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Abstract Practical observers have been widely used in the literature for the purpose of estimating states for
integer-order disturbed and/or uncertain systems. However, much less research has been done to propose
practical observers for fractional-order disturbed and/or uncertain systems. As for sensor fault estimation,
and to the best of the authors’ knowledge, no previous works have developed an adaptive practical observer
to address the problem. In this paper, the authors propose, for the first time, an adaptive practical observer
to reconstruct simultaneously the states and sensor faults for Lipschitz fractional systems. Another merit
of this work, is that the class of nonlinear systems, used here, is some kind of disturbed Lipschitz system.
That is to say, the Lipschitz assumption here is a modified version of the classical Lipschitz condition.
And this modified version has been newly introduced in the literature, in a recent article. To validate the
developed theoretical results, a numerical example is studied in the final section.

1 Introduction

In the control theory, it is important to access the sys-
tem states for various causes. Sometimes, it is tech-
nologically impossible to access some states through
sensors. In such situations, we can use observers, as
software sensors. Generally speaking, it is possible to
reconstruct either the entire state vector (full-order
observers), or a part of the state vector (reduced-
order observers) [1]. Apart from reconstructing states,
researchers have extensively exploited observers in
other contexts, such as control problems [2]. Note that
diverse kinds of observers have been introduced in the
literature. Kalman was the first scientist who intro-
duced observers, and this was for stochastic linear sys-
tems [3]. And then, Luenberger has defined the well-
known Luenberger theory for observing deterministic
linear systems [4]. After that, various types of observers
have been introduced by researchers. Among these
types, we can cite the unknown input observers [5].

The real dynamics of several real physical processes
contain non-integer derivatives. That’s why they can’t
be modelled using integer-order differential equations.

a e-mail: benmakhloufabdellatif@gmail.com (correspond-
ing author)

In the goal of describing these systems with accu-
racy, researchers have exploited the fractional differen-
tial equations. In this case, when the derivative order
α satisfies 0 < α ≤ 1, the investigated class of sys-
tems is a generalization of the classical integer-order
systems (α = 1). In the last years, extensive works
have been established to analyze fractional systems
and phenomena. For example, in [6], the authors have
suggested a fractional memristor map, in the pres-
ence of hidden chaotic attractors. The fractional cal-
culus has been used to model diverse real systems.
In the field of biological diseases and infections, more
and more research works are modelling such diseases
using fractional derivatives. This was the case for the
Hand–Foot–Mouth Disease [7], the zoonotic infection
[8], the dengue infection [9], and the COVID19 pan-
demic [10]. On the other hand, in [11], it was a question
of modelling the propagation of classical optical soli-
tons. In [12], the authors have tackled fractional mod-
elling of a heat transfer system. Note that, in the last
decades, the fractional calculus have been remarkably
used in the stability theory [13, 14].

Synthetizing observers for fractional systems is
becoming an attractive axis of research. Several works
have been recently done in this context, for linear sys-
tems as well as for nonlinear systems. Talking about
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linear systems, the authors in [15] have recently syn-
thetized an observer for polytopic perturbed fractional
linear systems. Another work [16] has designed and used
an observer for the control of fractional linear systems
with interval variable delay. In [17], the authors have
used an observer for the control of fractional linear
multi-agents systems. Dealing with nonlinear systems,
the authors in [18] have synthetized a Luenberger-like
observer for a class of fractional nonlinear systems. In
another paper [19], it was a question of designing a non-
fragile H-infinity observer for a class of fractional non-
linear systems. The subject of another research work
[20] was the interval observer query for a fractional
multi-agent system in the presence of nonlinear dynam-
ics.

In diagnosis and fault-tolerant control, it’s important
to reconstruct possible faults that might appear. Gen-
erally speaking, these faults include component faults,
sensor faults, and actuator faults. In a recent doc-
toral dissertation [21], the author has estimated these
three types of faults for doubly-fed induction genera-
tors. In another research work [22], it was a question
of reconstructing actuator faults for three physically-
linked 2WD mobile robots. In [23], the authors have
designed and exploited a sliding mode observer, in the
goal of estimating actuator faults. Talking about sensor
faults, they denote any malfunctioning that may affect
the process sensors. In the present paper, we investi-
gate constant sensor faults. Estimating sensor faults
for fractional systems is an interesting area of research.
The reason is that, only some papers have been pub-
lished, in this context. For instance, in [24], the authors
have reconstructed sensor faults for one-sided Lipschitz
descriptor fractional systems. And in another sister-
paper [25], it was a question of estimating sensor faults
for fractional systems, in the presence of monotone non-
linearities.

Practical Stability is a particular stability concept
introduced in the literature in the 60 s. And there has
been diverse works published about it. For instance,
the authors in [26] have tackled this query with respect
to some variables, for stochastic differential equations.
In [27], the authors have tuckled the practical stabil-
ity for time-varying positive systems, in the presence
of delay. This type of stability has been even used for
artificial neural networks, and readers can refer to the
research paper [28], in this context. The use of practi-
cal stability, in the context of studying observers, has
risen in the last years. For instance, the author in [29]
has designed an observer and demonstrated its practi-
cal stability for some class of nonlinear systems, with
unknown delay. In another work [30], it was a ques-
tion of using an unknown input observer that converges
practically, to estimate faults for some class of non-
linear systems. Talking about fractional systems, some
researchers have recently published noteworthy results,
in relation to practical stability. In [31], the authors
have investigated the practical stability for fractional
artificial neural nets. Another work [32] has focused on
designing a stabilization law for some class of fractional
uncertain systems, and the practical stability concept

has been used therein. The readers can also refer to [33]
as an interesting work, where it was a question of merg-
ing both concepts of practical stability and finite-time
stability to control neural networks for incommensurate
fractional nonlinear systems.

Based on all the above, the present research work
investigates the design of a practical observer, in the
purpose of estimating simultaneously states and sensor
faults, for some specific class of nonlinear fractional-
order systems. The concept of Caputo fractional deriva-
tive order is used. For the nonlinear part of the system,
the authors take advantage of a newly introduced con-
dition in the literature [34], which is a more general
version of the classical Lipschitz condition (see Assump-
tion 1, in the next section). And that’s been said, the
contribution of this work comes from the merging of the
following aspects:

• To the authors’ knowledge, no research work exists
for sensor fault estimation using a practical observer
in the literature. The already published paper [30],
mentioned above, investigates actuator faults, not
sensor faults.

• The used class of systems is wider than the classical
Lipschitz systems. Such a class has only been intro-
duced in the new literature work [34], and after that,
no works have been published using this condition.

• As mentioned above, fractional systems with 0 < α ≤
1 are an extension of integer-order systems (α = 1).

What’s left in this paper has the following organiza-
tion. In the next section, the authors present the math-
ematical class of systems to be treated, as well as some
relevant definitions and useful lemmas. In Sect. 3, the
developments and result of the paper are exposed. And
in the final section, a simulation example is provided
and used, to show the efficiency of the paper’s results.

2 Preliminaries and system description

Various fractional derivative concepts have already
been defined by researchers [35, 36]. For this research
work, the Caputo definition is chosen.

Definition 1 The Riemann–Liouville fractional inte-
gral of order ff > 0 is:

Iα
t0x(t) =

1
Γ(α)

t∫

t0

(t − τ)α−1
x(τ)dτ ,

Γ(α) =
∫ +∞
0

e−ttα−1dt denotes the Gamma function.
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Definition 2 If n is the integer part of α+1, then the
Caputo fractional derivative has the following expres-
sion:

CDα
t0, tx (t) =

1
Γ (n − α)

t∫

t0

(t − τ)n−α−1 dn

dτn
x (τ) dτ ,

(n − 1 < α < n)

and if 0 < α < 1, then this Caputo derivative for an
absolutely continuous function x(t) becomes:

CDα
t0, tx(t) =

1
Γ(1 − α)

t∫

t0

(t − τ)−α d

dτ
x(τ)dτ. (1)

Definition 3 The following function is called the Mit-
tag–Leffler function:

Eα, γ(z) =
+∞∑
k=0

zk

Γ(kα + γ)
,

where α > 0, γ > 0, z ∈ C. When γ = 1, one has
Eα(z) = Eα, 1(z), furthermore, E1, 1(z) = ez.

If one considers:

CDα
t0, tX(t) = G(t, X)

X(t0) = X0,

where t0 ∈ R+ and G : R+ × Rn → Rn is supposed
to be continuous, then the following definition can be
given.

Definition 4 [37] The above system is practically Mit-
tag–Leffler stable, if one can find positive scalars ρ, λ
and σ, s.t:

||X(t)||≤ [ω(||X0||)Eα(−λ(t − t0)
α)]σ + ρ ∀t ≥ t0,

where ω is a locally Lipschitz function with ω(0) = 0.

Lemma 1 [38] Define Y : [t0, +∞) → R that satisfies:

CDα
t0, tY (t) ≤ −λY (t) + h(t), ∀t ≥ t0

with h(t) is continuous nonnegative function that satis-
fies:

t →
t∫

0

(t − s)α−1
Eα, α(−λ(t − s)α)

× h(s)ds is a bounded function. (2)

Then there exists K > 0 such that

Y (t) ≤ Eα(−λ(t − t0)
α) + K, ∀t ≥ t0.

For this work, the authors investigate the following
fractional system (3):

CDα
t0, tx(t) = Ax + Bu + g(t, x), t ≥ t0

y(t) = Cx(t) + Ff , (3)

where x(t) ∈ R
n, u(t) ∈ R

m denotes the input, y(t) ∈
R

q denotes the output, f ∈ R
p denotes the constant

sensor fault. A ∈ R
n×n, B ∈ R

n×m and C ∈ R
q×n, F ∈

R
q×p, are well known constant matrices. The nonlinear

part g : R+ × Rn → Rn which satisfies the following
assumption:

Assumption 1 [34] g is supposed to be continuous,
and

||g (t, x) − g (t, y) ||≤ b||x − y||+ϕ (t) ,

∀t ∈ R+, ∀ (x, y) ∈ Rn,

where b > 0 and ϕ ∈ C (R+, R+) .

Lemma 2 [39] Let α ∈ (0, 1) and P ∈ R
n×n a con-

stant symmetric and positive definite matrix. Then, the
following relationship holds

1
2

CDα
t0, t

(
xT (t)Px(t)

) ≤ xT (t)PCDα
t0, tx(t), ∀t ≥ t0

3 Estimation of states and sensor faults

We define the following adaptive Luenberger-like
observer:

CDα
t0, tx̂(t) = Ax̂(t) + Bu(t) + g(t, x̂) − L(ŷ(t) − y(t)),

ŷ(t) = Cx̂(t) + F f̂(t), (4)

where x̂(t) and f̂(t) are the state vector estimate and
the fault vector estimate, and L is the observer gain to
be designed.

Theorem 1 Consider the fractional system (3), the
observer (4), Assumption 1 and the adaptation law (5).
If one can find matrices X, Gand P = PT > 0, as
well as scalars ε > 0and η > 0, such that the inequality
(6) is feasible under condition (7), this gives that sys-
tem (4) is a practical observer that makes it possible to
reconstruct the states and sensor faults, for system (3).

CDα
t0, tf̂(t) = G(y(t) − ŷ(t)), t ≥ t0 (5)

Γ =

[
PA + AT P − XC − CT XT + 2b2εI + 1

ε
PP XF + 1

η (GC)T

(XF )T + 1
η

GC − 2
η

GF

]
< 0

(6)

t →
t∫

0

(t − s)α−1
Eα, α(−λ(t − s)α)ϕ2(s)

× ds is a bounded function, (7)
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where X = PL and λ = −λmax(Γ)
λmax(S) with S =

[
P 0
0 1

η

]
.

Proof Consider the following estimation errors: e(t) =
x̂(t) − x(t) and f̃(t) = f − f̂(t). Then, one has:

(8)CDα
t0, te (t) = (A − LC) e (t) + Δg (t) + LF f̃ (t) .

where Δg(t) = g(t, x̂) − g(t, x).

Consider now the Lyapunov function V
(
e, f̃

)
=

eT Pe + 1
η f̃T f̃ , where η is a real design scalar.

Using Lemma 2, one can have:

CDα
t0, tV

(
t, e, f̃

)

≤ 2eT PCDα
t0, te +

2
η
f̃T CDα

t0, tf̃

≤ 2eT P
(
(A − LC)e(t) + Δg(t) + LF f̃(t)

)

− 2
η
f̃T CDα

t0, tf̂(t) ≤ 2eT P (A − LC)e

+ 2eT PΔg(t) + 2eT PLF f̃ − 2
η
f̃T G(y(t) − ŷ(t))

≤ 2eT P (A − LC)e + 2eT PΔg(t)

+ 2eT PLF f̃ − 2
η
f̃T GFf̃ +

2
η
f̃T GCe.

On the other hand, one has:

2eT PΔg(t) ≤ ε||Δg(t)||2+1
ε
||Pe||2.

Using Assumption 1, it follows that:

2eT PΔg(t) ≤ ε
(
2b2||e||2+2ϕ2(t)

)
+

1
ε
||Pe||2

≤ eT

(
2b2εI +

1
ε
PP

)
e + 2εϕ2(t).

Thus,

CDα
t0, tV

(
t, e, f̃

)
≤

[
e

f̃

]T

⎡
⎣ P (A − LC) + (A − LC)T

P + 2b2εI + 1
εPP

PLF + 1
η (GC)T

(PLF )T + 1
η GC − 2

η GF

⎤
⎦

[
e

f̃

]
+ 2εϕ2(t).

Now considering (6), one can write:

CDα
t0, tV

(
t, e, f̃

)
≤ −λV

(
t, e, f̃

)
+ 2εϕ2(t). (9)

And both conditions (7) and (9) make it possible to
exploit Lemma 1. So we can find:

V
(
t, e, f̃

)
≤ Eα(−λ(t − t0)

α)V
(
t0, e0, f̃0

)
+ K,

∀t ≥ t0
.

Then, there exist m > 0 and r > 0, such that

||X(t)||≤ [
mEα(−λ(t − t0)

α)||X(t0)||2
] 1

2 + r, ∀t ≥ t0

where X(t) =
(
e(t), f̃(t)

)
.

Finally, using Definition 4, we can conclude that (4)
is a practical observer that makes it possible to recon-
struct the states and sensor faults for system (3). This
ends the proof.

Remark Inequality (6) can be easily transformed into
linear matrix inequality by applying Schur Comple-
ment.

We obtain the following LMI:
⎡
⎢⎣

PA + AT P − XC − CT XT + 2b2εI XF + (WC)T P

(XF )T + WC −2WF 0

P 0 −εI

⎤
⎥⎦

< 0

(10)

where W = 1
η G.

4 Numerical study

Consider the following fractional system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDα
t0, tx(t) =

(
−1 1
0 −1

)
x +

(
1
0

)
u(t)

+

(
0.01 cos

(
t2x1

)
0.1 sin(x2)

)
, t ≥ t0

y(t) =

(
0.2 0.1

−0.1 0.2

)
x +

(
1 0
0 1

)(
f1

f2

)

f1 and f2 represent two constant sensor faults to be
estimated. Let’s assign the fractional-order derivative
to: α = 0.7. It’s clear that Assumption 1 (||g(t, x) −
g(t, y)||≤ b||x − y||+ϕ(t)) is satisfied for this numerical
example, where:

g(t, x) =
(

0.01 cos
(
t2x1

)
0.1 sin(x2)

)
, b = 0.1, ϕ(t) = 0.02,

And ϕ(t) = 0.02 satisfies condition (7).
That’s been said, the observer (4) together with the

adaptation law (5) can be exploited, and Theorem 1
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Fig. 1 State estimation
errors

Fig. 2 Sensor fault
estimation errors

is applied. The LMI (10) is feasible, and it has these
solutions: ε = 33.8936, η = 1 and:

P =
(

12.8693 2.3782
2.3782 16.3915

)
,

G =
(

1.4666 0.0392
−0.0551 1.4953

)
, X =

(−0.6131 2.3260
0.4784 −2.5471

)

So the observer gain matrix is computed: L =

P−1X =
(−0.0545 0.2152

0.0371 −0.1866

)
. And then, the sim-

ulation results are ready to be depicted. The initial
conditions are chosen as follows: x0 =

[−3 −1
]T ,

e0 =
[
1 1

]T , f̃0 =
[
3 2

]T . In Fig. 1, the state esti-
mation errors are illustrated, while in Fig. 2, the sensor
fault reconstruction errors are illustrated. Both figures
insure the practical stability of the state estimation and
fault estimation errors, as demonstrated in the previous
section.

5 Conclusion

In the present paper, the authors have designed an
adaptive Luenberger-like observer, in the goal of recon-
structing the states and sensor faults for some specific
class of nonlinear fractional systems. As the nonlinear
part of the system is a special Lipschitz condition, it was
necessary to investigate and to use the practical Mit-
tag–Leffler stability definition. The Caputo fractional
derivative definition was used in this work. The syn-
thesized observer was found to converge practically if a
matrix inequality condition is satisfied. To further con-
solidate the paper’s results, a simulation example has
been investigated, and numerical results have shown the
practical stability of such systems.

This research work has focused on constant sensor
faults. As a future paper, the authors plan to extend the
present work to estimating time-varying sensor faults.

Data availability No data was associated with the
manuscript.
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