θ on the delay surface τ = τ±

n (E2, θ). In Fig. 2, we got
the stable region corresponding to θ = 1. But if we give
a small harvesting effort, E2 cannot find a feasible delay
surface. Thus, the delay surface in Fig. 7 will be found
in the neighbourhood of θ = 1. The cross-section cor-
responding to θ = 0.9 and θ = 0.93 gives Figs. 6 and 8,
respectively. These two figures show that the number
of switching regions decreases in Fig. 7 whenever frac-
tional order θ tends to 0.99. As an example, we may con-
sider small fish and piranha populations. If both small
fish and piranha carry a specific memory, the small fish
is afraid of attacking the situation of piranha, and the
piranha waits to catch the small fish. When the piranha
are captured from their biomass system, and the mem-
ory of both species loses, the survival rate of small fish
decreases. The numerical simulations accurately reflect
reality. As a result, we can conclude that system (2.1)

can achieve a stable status by appropriately adjusting
the harvesting effort E2.

Again, we consider another parameter set r =
0.5, k = 10, p = 0.5, q = 0.01, s = 0.5, s0 = 0.8, θ =
0.93, E1 = 0, E2 ∈ [0, 1.4]. Figure 9 reflects the cor-
responding numerical simulation. The region between
two red lines τmin = 2.88 and τmax = 3.28 shows the
harvesting-induced switching in the presence of fixed
memory θ = 0.93. The region between E2−axis and
the curve τ = τ+

0 (E2) is the region of stability. Thus,
the region enclosed by τmin = 2.88, τ = τ+

0 (E2),
τmax = 3.28 and τ±

n − axis is stable region. If the
delay τ starts from [τmin, τmax] = [2.88, 3.28] on the
τ±
n −axis, then the stable state of the system moves to

an unstable region after crossing the critical effort and

Fig. 8 Time delays τ±
n and number of stability switching is

affected by the predator harvesting effort E2 for the parame-
ter set r = 2, k = 15, p = 0.5, q = 0.01, s = 0.5, s0 = 0.8, θ =
0.93, E1 = 0, E2 ∈ [0, 1.8], k − 1

q
< 2x̄∗

Fig. 9 The harvesting induced stability switching is
depicted for parameter set r = 0.5, k = 10, p = 0.5, q =
0.01, s = 0.5, s0 = 0.8, θ = 0.93, E1 = 0, E2 ∈ [0, 1.4]
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further increase of effort fall into a stable state. Now,
ecologically we can interpret that when a stable system
moves to an unstable state, the appropriate harvesting
of predator species leads the system back to a stable
state in the presence of fixed carrying memory.

3.2.2 Prey harvesting

In this section, we will discuss the dynamical nature
of the system (2.1) when prey species is harvested (i.e.
E2 = 0). For validating the above theoretical results,
take a parameter set as r = 2, k = 30, p = 0.5, q =
0.1, s = 0.5, s0 = 0.8, θ = 0.9, E2 = 0 and E1 ∈ [0, 1.6].
In Figs. 10 and 11, we show that the prey harvest-
ing effort affects the equilibrium point and delay. It is
implied from Fig. 10 that for a fixed carrying memory
θ = 0.9, the prey equilibrium component is constant,
whereas the predator equilibrium component decreases
with increasing harvesting effort E1. In Fig. 11, we
observe all the curves τ = τ±

n (E1) increases with the
increase of E1. The coloured region between E1−axis
and τ = τ+

0 (E1) is the stability region that increases
with increasing effort E1, and other coloured regions
decrease with the effort E1. The values τ±

n with E1 = 0
and E1 = 1.6 are shown in Table 3 for convenience
of discussion. We notice that eight switchings occur
for E1 = 0 and no switching occurs for E1 = 1.6.
These discussions are made only for the carrying mem-
ory θ = 0.9. Thus, for fixed memory, prey harvesting
affects the stability switching of the system (2.1).

Again in Fig. 11, if delay τ start from
[τ+

0 (0), τ−
0 (0)] = [2.83, 3.81] on the τ±

n −axis and
we increase the harvesting effort, then the system
shifts from the unstable region to the stable region
after crossing the critical effort (at which effort changes
unstable to stable). Thus, we show prey harvesting

Fig. 10 Equilibrium component x̄∗ and ȳ∗ are effected by
the harvesting effort E1 for the parameter set r = 2, k =
30, p = 0.5, q = 0.1, s = 0.5, s0 = 0.8, θ = 0.9, E1 ∈
[0, 1.6], E2 = 0

effort has a stabilizing effect. From an ecological
point of view, the stable region between E1−axis
and τ = τ+

0 (E1) can express as when the matured
time of prey species is very short, then for fixed
memory of both prey and predator species stability
region increases with the appropriate effort of prey
harvesting. But when the matured time duration of
prey species is high, for the fixed carrying memory of
both species, then the region of stability decreases. For
example, the striped bass is among the main predators
of African killifish. Killifish grows fast; hence they
have a short maturation time. If killifish and striped
bass have a fixed carrying memory, then appropriate
harvesting of killifish increases the stable region. In
order to, we may consider the population of rabbits
and foxes as prey and predator, respectively. But,
the maturation delay of prey species is comparatively
higher from the above example. When rabbits and
foxes utilize the fixed carrying memory, suitable prey
harvesting decreases the region of the static balance of
both rabbit-fox systems.

In Fig. 12, we take the same parameter set, as in
Fig. 11, but only one parameter θ ∈ [0.9, 0.99] is
added and varied. Here, we have taken the delay sur-
face τ = τ±

n (E1, θ), which consists of the simultaneous
effect of both prey harvesting effort E1 and fractional
order θ. We observe from Fig. 12, that when both the
species are not carrying any memory (i.e., θ = 1), the
system (2.1) does not give any feasible delay surface
for the small change of effort. Thus, we have depicted
our figure in the neighbourhood of θ = 1. The cross-
section is taken in the Figs. 11 and 13 corresponding
to θ = 0.9 and θ = 0.93, respectively. Figures 11 and
13 shows that the number of stability switching regions
decreases with the decreasing carrying memory θ when
the prey harvesting is still effective. As an example, we
may consider the tuna and shark fish populations. Large

Fig. 11 Time delays τ±
n and number of stability switch-

ing is affected by the predator harvesting effort E1 for the
parameter set r = 2, k = 30, p = 0.5, q = 0.1, s = 0.5, s0 =
0.8, θ = 0.9, E1 ∈ [0, 1.6], E2 = 0
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Table 3 The delay

parameter value τ±
n

corresponding to different
prey harvesting effort E1 of
system (2.1) are listed for
the set
r = 2, k = 30, p = 0.5, q =
0.1, s = 0.5, s0 = 0.8, θ =
0.9, E1 ∈ [0, 1.6], E2 = 0

E1 E1 = 0 E1 = 1.6

τ+
n ,n = 0, 1, ..., 7 2.83, 9.07, 15.32, 21.57, 27.81,

34.06, 40.30, 46.55, 52.80,.
5.05,.

τ−
n ,n=0,1,...,7 3.81, 10.76, 17.72, 24.68, 31.63,

38.59, 45.54, 52.50,.
64.47,.

Stable region [0, 2.83) ∪ (3.81, 9.07) ∪ (10.76, 15.32)

∪(17.72, 21.57)∪ (24.68, 27.81)∪ (31.63, 34.06)

∪(38.59, 40.30)∪ (45.54, 46.55)∪ (52.50, 52.80)

[0, 5.05)

Number of switching (m) m=8 m=0

Fig. 12 Surface of time delays τ = τ±
n and the number

of stability switching is affected by the predator harvest-
ing effort E1 and fractional order θ for the parameter set
r = 2, k = 30, p = 0.5, q = 0.1, s = 0.5, s0 = 0.8, θ ∈
[0.9, 0.99], E1 ∈ [0, 1.6], E2 = 0

Fig. 13 Time delays τ±
n and number of stability switch-

ing is affected by the predator harvesting effort E1 for the
parameter set r = 2, k = 30, p = 0.5, q = 0.1, s = 0.5, s0 =
0.8, θ = 0.93, E1 ∈ [0, 1.6], E2 = 0

Fig. 14 Planer equilibrium component x̄∗ and ȳ∗ are
effected by the both harvesting effort E1 and E2 for the
parameter set r = 2, k = 15, p = 0.5, q = 0.1, s = 0.5, s0 =
0.8, θ = 0.9, E1 ∈ [0, 0.9], E2 ∈ [0, 0.52]

shark fish highly predate tuna fish. Tuna fish accounted
for the attacking behavior of large shark fish carrying
in their memory. Similarly, large shark fish are aware of
the current position of tuna fish with the help of carry-
ing memory observed before. If we harvest the tuna fish
and if gradually both fish lose their carrying memory,
their stability switching region will decrease. Thus, we
can conclude that appropriately harvesting prey species
makes the system less sensitive when they put the mem-
ory information outside.

3.2.3 Simultaneous harvesting

In this portion, we will emphasize the dynamical change
of the system (2.1) with both prey and predator effort
(i.e., E1 �= 0, E2 �= 0). We can take the parameter set
as r = 2, k = 15, p = 0.5, q = 0.1, s = 0.5, s0 = 0.8, θ =
0.9, E1 ∈ [0, 0.9], E2 ∈ [0, 0.52]. It is observed that the
simultaneous effects of E1 and E2 exist on the surface
of the component of equilibrium (x̄∗, ȳ∗) and on the
delay surface and on delay surface which is depicted
in Figs. 14 and 15 respectively. From Fig. 14, we show
that the surface x̄∗ incline and the surface ȳ∗ decline in
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Fig. 15 Surface of time delays τ = τ±
n and number of

stability switching is affected by the predator harvesting
effort E1 and prey harvesting effort E2 for the parameter
set r = 2, k = 15, p = 0.5, q = 0.1, s = 0.5, s0 = 0.8, θ =
0.9, E1 ∈ [0, 0.9], E2 ∈ [0, 0.52]

the normal direction of (E1, E2) plane for simultaneous
effort. The Fig. 15 depicts that all delay surface τ =
τ±
n (E1, E2) corresponds to a fixed fractional order θ =

0.9.
Again, we consider the parameter set r = 2, k =

15, p = 0.5, q = 0.1, s = 0.5, s0 = 0.8, θ = 0.9, and
τ = 1.2. We are taking the initial condition x(t) =
1, y(t) = 3, t ∈ [−τ, 0). For showing the impact of
harvesting, the effort E1 = 0.1, E2 = 0.6 gives the
unstable static balance, which is depicted in Fig. 16(i).

Fig. 17 For fixed memory, the stable and unstable regions
are shown for both prey-predator harvesting efforts. Cor-
responding parameter set is r = 2, k = 15, p = 0.5, q =
0.1, s = 0.5, s0 = 0.8, θ = 0.9, τ = 1.2, E1 ∈ [0, 0.6], E2 ∈
[0, 1]

We obtain locally asymptotically stable behavior for
another effort, E1 = 0.5, E2 = 0.2 in Fig. 16(ii).

Figure 17 shows that for delay τ = 1.2 and the range
of harvesting (E1, E2) the system (2.1)is locally asymp-
totically stable. Based on Figs. 16 and 17, we know
that the proper harvesting of prey and predator species
makes the system (2.1) stable. From the above discus-
sion, we can conclude that harvesting has an important
role in surviving prey and predator species.

Fig. 16 Change of static balance for different simultaneous harvesting efforts are shown for the parameter set r = 2, k =
15, p = 0.5, q = 0.1, s = 0.5, s0 = 0.8, θ = 0.9, τ = 1.2, (a) E1 = 0.1, E2 = 0.6, (b) E1 = 0.5, E2 = 0.2
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Fig. 18 MSY corresponding to the parameter set r =
0.5, k = 10, p = 0.5, q = 0.01, s = 0.5, s0 = 0.8, θ =
0.93, E1 = 0, E2 ∈ [0, 1.4]

3.3 Maximum sustainable yield

The interior equilibrium point is invariant of the frac-
tional operator. For predator harvesting it is given by
(x̄∗, ȳ∗) =

(
s0+E2

ps−q(s0+E2)
, sr[(s0+E2)(1+kq)−kps]

k[ps−q(s0+E2)]2

)
.

The yield at this equilibrium point is given by

Y (E2) = E2ȳ
∗ (3.1)

=
E2sr[(s0 + E2)(1 + kq) − kps]

k[ps − q(s0 + E2)]2
. (3.2)

Correspondingly, the maximum yield is attained at,

EMSY
2 =

(ps − qs0)(kps − s0 − kqs0)
2ps + kpqs − qs0 − kq2s0

.

In Fig. 18, the species coexist for the effort range E2 ∈
(0,1.4). Here EMSY

2 = 0.76 is shown in the vertical
black line, and we assume that it cuts the τ+

0 (E2) curve
at (EMSY

2 , τ∗). Referring to the same figure, we see that

(i) for τ < τ∗, the unexploited system is stable.
Moreover, harvesting at MSY produces a stable
stock.

(ii) for τ ∈ (τ∗, τ+
0 (0)) the coexisting equilibrium for

the unharvested system is stable, but harvesting
at MSY yields an unstable stock.

(iii) For any further increase in delay (τ > τ+
0 (0)), in

an unharvested state, the coexisting equilibrium
is unstable. Furthermore, harvesting at MSY can-
not yield a stable stock.

Although EMSY
2 is invariant of the fractional order (θ),

but τ±
n is not. However, change in the fractional order

gives similar dynamics to the above three observations.
So yield at MSY cannot guarantee stable stock when

the unharvested system is stable. However, it is possible
if the delay is small. For large delay values harvesting
at MSY can never produce a stable stock.

4 Discussion and conclusion

This paper describes a delayed fractional-order prey-
predator model with Holling type-II functional response
and harvesting. The main analysis is carried on by vary-
ing the fractional order, time delay, and harvesting as
the control parameter. First, we discuss the unexploited
dynamics of the fractional order prey-predator model
with delay, mainly the system (2.2). We observe that
fractional order affects the time delay and the number
of stability switching of the system (2.2). The theoret-
ical results and analysis are discussed without harvest-
ing, with harvesting and the impact of harvesting in
Sections 2.1, 2.2, and 2.3, respectively.

Javidi and Nyamoradi [16], have investigated a
fractional-order prey-predator model with harvesting.
But they have not emphasized much on the dynam-
ics of the system as harvesting effort is varied. Mandal
et al. [26], also conducted various numerical simulations
on the fractional-order system and demonstrated that
increasing fractional order produces a stable limit cycle.
However, both of these studies have not associated time
delay. The impact of varying delays on the fractional-
order system has been inspected by many researchers
[9, 35, 43]. To our knowledge, Song et al. [40] is the first
to incorporate harvesting into such a delayed system.
Their analysis shows that decreasing fractional order(θ)
or increasing harvesting effort can stabilize the system.

Next, we discuss the delayed fractional-order prey-
predator model with harvesting, mainly the system
(2.1). We have yet to focus much on local stability.
Since the maturation time of different species is vari-
able, a discussion is needed to generalize the time delay.
Few are described in terms of local stability for the
validation. But the central perspective of our simu-
lation result is how the maturation time is affected
by fractional-order, individual harvesting, or simulta-
neous harvesting. In Sect. 3.1, we observe that frac-
tional order affects the static balance of the equilibrium
point, time delay, and the number of stability switches.
Again, for the fixed delay, it has a destabilizing effect
when the carrying memory decreases, i.e., fractional-
order θ increases. As for the impact of harvesting on
prey and predator, we get the following consequences in
Sect. 3.2. In two cases, capturing predator species only
induces fixed and variable carrying memory. For the
first case, the stable state becomes stable(unstable) for
a small(large) time delay by controlling the harvesting
effort E2. The harvesting effort E2 has a destabilizing
effect. Also, the predator harvesting effort causes the
transformation of a stable to a stable state via an unsta-
ble state for a fixed memory. This implies that predator
harvesting induces stability switching. But, the second
case shows that a fixed delay, with the change of car-
rying memory, affects the number of switching regions

123



Eur. Phys. J. Spec. Top. (2023) 232:2629–2644 2643

when predator harvesting effort induces. An important
observation is made for predator-induced harvesting
that when the carrying capacity is greater(or less) from
a critical value, then the number of switching regions
increases(or decreases) for fixed carrying memory (see
Figs. 4, 6). Again, the capturing of prey species only
described corresponds to fixed and variable carrying
memory in two ways. The first shows that for the small
time delay, the stable status on the unharvested system
remains stable with increased prey capture only. But
the larger time delay on the unharvested system with
unstable mode becomes stable for inducing the harvest-
ing effort. Thus, prey harvesting has a stabilizing effect.
But, the second case shows that a fixed delay with a
fixed carrying memory affects the number of switching
regions when prey harvesting effort induces. While prey
and predator are harvested, the system can move into
a stable(unstable) from an unstable(stable) state with
the control of appropriate harvesting effort E1 and E2.
In addition, the harvesting effort E1 and E2 impact the
number of stability switches. The concept of MSY is
also implemented for predator harvesting. We observe
that harvesting at MSY can produce a stable stock only
for a small delay. Moreover, whether the unexploited
system is stable cannot guarantee the stock to be sta-
ble at MSY. All of the results have profoundly affected
surviving prey and predator. The simulated result fol-
lows a real-life phenomenon and may help to develop
ecological theories relating to the predator–prey sys-
tem.
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10. W. Deng, C. Li, J. Lü, Stability analysis of linear frac-
tional differential system with multiple time delays.
Nonlinear Dyn. 48(4), 409–416 (2007)

11. B. Dubey, A. Kumar, Dynamics of prey-predator model
with stage structure in prey including maturation
and gestation delays. Nonlinear Dyn. 96(4), 2653–2679
(2019)

12. B. Ghosh, T.K. Kar, T. Legović, Relationship between
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