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Abstract This paper introduces nonlinear analysis and control of a fraction order small-scale grid (SSG)
under the influence of disturbances and noise. Random wind power supply and uncertain load demand are
considered as disturbances while the additive white Gaussian noise is considered as external noise. The
nonlinear dynamic behaviours such as multistability and coexisting bifurcation behaviours are investigated
along with period-2, period doubling bifurcation route to chaos and instability (chaos breaking) of the rotor
angle which is not expected under normal operating condition and reveal stability issue in the proposed
SSG. Also, the presence of nontrivial behaviours, multistability and coexistence of attractors, may be of
capital importance in understanding dynamic remedy of the fractional order SSG behaviour since serious
impediments may occur even after the present required safeguard. An adaptive fractional second order PID
sliding mode control (AFSO-PIDSMC) is proposed to control the chaos and multistability behaviours in
the fractional order SSG. The proposed control technique includes the design adaptive control based on the
designed fractional and second-order PID sliding mode control. Required asymptotic stability condition is
derived by using Lyapunov stability theory. Furthermore, the proposed control technique is compared and
has fast convergence, parameter estimation and chatter-free response. Numerical simulations are performed
in MATLAB environment and validate the theoretical aspects.

1 Introduction

The dynamics of power systems are complex and non-
linear in nature, and the integration of renewable
energy sources makes them even more complex. Despite
the fact that complex and nonlinear analyses of large
power system dynamics are extremely difficult, some
small scale power systems such as the fundamental
power system model [1, 2], single machine infinite bus
power system model [3], and 4D power system model [4,
5] have been studied by utilizing the advanced nonlinear
or chaos theories in the past. The research on small size
power systems [6–8] (mini and micro grids etc.) have
piqued the interest of scientific communities towards
dynamic modeling and analysis of small scale power
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system under the influence of uncertainties and distur-
bances [9–11]. The term “small-scale grid” refers to a
power grid that connects producing plants and loads
on a much more localised scale than is the case with
traditional power grid. Small-scale grids are becoming
increasingly popular in remote or rural areas where tra-
ditional power grids are not feasible. They often use
renewable energy sources such as solar, wind, or hydro-
power. Furthermore, having a close connection between
generators and loads helps to mitigate transmission loss
and provides an energy efficient system. When com-
pared to the use of purely traditional sources, the inte-
gration of RES into the grid results in increased effi-
ciency and environmental friendliness. Small-scale grids
can also provide greater energy security and indepen-
dence, as they are less vulnerable to large-scale outages
or disruptions that can occur in national grids, which
is why an SSG is required [12]. Emergency rate-driven
control of rotor angle instability is reported in a non-
autonomous stochastic bi-stable power system oscilla-
tor [13]. Under the disruption of intermittent supply
from renewable energy sources and other disturbances
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like load fluctuations etc., the power system eventually
exhibits chaotic oscillation and plays a vital role in the
power system stability [14, 15]. Additionally, the influ-
ence of external disturbances such as random external
parameter and noise excitation affect the chaotic oscil-
lation and trigger the power system behaviour into mul-
tistability or even into chaos breaking behaviour [9, 16].

Chaos and multistability behaviours have been
explored in the numerous nonlinear dynamical systems
in the past [22–25] such as hyperjerk system based
novel ANN-ring-based true random number generator
[26], quasi-periodically forced system [27], Lu and Pan
chaotic systems [28], multi synchronous machine model

[29] etc. and analysed to that of fractional ordered
counterpart as well and has received a lot of attention
in recent years. Recently, fractional order calculus has
been widely employed in many disciplines of science and
engineering to study the dynamics, e.g. chaotic system
[23], rub-impact rotor system [30], biological system
[31], memristive system [32], Wien bridge oscillator [33],
control and stabilisation [34–39], thermometric system
[40], reaction-diffusion system [41], power system [42],
control system [1, 43–48] etc.

Research on the fractional or non-integer order
dynamic modeling is still under development and must
go too far to be mature even though the researcher have

Table 1 Two-dimensional power system models with reported dynamic behaviours via analysed parameters

Studied 2-D power
system model

Studied dynamic
behaviour

Multistability
behaviour

Analysis through
parameter

Control technique

SMIB power system [10] Chaotic motion and
Melnikov analysis

No Periodic load
disturbance,
damping
coefficient

No

SMIB power systems
[17]

Chaotic and
non-chaotic regions
using Melnikov
analysis

No Excitation
frequency

No

Noisy SMIB power
system [16]

Chaotic motion and
basin erosion when
the noise excitation is
present

No External noise
intensity
(Gaussian white
noise)

No

Classical SMIB power
systems [9]

Random parameter can
induce and enhance
chaos

No Random perturbed
parameter

No

Power system with wind
power generator [18]

Chaotic state with
certain value of
random wind power

No Amplitude of
random wind
power

Adaptive fuzzy
control

SMIB power system [19] Chaotic motion with
Melnikov analysis

No Two harmonic
excitation
disturbances
(external periodic
load and the
outer mechanical
disturbance)

No

Two-machine
infinite-bus [20]

Bifurcation analysis
without and with 1:3
internal resonance

No Infinite-bus voltage
amplitude and
phase fluctuations

No

Fractional order Ship
power system [21]
(two-generator
parallel-connected )

Chaotic response in
fractional order range

Yes System parameter
values

No

Fractional order small
scale grid (SSG) with
disturbances and noise

PDB route to chaos,
chaos breaking,
multistability,
coexisting behaviours

Yes and coexisting
behaviour

Fractional order,
electromagnetic
power, random
wind power,
periodic load
variation,
amplitude of
AWGN noise

Adaptive fractional
second order
PIDSMC
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intuition that the non-integer order dynamic models
based on fractional calculus offer a more accurate rep-
resentation of real-time systems [49]. Researchers have
faith that the unlike traditional or integer order differ-
entiation and integration, fractional calculus involves
the differentiation or integration of non-integer orders
and has tremendous potential in exploring a different
way to see the model and control the nature around us
[50]. Fractional order provides an extra degree of free-
dom, and fractional-order models may be able to better
describe the dynamic behaviours of electromechanical
systems and power systems. Fractional-order modeling
in power systems offers improved accuracy, enhanced
stability analysis, advanced control strategies, better
representation of distributed energy resources, detailed
frequency response analysis, and accurate modeling
of power electronic devices [51–53]. These advantages
make fractional order modeling a valuable tool for
power system engineers and researchers in understand-
ing, analyzing, and optimizing the operation of complex
power systems.

In a dissipative dynamical system, multistability
refers to the persistence of multiple alternative steady
states with a given set of parameters. Multistability
mainly depends upon initial conditions, as a result,
the basin of attraction for multistable systems is com-
plex [54]. Multistability has been observed in different
fields such as chaotic systems [55, 56], electronic circuits
[25], laser systems [57, 58], electromechanical systems
[59–62], brain systems [63], neurons [64], including sig-
nal processing [65] etc. Multistability has feature of con-
cern, due to the sudden shift to an undesirable attractor
brings the worst or disastrous situation that has hap-
pened in the past, i.e. in 1992 YF-22 boeing crash [54],
bridge collapse [66], and in other example such as fail-
ure of drilling rings with induction motor [59] that could
have been prevented by controlling multistability.

Fractional order controller has significant advantages
over integer order controller [47, 67–69] and widely been
used in the literature [69–72]. In paper [47], a frac-
tional order controller has been developed based on
extremum seeking sliding mode control (SMC) tech-
nique and shows the significant advantages over inte-
gral controller. In paper [67], the fractional order SMC
for velocity control of permanent magnet synchronous
motor has been reported. A fractional order adap-
tive integral sliding surface based control law has been
designed to control of robotic link manipulator [68].
Chatter free fractional order SMC has been reported
in paper [70]. A fractional order proportional-integral-
derivative (PID) SMC technique has been proposed [71]
and significant advantages of PIλDλ sliding surface
over PDμ type sliding surface are highlighted. In paper
[69], a PIλDμ sliding surface based smooth fractional
order SMC control has been studied to achieve fast and
chatter free response.

In summary, the recent literature are focused on dif-
ferent fractional order sliding surfaces to have further
improvement in the SMC design and application in frac-
tional order nonlinear dynamical system but SMC con-
trol alone fails in estimating the unknown parameters,

disturbances and noise which play significant role and
still requires an hybrid approach to counter such prob-
lem. Because in the disturbance or noise acting sce-
nario, the linearisation of system dynamics is impossi-
ble and demands the analysis, control using the nonlin-
ear theories/control. Further, the studied related power
system models with explored behaviours and utilised
control techniques are summarised in Table 1, where the
bifurcation and chaos behaviours have been explored in
all the integer order power system models but the coex-
isting and multistability behaviours and their control
are not yet reported. The multistability behaviour is
reported only in the fractional order ship power sys-
tem [21]. Therefore, motivated with above problems
and research gaps, the following objectives are consid-
ered:

1. To develop a fractional order SSG model where
wind power generator and periodic load are inte-
grated with synchronous generator.

2. To explore and control the unlike multistability
or coexisting behaviours for redefining the counter
measure in the fractional order SSG model.

In this paper, a novel fractional order small scale
grid (SSG) model with disturbances, noise is proposed
and examined the complex nonlinear phenomenon via
varying fractional order, electromagnetic power and
under the influence of random wind power, periodic
load (disturbances), and additive white Gaussian noise
(AWGN). Complex nonlinear phenomena such as dif-
ferent bifurcation behaviours, chaotic oscillation, coex-
isting attractors and multistability are analysed by
using available qualitative and quantitative nonlinear
tools. Further, an adaptive fractional second order
PIDSMC (AFSO-PIDSMC) is designed and compared
with recently reported robust adaptive fractional order
sliding mode control (RAFOSMC) [73]. The proposed
AFSO-PIDSMC technique has combined advantages
of adaptive control and fractional second order slid-
ing mode control techniques, and provides better accu-
racy, robust chatter free control, faster in response and
unknown parameter estimation. The proposed AFSO-
PIDSMC is also able to control multistability behaviour
alongside chaos behaviour present in the fractional
order SSG under the influence of disturbances and
noise. The contribution and importance of this work
are listed as follows:

1. A fractional order SSG with disturbances and noise
is proposed and complex nonlinear phenomena are
examined via varying fractional order, electromag-
netic power and under the influence of random wind
power, periodic load (disturbances) and additive
white Gaussian noise (AWGN).

2. The fractional order SSG system exhibits regu-
lar and irregular behaviours like periodic-2, period
doubling bifurcation (PDB) route to chaos and
chaos breaking which leads to rotor angle instabil-
ity.
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3. The fractional order SSG system has multistability
and coexisting behaviours which may be of capital
importance in the dynamic evolution of the SSG
behaviour since serious impediment may occurs
even after the present required safeguard.

4. The major benefit of the fractional SSG dynamics
under study provides new insights in terms of coex-
isting behaviours or multistability compared to pre-
vious contributions [9–11, 13] and useful in redefin-
ing a new counter measure for dynamic remedies.

5. An AFSO-PIDSMC is designed to control the
unwanted chaotic oscillations and compared with
RAFOSMC [73] technique. The AFSO-PIDSMC
has significant advantages such as fast convergence
and chatter free response.

6. The proposed AFSO-PIDSMC technique is also
capable of controlling multistability behaviour in
fractional order SSG system.

We could not find such study in the literature and
reflects the novelty of this work.

2 Fractional order small scale grid (SSG)

2.1 Preliminaries of fractional order calculus

Definition 1 [74]: The Riemann–Liouville definition
of fractional differentiation and integration of qth-order
function f (t) is expressed as:

⎧
⎪⎨

⎪⎩

aDq
t f(t) = 1

Γ(m−q)
dm

dtm

∫ t

a
f(τ)

(t−τ)q−m+1 dτ

aD−q
t f(t) = 1

Γ(q)

∫ t

a
(t − τ)q−1f(τ)dτ ,

(1)

where (m−1) < q ≤ m, m ∈ N and a is the initial time
usually taken as 0, Γ(.) represents the Gamma function.

Definition 2 [74]: The Caputo’s definition of qth frac-
tional order integration and differentiation of the func-
tion f (t) is expressed as:

aDq
t f(t) =

⎧
⎪⎨

⎪⎩

1
Γ(m−q)

∫ t

a
fm(τ)

(t−τ)q−m+1 dτ , m − 1 < q < m

dm

dtm
f(t), q = m

(2)

where a is the initial time usually taken as 0 and m is
the smallest integer such that m ≥ q.

Properties [74]: The Riemann–Liouville’s and Caputo’s
derivatives hold following conditions and denoted as
“Cd” and “Rd”, respectively.

1. Rd
aDq

t f(t)
(
Rd

a
D−β

t f(t)
)

= Rd
a
Dq−β

t f(t),
where q ≥ β ≥ 0.

2. Cd
a
Dq

t f(t)
(
Cd

a
D−β

t f(t)
)

= Cd
a
Dq−β

t f(t),
where q ≥ β ≥ 0.

3. The “Rd” fractional derivative has a composition
rule such as dm

dtm Rd
aDq

t f(t) = Rd
aDq

t
dm

dtm f(t) =
Rd

aDq+m
t f(t), iff f (t) satisfies the condition

fs(a) = 0 at t = a, where s = 0, 1, 2, . . . , m,
and m = 0, 1, 2, . . . , n − 1 < q < n.

4. The “Cd” fractional derivative has a composition
rule such as dm

dtm Cd
a
Dq

t f(t) = Cd
a
Dq

t
dm

dtm f(t) =
Cd

a
Dq+m

t f(t), iff f (t) satisfies the condition
fs(a) = 0 at t = a, where s = n, n + 1, n + 2,
. . . , m, for m = 0, 1, 2, . . . , n − 1 < q < n.

5. The “Rd” fractional derivative of constant is
defined as Rd

aDq
t c = ct−q

Γ(1−q) , where c is a con-
stant.

6. The “Cd” fractional derivative of constant is
defined as Cd

a
Dq

t c = 0, where c is a constant.

2.2 Mathematical modelling of fractional order SSG
system

The model, shown in Fig. 1, is considered as small scale
grid (SSG), where synchronous generator and wind tur-
bine generator are delivering power through transmis-
sion lines with bus B1 and bus B2, respectively, T1

and T2 are equivalent transformers, L1 is load, CB1

and CB2 are circuit breakers along the tie lines of
SSG. A nonlinear system whose operating point and
stability inevitably depend on nonlinearities, distur-
bances, external noise and induce major impact on
the behaviour and performance is known as SSG. The
motion equation [18] (also known as swing equation)
describing the angle dynamics of the synchronous gen-
erator is written as follows:

dω

dt
=

d2δ

dt2
=

1
H

[Pm − Pd − Pe] (3)

where δ is the rotor angle, and ω is the angular velocity.
The moment of inertia H of synchronous machine con-
nected at bus B1. Pm and Pe are the mechanical and
electromagnetic powers, respectively, Pd is the damping
power.

In the SSG model shown in Fig. 1, the synchronous
machine is considered as a non salient pole type and
transmission line losses are assumed to be insignificant.
Let the random wind power having amplitude Pw and
frequency β1, and periodic load disturbance (L1) hav-
ing amplitude Pd and frequency β2 be integrated at bus
B2. Then, the electromechnical swing equation by con-
sidering the random wind power [18] and periodic load
disturbance [10] can be written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dδ

dt
= ω

dω

dt
= 1

H [Pm − Ps sin δ − Dω + Pw cos(β1t) + Pd cos(β2t)].

(4)
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Fig. 1 Single line diagram of small-scale grid (SSG): M1, denote synchronous generator and M2, random wind power
generator, T1 and T2 represents transformers, CB1, CB2, represent two circuit breakers, and L1 represents local load

where D and Ps represents the damping coefficient and
shaft power, respectively, of synchronous machine. Fur-
ther, by assuming Pm

H = σ, Ps

H = ρ, D
H = λ, Pw

H = ξw,
Pd

H = ξp, the system dynamics in (4) is simplified as

⎧
⎪⎨

⎪⎩

dδ

dt
= ω

dω

dt
= σ − ρ sin δ − λω + ξw cos(β1t) + ξp cos(β2t).

(5)

By introducing the Additive White Gaussian Noise [9]
(AWGN) signal γ(t), the noisy SSG dynamics can be
written as

⎧
⎪⎪⎨

⎪⎪⎩

dδ

dt
= ω

dω

dt
= σ − ρ sin δ − λω + ξw cos(β1t) + ξp cos(β2t) + ξnγ(t).

(6)

where scaling factor ξn is the intensity of AWGN signal
γ(t).

Using the integral representation from the Caputo’s
fractional derivative Definition 2 [74], the SSG system
dynamics (6) is written as

⎧
⎪⎪⎨

⎪⎪⎩

aDq
t δ = 1

Γ(1−q)

∫ t
a

ω(τ)
(t−τ)q dτ

aDq
t ω = 1

Γ(1−q)

∫ t
a

(σ−ρ sin(δ)−λω+ξw cos(β1τ)+ξp cos(β2τ)+ξnγ(τ))
(t−τ)q dτ ,

(7)

where 0 < q < 1, and the derivatives are expressed as
integrals involving the variable τ over the interval [a, t ].
The Gamma function Γ(1−q) is used in the denomina-
tor to ensure the proper scaling of the integral. Further,
the fractional order dynamics of SSG system (7) is sim-
plified as

⎧
⎪⎪⎨

⎪⎪⎩

aDq
t δ = ω

aDq
t ω = σ − ρ sin δ − λω + ξw cos(β1t) + ξp cos(β2t) + ξnγ(t),

(8)

where aDq
t denotes the Caputo’s fractional derivative

with order q .
Anomalous behaviours are analysed in the fractional

order SSG system (8) and discussed in the next Section.

3 Dynamic analysis of fractional order SSG
system

Here, the complex nonlinear behaviour are analysed
and obtained by using nonlinear analysis tools such as
bifurcation, Lyapunov exponents, time series and phase
portrait analysis. The analysis of bifurcation behaviours
of the fractional order SSG system is achieved in the
steady state with observation time T = 5000 and step
size Δt = 0.01, where the initial transient are discarded
up to T = 4000 form the signal. Lyapunov exponents
are also calculated using the Wolf algorithm [75] with
the same observation time.

3.1 Dynamic behaviour vs fractional order derivative

The numerical simulation is performed using Caputo’s
fractional order calculus in MATLAB environment. The
bifurcation behaviour is plotted with varying fractional
order q of the SSG system (8). The bifurcation anal-
ysis is essential, particularly, for displaying different
dynamic behaviours.

The order q of the differential equation is varied as
q ∈ [0.9, 1] and the value of other parameters are kept
fixed as σ = 0.2, λ = 0.02, ρ = 1.077, ξw = 0.2,
ξp = 0.1, ξn = 0.01 and with the initial condition
[δ0; ω0] = [1; − 0.3], the bifurcation diagram is shown
in Fig. 2a and phase plane behaviours at some specific
values of q are shown in Fig. 2b–e. The obtained bifur-
cation diagram, shown in Fig. 2a, clearly shows that
the SSG system (8) has period doubling bifurcation and
chaos behaviours. These behaviours can also be verified
via presented behaviours in the phase plane at different
values of the fractional order as q = 0.93, q = 0.96,
q = 0.98 and q = 0.998. The behaviours are period-2,
period-4, at q = 0.93 and q = 0.96, respectively and
chaos at q = 0.98, 0.998, shown in Fig. 2b–e. Lyapunov
exponents are also calculated for the said two values of
fractional order q where the SSG system (8) is showing
chaos behaviour. For q = 0.98, the calculated Lyapunov
exponents are L1 = 0.0179 and L2 = −0.0399. Simi-
larly, for q = 0.998, the computed Lyapunov exponents
are L1 = 0.0022 and L2 = −0.0224. At both the frac-
tional order q = 0.98 and q = 0.998, the positive sign of
the maximum Lyapunov exponent (MLE) confirms the
presence of chaotic behaviour within the SSG system.
Simultaneously, the sum of calculated Lyapunov expo-
nents L1+L2 at q = 0.98 and q = 0.998 are −0.022 and
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Fig. 2 a Bifurcation diagram of SSG system (8) when fractional order q ∈ [0.9, 1] and the phase plane behaviours at
specific value of fractional order in b q = 0.93, c q = 0.96, d q = 0.98, and e q = 0.998

−0.0202, respectively, conclude that the SSG system
exhibits chaotic nature with a dissipative dynamics.

In this study, the order of fractional derivative is
varied systematically and the system behaviours are
observed through bifurcation and phase plane diagrams
simultaneously, as illustrated in Fig. 2. Existing liter-
ature [76, 77] have revealed that the dynamic system
does not exhibit chaos for lower orders of fractional
derivative, and same is evident in our study where
the chaos behaviour is obtained in the fractional order
range 0.98 ≤ q < 1. The selection of q = 0.98 is moti-
vated by selecting a smallest value of fractional order in
the chaos range q ∈ [0.98, 1) to study the chaotic and
other significant phenomena in the SSG system, since
the study at the fractional order say q = 0.998 ≈ 1
does not provide significant difference to that of integer
order counterpart.

3.2 Dynamic behaviour against the varying
parameters of fractional order SSG system

In this section, different dynamic behaviours in frac-
tional order SSG system (8) are explored with respect
to four parameters such as the amplitude of electromag-
netic power disturbances (ρ), random wind power varia-
tion (ξw), periodic load variation (ξp) and AWGN inten-
sity (ξn). The fractional order is considered as q = 0.98
throughout. The Lyapunov exponents and correspond-
ing dynamic behaviours at some particular values of
bifurcation parameter in the specified ranges are listed
in Table 2.

3.2.1 Dynamic behaviour by varing electromagnetic
power

The amplitude of electromagnetic power ρ is chosen as
a bifurcation parameter to explore the impact of elec-
tromagnetic power on a fractional order SSG system
(8), while the other parameters are kept constant as
σ = 0.2, λ = 0.02, ξw = 0.2, ξp = 0.1, ξn = 0.01.

Interestingly, as the amplitude of electromagnetic
power ρ increases, the system begins with irregular
behaviour such as chaos, then transitions to periodic
motion and the unstable area via the backward and
forward period-doubling bifurcation path depicted in
Fig. 3. The range of varying electromagnetic power ρ is
further subdivided into three ranges as [0.9, 1.2] = [0.9,
0.976) ∪ [0.976, 1.06] ∪ (1.06, 1.2] to avoid difficulties in
investigating or exploring the frequent changes in the
obtained bifurcation behaviours shown in Fig. 3. Some
specific parameter values are chosen in the three sub-
divided ranges and calculation of Lyapunov exponents
and obtained dynamic behaviour are listed in Table 2.
For example, in the range ρ ∈ [0.9, 0.976), at ρ = 0.927
and ρ = 0.96, the nature of maximum positive Lya-
punov exponent (MLE) is found (+ve) and indicates
chaos behaviour, and at ρ = 0.973, the nature of MLE is
(≈ 0) which indicates unstable behaviour (blank space
in the bifurcation diagram). The blank space in the
bifurcation diagram suggests that δmax peak does not
exist in the steady state, implying that the generator
rotor angle (δ) has unstable behaviour. In order to have
graphical validation, the time series and phase portrait
behaviours of SSG system under chaos behaviour at
ρ = 0.96 and unstable or chaos breaking behaviour at
ρ = 0.973 are shown in Figs. 4 and 5, respectively.
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Table 2 Lyapunov exponents and dynamic behaviour at specific value of bifurcation parameter in the defined range for
SSG (8) (in reference to bifurcation diagram shown in Figs. 3, 6, 7 and 8

Bifurcation
parameter

Parameter range Specific parameter value Lyapunov Exponents L1 & L2 Dynamic
behaviour

ρ ∈ [0.9, 0.976) ρ = 0.927
ρ = 0.96
ρ = 0.973

(0.02934, − 0.04957)
(0.09371, − 0.01826)
(0.00056, − 0.01947)

Irregular
(chaos,
unstable)

∈ [0.976, 1.06] ρ = 1.0
ρ = 1.02

(− 0.00973, − 0.01081)
(− 0.00956, − 0.01832)

Regular
(periodic)

∈ (1.06, 1.2] ρ = 1.07
ρ = 1.09
ρ = 1.1

(0.02431, − 0.03927)
(0.02401, − 0.04635)
(0.000536, − 0.00234)

Irregular
(chaos,
unstable)

ξw ∈ [0, 0.2] ξw = 0.1

ξw = 0.15

(− 0.00986, − 0.01043)
(− 0.00986, − 0.01321)

Regular
(Periodic)

∈ (0.2, 0.25] ξw = 0.2058

ξw = 0.225

ξw = 0.23

(0.00337, − 0.02338)
(0.000292, − 0.00431)
(0.00329, − 0.02436)

Irregular
(chaos,
unstable)

ξp ∈ [0.08, 0.116] ξp = 0.095

ξp = 0.1

(− 0.00923, − 0.02350)
(− 0.0109, − 0.01089)

Regular
(periodic)

∈ (0.116, 0.12] ξp = 0.110

ξp = 0.12

(0.00362, − 0.02349)
(0.00869, − 0.01156)

Irregular
(chaos,
unstable)

ξn ∈ [0.002, 0.014] ξn = 0.006

ξn = 0.008

(− 0.00952, − 0.01024)
(− 0.00963, − 0.01243)

Regular
(periodic)

∈ (0.014, 0.016] ξn = 0.015

ξn = 0.016

(0.00232, − 0.02342)
(0.00212, − 0.02234)

Irregular
(chaos,
unstable)

Fig. 3 Bifurcation
behaviour of fractional
order SSG system (8) with
respect to varying
electromagnetic power (ρ)
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Fig. 4 Time series and
phase plane diagrams of
fractional order SSG system
(8) at ρ = 0.96 reflect chaos
behaviour

In the ranges ρ ∈ [0.9, 0.976) and ρ ∈ (1.06,
1.2], the bifurcation behaviour has frequent transitions
between chaos to unstable and unstable to chaos, and
referred as irregular behaviour . Similarly, in the range
ρ ∈ [0.976, 1.06], the (−ve) MLE indicates periodic or
PDB behaviours, and termed as regular behaviour. It
is clear from the preceding discussion that electromag-
netic power ρ disturbance can force the fractional order
SSG system into chaotic oscillation or even unstable
(breaking of chaos), can result in angle instability which
is undesirable for stable operation of the SSG system
or other power grids as well.

3.2.2 Dynamic behaviour by varing random wind power

To study the impact of random wind power on the
fractional order SSG system, amplitude of the random
wind power (ξw) is varied as a bifurcation parameter
and the other parameters are kept fixed as σ = 0.2,
λ = 0.02, ρ = 1.077, ξp = 0.1, ξn = 0.01. Bifurcation

diagram is obtained to analyse the effect of varying ran-
dom wind power (ξw) parameter in the range ξw ∈ [0,
0.25] and shown in Fig. 6. The obtained bifurcation dia-
gram in the entire range ξw = [0, 0.25] is divided into
two ranges as [0, 0.2] ∪ (0.2, 0.25] and accordingly reg-
ular (periodic) and irregular (chaos, unstable) dynamic
behaviours are obtained. Two specific values are cho-
sen as ξw = 0.1 and ξw = 0.15 from the range ξw ∈ [0,
0.2] for clear understanding and Lyapunov exponents
are calculated. The nature of MLE at both the speci-
fied ξw values is (−ve), indicating that the behaviour is
regular (periodic) as listed in Table 2. In the range of
ξw ∈ (0.2, 0.25], the nature of MLE at ξw = 0.2058
and ξw = 0.23 is (+ve) which indicates the irregu-
lar (chaotic) behaviour and at ξw = 0.225, the MLE
is ≈ 0 confirms irregular (unstable) behaviour. There-
fore, the fractional order SSG system exhibits irregu-
lar behaviour once the strength of random wind power
increases as ξw ≥ 0.225.

It is clear from the this study that random wind
power ξw, acting as a disturbance, and can shift the
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Fig. 5 Time series and
phase plane plots of
fractional order SSG system
(8) at ρ = 0.973 show
unstable (chaos breaking)
behaviour

Fig. 6 Bifurcation diagram of fractional order SSG system
(8) under the varying amplitude of random wind power (ξw)

periodic operating region into an irregular region such
as chaotic or unstable. It also exclaims about the
acceptable operating range of wind power and may be
useful in tuning parameters in specified range. There-
fore, it is important to study the effect of random wind
power on the stability of the system and determine
the acceptable range of wind power for safe operation.

This information can be used to optimise the system’s
parameters within a safe and stable operating range.

3.2.3 Dynamic behaviour with change in periodic load
variation

In this subsection, the amplitude of periodic load (ξp) is
considered as a bifurcation parameter and the remain-
ing SSG parameters are kept fixed as σ = 0.2, λ = 0.02,
ρ = 1.077, ξw = 0.2, ξn = 0.01. Bifurcation diagrams
with respect to varying (ξp) parameter in the range
ξp ∈ [0.08, 0.12] is shown in Fig. 7 and it is appar-
ent that fractional order SSG system has PDB route to
chaos.

Furthermore, it is evident that the behaviour is peri-
odic in the range ξp ∈ [0.08, 0.116] and irregular in
the range ξp ∈ (0.116, 0.12]. At some particular values
of ξp in the specified ranges, the calculated Lyapunov
exponents are listed in the Table 2. Therefore, it may
be concluded that the periodic load variation may also
force the SSG system into irregular (chaos, unstable)
behaviour.

3.2.4 Dynamic behaviour by changing external noise

The intensity of AWGN (ξn) is selected as a bifurcation
parameter to study the impact of AWGN on fractional
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Fig. 7 Bifurcation behaviour of fractional order SSG sys-
tem (8) under the varying amplitude (ξp) of periodic load
variation

Fig. 8 Bifurcation diagram shows dynamic evolution of
fractional order SSG system (8) under the varied range of
AWGN intensity (ξn)

order SSG system where the other remaining parame-
ters are fixed as σ = 0.2, λ = 0.02, ρ = 1.077, ξw = 0.2,
ξp = 0.1. Bifurcation diagram are plotted in the varied
range of parameter as ξn ∈ [0.002, 0.016].

It is apparent from the bifurcation diagram (refer
Fig. 8) that δmax of the fractional order SSG system
has period-2 behaviour in the range ξn ∈ [0.002, 0.014].
At two values of δmax in the said range, the calcu-
lated Lyapunov exponents are listed in Table 2 which
verify the obtained regular (periodic) behaviour since
the nature of MLE is −ve. In the remaining range
ξn ∈ (0.014, 0.016], it is evident that the behaviour is
frequently switching to either chaotic or unstable. Thus,
the behaviour in the entire range is claimed as irregular
and Table 2 may be referred for calculated Lyapunov
exponent or nature of MLE and corresponding dynamic
behaviour.

It may be remarked that by changing the SSG system
parameters, different regular and irregular behaviours,
including periodic and chaos, are observed in the frac-
tional order SSG system. Further, if the chaos breaks, it
can cause divergence in the machine angle, which leads
to angular instability in the fractional order SSG sys-
tem. This study is useful for selecting the appropriate
range of parameters to design an effective controller as
a result of the preceding discussions in this section.

4 Multistability and coexisting behaviours
of fractional order SSG system

In this section, advent of interesting behaviours like
multistability and coexisting behaviours of the frac-
tional order SSG system are presented and discussed
under the varying initial excitation of rotor angle δ0

and the fractional order q . When all system parameter
are considered as, ρ = 1.07, σ = 0.2, λ = 0.02, ξw = 0.2,
ξp = 0.1, ξn = 0.01 are maintained constant. The initial
condition ω0 = −0.3 is fixed and δ0 is varied such that
δ0 ∈ (−15, 15) and plotted the bifurcation diagram as
shown in Fig. 9. In the varied range of δ0, repetition of
similar bifurcation pattern is observed at regular inter-
val and confirm the presence of multistability behaviour
in the fractional order SSG system (8). It is also evident
that each bifurcation pattern (refer the zoomed view in
Fig. 9) has periodic-6, chaos, unstable behaviours.

Further, the phase portraits (δ vs ω) correspond-
ing to bifurcation diagrams for varied range of δ0 and
fractional order q are plotted at some particular val-
ues of initial condition [δ0; ω0] and fractional order q
and are shown in Fig. 10. Observing the phase portrait
behaviours obtained at four different values of fractional
order as q = 0.93, 0.96, 0.98 and 0.998, from top to
bottom in Fig. 10, show multistability of PDB route
to chaos behaviour in the fractional order SSG system.
The five different values of initial conditions [δ0; ω0] are
considered as [1; −0.3], [±6; −0.3], [±12.5; −0.3] for
first to fifth columns.

The coexisting bifurcation behaviour is also found
under varying fraction order as q ∈ [0.9, 1] and initial
conditions. The bifurcation plots are obtained by col-
lecting the peaks of synchronous generator rotor angle δ
at three initial conditions labeled as black colour when
(δ0, ω0) = (1, −0.3), red colour when (δ0, ω0) = (0.8,
−0.3), and blue colour when (δ0, ω0) = (−1.8, −0.3)
and shown in Fig. 11 which clearly shows the coexis-
tence of similar and different bifurcation behaviours.
At q = 0.98, the coexistence of periodic (regular) and
chaotic (irregular) attractors is achieved (bottom left
phase portrait in Fig. 11) and as the fractional order
is increased to q = 0.998, chaotic and unstable attrac-
tors coexist, i.e. coexistence of irregular behaviours is
evident and shown in Fig. 11, the bottom right phase
portrait. The presence of coexisting or multistability
behaviour in the fractional order SSG system leads to
a shift in its operating point without any change in
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Fig. 9 Bifurcation behaviour of the fractional order SSG system (8) at initial condition [δ0; ω0 = −0.3], where synchronous
generator varies as δ0 ∈ (−15, 15)

Fig. 10 Multistability of PDB to chaos behaviours shown via phase portrait plots at five different values of initial conditions
[δ0; ω0] as [1; − 0.3], [±6; − 0.3], [±12.5; − 0.3] and four values of fractional order (q) simultaneously

parameters. This shift indicates that the SSG has the
potential either to get trapped into normal equilibrium,
or risk to fall under sustained/chaotic oscillation.

Remark 1 In a power system, protective devices such as
current and voltage transformers, relays, circuit break-
ers, the major required safeguards are designed to
respond and mitigate transient conditions, such as short
circuits or sudden voltage fluctuations. Typically, these

devices are not intended to interfere with sustained
oscillatory events like chaotic oscillation [78]. Conse-
quently, chaotic operation for an extended period or
even several minutes may damage expensive equipment
like rotor shafts. Simultaneously, the wide frequency
range of chaotic oscillations can introduce harmful har-
monic transients in synchronous machines, further com-
plicating the regular operation of the power system. It
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suggests that even with current safeguards, challenges
or difficulties can arise in managing or controlling the
system’s behaviour due to the complex dynamics asso-
ciated with chaos and multistability.

5 Adaptive fractional second order-PID
sliding mode control (AFSO-PIDSMC)

In this section, design of adaptive fractional second
order sliding mode control via proportional integral
derivative sliding surface (PIDSMC) is discussed. The
generalised block diagram of proposed control is shown
in Fig. 12. The generalised fractional order q ∈ (0, 1),
n-dimensional nonlinear dynamical system under dis-
turbances and noise can be written as:

DqX = f(X, t) + G(t) + Dr(t) + ui, (9)

where X , f(X, t) ∈ R
n are state variables and

known nonlinear terms, respectively. G(t), Dr(t) are
the unknown nonlinear terms as G(t) ∈ R

n and Dr(t) ∈
R

n represent disturbances and external noise, respec-
tively, in the n-dimensional system. ui = [u1, u2, . . . ,
un]T ∈ R

n is the added control input. Assuming that
the disturbances and noise have varying amplitude such
as G(t) = γ1G1(t) + γ2G2(t), and Dr(t) = γ3D

r(t),
respectively, where γ1, γ2 are the varying amplitudes
of two disturbances and γ3 is the varying amplitude of
external noise. Then Eq. (9) can further be written as:

DqX = f(X, t) + γ1G1(t) + γ2G2(t) + γ3D
r(t) + ui.

(10)

Let the tracking error ei based on output state response
xi and the desired reference points ri, be defined as
ei = xi − ri, where i = 1, 2, . . . , n. Then the fractional
order error dynamics can be written as:

Dqei = Dqxi − Dqri. (11)

In the designing of AFSO-PIDSMC technique, our aim
is to design PIDSMC input ui(t) such that ei(t) → 0 at
t → ∞. Utilising the Caputo’s Definition 2 [74], the qth
fractional order derivative, discussed in preliminaries,
the (PID)q sliding surface is defined as follows:

si(t) = κPi(ei) + κIiD
−q(ei) + κDiD

q(ei), (12)

where q ∈ (0, 1), κPi, κIi, and κDi are the propor-
tional, integral and derivative constants for ith dimen-
sion dynamics. When q = 1, the integer order PID slid-
ing surface can be obtained.

Remark 2 According to the definitions on fractional
order calculus discussed in Sect. 2, the integral oper-
ator has one additional weight function to that of the
integer order integral operator, and the value of addi-
tional weight function happens to be large initially and

lowers with increasing time [43]. As a result, response
time becomes faster initially, but there is a risk of signif-
icant overshoot and a fractional order differential term
is required to maintain the significant overshoot and
speed of response both.

Using Eqs. (11) and (12), the fractional first and sec-
ond order sliding surface dynamics can be written as:

⎧
⎪⎨

⎪⎩

Dqsi = κPiD
qei + κIiei + κDiD

2qei

D2qsi = κPiD
2qei + κIiD

qei + κDiD
3qei.

(13)

SMC law contains two fundamental controls to ensure
the system dynamics in the sliding mode, namely equiv-
alent control (ueqi) and switching control (usi). The
fractional order system dynamics (10) is in sliding
motion, if it satisfies the fractional first and second
order sliding surface dynamics as Dqsi = 0 and D2qsi =
0. Utilising sliding mode condition, the adaptive equiv-
alent control laws ueqi1 and ueqi2 can be written as fol-
lows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ueqi1 = −κPi (Dqx̂i − Dqri) − κIi(x̂i − ri)

− κDi(D2qx̂i − D2qri)

ueqi2 = −κPi (D2qx̂i − D2qri) − κIi(Dqx̂i − Dqri)

− κDi(D3qx̂i − D3qri)
(14)

where DqX̂ = f(X, t) + γ̂1G1(t) + γ̂2G2(t) + γ̂3D
r(t),

such that γ̂1,γ̂2 are the unknown, bounded amplitudes
of two disturbances and γ̂3 is the unknown and bounded
amplitude of external noise and are considered to be
conveniently estimated. Let the parameter estimation
error be defined as follows:

eγ1 = γ̂1 − γ1, eγ2 = γ̂2 − γ2, eγ3 = γ̂3 − γ3.
(15)

The second crucial control law, switching control law, is
designed to drive and maintain the fraction order sys-
tem trajectory on the sliding surface. Let the fractional
first and second order switching control laws, usi1 and
usi2, respectively, be defined as follows:

usi1 = −ηi sign(si), usi2 = −ηi1 sign(Dqsi), (16)

where ηi and ηi1 are positive constants. Using equations
(14) and (16), the adaptive fractional first and second
order net control law is written as:

ui = ueqi1 + ueqi2 + usi1 + usi2 (17)

Theorem The fractional order sliding surfaces (13) are
asymptotically stable if the adaptive control input ui(t)

123



Eur. Phys. J. Spec. Top. (2023) 232:2415–2436 2427

Fig. 11 Coexisting bifurcation diagram of generator rotor angle (δ) and phase portrait with the given three initial conditions
when order of fractional derivative (q) is varied

Fig. 12 Close loop block diagram of proposed adaptive fractional second order AFSO-PIDSMC technique
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in (17) is applied to the uncertain nonlinear system with
external disturbances (10) such that error ei → 0 as t →
∞ and the parameter estimation law in (18) ensures the
adaptation of uncertain/unknown parameters.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dqγ̂1 = kPiG1(t) + kDiD
qG1(t) + Dqsi.D

qkPiG1(t)

+Dqsi.kDiD
2qG1(t) − h1(γ̂1 − γ1)

Dqγ̂2 = kPiG2(t) + kDiD
qG2(t) + Dqsi.D

qkPiG2(t)

+Dqsi.kDiD
2qG2(t) − h2(γ̂2 − γ2)

Dqγ̂3 = kPiD
r(t) + kDiD

qDr(t) + Dqsi.D
qkPiD

r(t)

+Dqsi.kDiD
2qDr(t) − h3(γ̂3 − γ3)

(18)

Proof Let the Lyapunov function candidate be selected
as:

V (si) =
1
2
[s2

i + (Dqsi)2 + (eγ1)
2 + (eγ2)

2 + (eγ3)
2]

(19)

Lemma 1 [48] If si(t) is a continuously differential
function, then for all t ≥ a, 1

2aDq
t s

2
i (t) ≤ si(t)aDq

t si(t),
∀ q ∈ (0, 1], where i = 1, 2, . . . , N.

If Lyapunov function candidate (19) satisfies Lemma
1 [48] and Properties [74] of fractional order calculus,
the fractional derivative of Lyapunov function candi-
date can be written as follows:

⎧
⎪⎨

⎪⎩

DqV (si) ≤ siD
qsi + Dqsi.(D2qsi) + eγ1D

qeγ1

+eγ2D
qeγ2 + eγ3D

qeγ3

(20)

Using Eqs. (13) and (15) in (20), the fractional deriva-
tive of Lyapunov function candidate is written in (21).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DqV (si) ≤ si{kPi(Dqxi) + kDi(D2qxi) − kPi(Dqx̂i)

−kDi(D2qx̂i)} − siηisign(si) + Dqsi.{kPi(D2qxi)

+κIiD
qxi + kDi(D3qxi) − kPi(D2qx̂i)

−κIiD
qx̂i − kDi(D3qx̂i)}

−Dqsi.ηi1sign(Dqsi)

+(γ̂1 − γ1){Dqγ̂1 + h1(γ̂1 − γ1)} + (γ̂2 − γ2){Dqγ̂2

+h2(γ̂2 − γ2)} + (γ̂3 − γ3){Dqγ̂3 + h3(γ̂3 − γ3)}
(21)

Using control laws (17) in (21), DqV (si) further be sim-
plified as folows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DqV (si) ≤ (γ̂1 − γ1){−kPiG1(t) − kDiD
qG1(t)

−Dqsi.kPiD
qG1(t) − Dqsi.kDiD

2qG1(t)

+Dqγ̂1

+h1(γ̂1 − γ1)} + (γ̂2 − γ2)

{−kPiG2(t) − kDiD
qG2(t) − Dqsi.kPiD

qG2(t)

−Dqsi.kDiD
2qG2(t)

+Dqγ̂2 + h2(γ̂2 − γ2)} + (γ̂3 − γ3)

{−kPiD
r(t) − kDiD

qDr(t)

−Dqsi.kPiD
qDr(t) − Dqsi.kDiD

2qDr(t)

+Dqγ̂3 + h3(γ̂3 − γ3)} − ηisi sign(si)

−ηi1(Dqsi)sign(Dqsi)
(22)

Further, using the parameter estimation laws (18) in
the fractional derivative of Lyapunov function DqV (si)
in (22) results the following negative semi-definite
expression.

DqV (si) ≤ −ηisi sign(si) − ηi1(Dqsi)sign(Dqsi),
(23)

where ηi, ηi1 are positive constants. DqV (si) < 0 ∀ si,
Dqsi 
= 0, confirms that the fractional order sliding
surface is asymptotically stable and the error converges
asymptotically.

In the next section, control of chaos and multistabil-
ity behaviours in the fractional order SSG system using
the AFSO-PIDSMC technique is discussed.

5.1 AFSO-PIDSMC of chaos and multistability
behaviours in the fractional order SSG

The AFSO-PIDSMC technique is employed to control
the fractional order SSG with uncertainties and distur-
bances. The fractional order small scale grid dynamics
(8) with added control can be written as follows:

{
Dqδ = ω + u1

Dqω = σ − ρ sin δ − λω + ξw cos(β1t) + ξp cos(β2t) + ξnγ(t) + u2

(24)

The Eq. (24) may be related in term of equation (9) as:

DqX =
[

aDq
t δ

aDq
t ω

]

, f(X, t) =
[

ω
σ − ρ sin δ − λω

]

, γ1 =
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ξw, G1(t) =
[

0
cos(β1t)

]

,γ2 = ξp, G2(t) =
[

0
cos(β2t)

]

,

γ3 = ξn, Dr(t) =
[

0
γ(t)

]

, and ui =
[
u1

u2

]

.

Let the tracking error be defined as [e1; e2] = [δ −
δ∗; ω − ω∗], where δ, ω represent the state variables.
δ∗, ω∗ are the desired values of fractional order SSG
system; then fractional order error dynamics is written
as follows:

Dqe1 = Dqδ − Dqδ∗, Dqe2 = Dqω − Dqω∗
(25)

The qth order PID sliding surfaces s1, s2 are defined as
per Eq. (12) and the fractional first and second-order
sliding surface dynamics are written in (26) and (27),
respectively.

⎧
⎪⎪⎨

⎪⎪⎩

Dqs1 = κP1 (Dqδ − Dqδ∗) + κI1(δ − δ∗) + κD1(D
2qδ − D2qδ∗)

Dqs2 = κP2 (Dqω − Dqω∗) + κI1(ω − ω∗) + κD2(D
2qω − D2qω∗)

(26)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D2qs1 = κP 1 (D2qδ − D2qδ∗) + κI1(Dqδ − Dqδ∗) + κD1(D3qδ − D3qδ∗)

D2qs2 = κP 2 (D2qω − D2qω∗) + κI2(Dqω − Dqω∗) + κD2(D3qω − D3qω∗)

(27)

The fractional second-order sliding surfaces satisfy the
sliding motion conditions as Dqsi = 0 and D2qsi = 0,
and based on (13), the adaptive equivalent control laws;
ueq11 +ueq12 for sliding surface s1 and ueq21 +ueq22 for
sliding surface s2, are written in (28).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ueq11 + ueq12 = −κP1 (Dq δ̂ − Dqδ∗) − κI1(δ − δ∗)

−κD1(D2q δ̂ − D2qδ∗) − κP1 (D2q δ̂ − D2qδ∗)

−κI1(Dq δ̂ − Dqδ∗) − κD1(D3q δ̂ − D3qδ∗)

ueq21 + ueq22 = −κP2 (Dqω̂ − Dqω∗) − κI1(ω − ω∗)

−κD2(D2qω̂ − D2qω∗) − κP2 (D2qω̂ − D2qω∗)

−κI2(Dqω̂ − Dqω∗) − κD2(D3qω̂ − D3qω∗, )
(28)

where Dq δ̂ = ω, and Dqω̂ = σ − ρsinδ − λω +
ξ̂wcos(β1t)+ξ̂pcos(β2t)+ξ̂nγ(t). ξ̂w, ξ̂p are the unknown
amplitudes of random wind power and periodic load,
respectively, referred to as disturbances, and ξ̂n is the
unknown amplitude of external noise intensity, are to
be estimated. Then, with reference to (14), the param-

eter estimation error is defined as eγ1 = eξw
= ξ̂w − ξw,

eγ2 = eξp
= ξ̂p − ξp, and eγ3 = eξn

= ξ̂n − ξn. Similarly,
as per the Eq. (16), the switching control law for first
and second orders is written as follows:

⎧
⎪⎨

⎪⎩

us11 + us12 = −η1 sign(s1) − η11 sign(Dqs1)

us21 + us22 = −η2 sign(s2) − η21 sign(Dqs2).
(29)

Further, using Eqs. (28) and (29), the net control laws
can be obtained as:

{
u1 = ueq11 + ueq12 + us11 + us12

u2 = ueq21 + ueq22 + us21 + us22.
(30)

As per definition of Theorem and its proof, the designed
adaptive second-order PIDSMC laws in (30) and the
parameter estimation laws in (31) ensure the asymp-
totic stability of sliding surfaces and estimation of
unknown parameters such as disturbances and noise.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dq ξ̂w = s2.kP2.cos(β1t) + s2.kD2.D
qcos(β1t) + Dqs2.kP2

.Dqcos(β1t) + Dqs2.kD2.D
2qcos(β1t) − h1(ξ̂w − ξw)

Dq ξ̂p = kP2.cos(β2t) + kD2.D
qcos(β2t) + Dqs2.kP2

.Dqcos(β2t) + Dqs2.kD2.D
2qcos(β2t) − h2(ξ̂p − ξp)

Dq ξ̂n = kP2.γ(t) + kD2.D
qγ(t) + Dqs2.kP2.D

qγ(t)

+Dqs2.kD2.D
2qγ(t) − h3(ξ̂n − ξn).

(31)

Moreover, the selected Lyapunov function candidate is
given in (32) and the obtained DqV (s) is written in
(34) for the sake of clarity.

V (s) =
1

2
[s

2
1 + (D

q
s1)

2
+ s

2
2 + (D

q
s2)

2
+ e

2
ξw

+ e
2
ξp

+ e
2
ξn

].

(32)

If Lyapunov function candidate (32) satisfies Lemma
1 [48] and Properties [74] of fractional order calculus,
the fractional derivative of Lyapunov function candi-
date can be written as follows:

(33)

DqV (si) ≤ siD
qsi + Dqsi.(D2qsi) + eγ1D

qeγ1

+ eγ2D
qeγ2 + eγ3D

qeγ3 .

Substituting the Eqs. (25), (26) and (27) in (33) and
further written as,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DqV (s) ≤ s1{kP1(Dqδ) + kD1(D2qδ)

−kP1(Dq δ̂) − kD1(D2q δ̂)} − s1η1Sign(s1)

+Dqs1.{kP1(D2qδ)

+κI1D
qδ + kD1(D3qδ)

−kP1(D2q δ̂) − κI1D
q δ̂

−kD1(D3q δ̂)} − Dqs1.η11Sign(Dqs1)

+s2{kP2(Dqω) + kD2(D2qω)

−kP2(Dqω̂) − kD2(D2qω̂)} − s2η2Sign(s2)

+Dqs2.{kP2(D2qω)

+κI2D
qω + kD2(D3qω)

−kP2(D2qω̂)

−κI2D
qω̂ − kD2(D3qω̂)}

−Dqs2.η21Sign(Dqs2)

+(ξ̂w − ξw){Dq ξ̂w + h1(ξ̂w − ξw)} + (ξ̂p − ξp)

{Dq ξ̂p + h2(ξ̂p − ξp)} + (ξ̂n − ξn)

{Dq ξ̂n + h3(ξ̂n − ξn)}
(34)

Using the parameter estimation laws (31) in (34), the
fractional derivative of Lyapunov function candidate
DqV (s) is further simplified as:

DqV (s) < −η1|s1|−η11|Dqs1|−η2|s2|−η21|Dqs2|,
(35)

for all s1, s2 
= 0 and η1, η11, η2 and η21 are positive
constants. Therefore, the fractional order sliding surface
is asymptotically stable and the tracking error ei → 0 at
t → ∞ are achieved based on the asymptotic estimation
of unknown parameters.

Remark 3 It may be noted that as the fractional order
SSG system exhibits irregular (chaos, unstable), multi-
stability behaviours based on rotor angle and frequency
oscillations, indicating that the synchronous generators
may lose synchronism and the fractional order SSG sys-
tem may endure severe frequency swings due to power
disturbance. In this case, if no significant counter mea-
sures are taken to suppress such irregular behaviours,
the fractional order SSG system would be in crisis sit-
uation resulting a devastating blackout. Therefore, the
proposed AFSO-PIDSMC may be useful as a counter
measure to control unwanted chaos and multistability
behaviours.

5.2 Simulation results on control of chaos
and multistability

Numerical simulation is done in MATLAB environment
and presented to verify the effectiveness of the proposed
AFSO-PIDSMC technique. Simulation results for con-
trol of chaos and multistability behaviours of the qth
fractional order SSG system (8) are presented. When
the fractional order 0.98 ≤ q < 1, fractional order
SSG system (8) exhibits chaos behaviour which may
be referred via bifurcation and phase portrait diagrams
shown in Fig. 2d, e.

The state behaviours of fractional order SSG system
(8) without and with AFSO-PIDSMC input (30) are
presented in Fig. 13, where (a) shows the time series
of generator rotor angle (δ) and Fig. 13c shows angular
velocity (ω) without control till t < 150 s and reflect
chaotic behaviour. Once the control is activated at t =
150 s, the unwanted chaos behaviour is controlled, esti-
mation the unknown disturbances ξ̂w = 0.2, ξ̂p = 0.1,
and noise ξ̂n = 0.01 are achieved successfully as shown
in Fig. 14. The designed sliding surfaces, and required
control input along with the proposed AFSO-PIDSMC
performance in terms of errors are illustrated in Fig. 15
for T = 150–160 s (controller is active at T = 150
s). It is observed that the designed sliding surfaces
are stable and control inputs do not have unwanted
chattering. Simultaneously, after the transient time,
the zero steady state error confirms that the proposed
control technique successfully converges fast to the
desired trajectory within 0.25–0.3 s. Furthermore, the
proposed control technique is compared with recently
published robust-adaptive fractional-order sliding mode
control (RAFOSMC) [73] technique and the obtained
controlled state responses are shown in Fig. 13b, d,
labelled via blue colour, have better and faster track-
ing performance than the RAFOSMC [73] technique.
The value of different parameters are used considered
as κp1 = κp2 = 1, κI1 = κI2 = 0.15, κD1 = κD2 =
0.15, η1 = 0.002, η2 = 0.001, η11 = 0.02, η21 =
0.01, h1 = h2 = h3 = 5.

Further, the proposed AFSO-PIDSMC technique is
also able to control the multistability behaviour with
the same value of control parameters and the results are
shown in Fig. 14. In the Fig. 14, multistability of chaotic
time series behaviour of generator rotor angle (δ) with
three different initial conditions [δ0; ω0] = [1; − 0.3],
[6; − 0.3], and [−6.1; − 0.3] are presented with blue,
red and black colours, respectively. When the control
is applied at t = 150s, it successfully control the multi-
stability behaviour alongside chaos suppression at the
desired operating point δ = 0.6. Therefore, the pre-
sented results verify the effectiveness and importance of
the proposed AFSO-PIDSMC technique as (i) to con-
trol of chaos and multistability behaviours in the frac-
tional order SSG, (ii) to avoid the rotor angle instabil-
ities of the fractional order SSG, (iii) provides signif-
icant preventive measure in suppressing the irregular
behaviours to restrict the SSG system not to fall in
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Fig. 13 Control of chaotic behaviour of the rotor angle, angular velocity of synchronous generator and comparison with
RAFOSMC [73]

Fig. 14 Adaptive estimation of unknown disturbances and noise parameters of the fractional order SSG (8)

crisis situation via sliding surfaces and control efforts
shown in Fig. 16.

In the proposed ASO-PIDSMC technique, the con-
troller is simulated for fractional order q = 0.98 in line
with fractional order modeling of SSG system to con-
trol the chaotic and multistability behaviours. Selection
of a fractional order of the controller as q = 0.98, effec-
tively controls the presence of chaotic and multistability

behaviours. If the actual SSG model is not fractional,
it means the system follows traditional calculus prin-
ciples, i.e., an integer order SSG model. In our past
study, the chaos and multistability behaviour have been
explored in the integer order SSG system [11] and may
be referred for detailed analysis.
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Fig. 15 Errors, AFSO-PID sliding surfaces and control inputs (controller is active at T = 150 s)

Fig. 16 Control of multistability behaviour of the fractional order SSG system (8) using AFSO-PIDSMC technique
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6 Conclusion

In this paper, Caputo’s fractional order based small
scale grid (SSG) model is explored and studied under
the influence of disturbances and external noise. Ran-
dom wind power and load demand are considered
as disturbances, while additive white Gaussian noise
(AWGN) is treated as external noise. Different nonlin-
ear dynamical behaviours, classified as regular (peri-
odic), and irregular (chaos, unstable) and PDB route to
chaos behaviours, are examined in the fractional order
q ∈ [0.9, 1), varying electromagnetic power ρ ∈ [0.9,
1.2] and under the presence of varying amplitude of
disturbances and noise. Presence of irregular behaviours
have substantial impact the fractional order SSG. Bifur-
cation analysis and corresponding calculated Lyapunov
exponents or maximum Lyapunov exponents uncover
multiple normal and abnormal behaviours of rotor
dynamics under the specific range of varied parame-
ters. The fascinating phenomena; coexisting attractors
and multistability are exposed with the change in ini-
tial condition and variation in parameters of fraction
order SSG dynamics. It is evident that multistability
or coexisting behaviours can frequently change the sys-
tem state from desirable operating point to undesirable
or unstable operating point. This creates stability prob-
lem in the power system.

An adaptive control based on the design of frac-
tional second order PID sliding mode control strat-
egy, known as AFSO-PIDSMC technique, is proposed
to control the chaos and multistability behaviours and
is compared with robust adaptive fractional order slid-
ing mode control (RAFOSMC) [73] technique. The pro-
posed AFSO-PIDSMC has faster tracking speed and
estimation of unknown parameters. The entire simula-
tions are accomplished in MATLAB environment and
effectively verify the complete system and control anal-
yses.

The fractional order SSG dynamics under study pro-
vides new insights to tackle multistability and coexist-
ing behaviours compared to existing research [9–11, 13]
and useful in redefining a new counter measure for such
undesirable dynamic irregularities. The findings on the
fractional order SSG system and control under study
will help to improve the knowledge (i) to understand
the complicated nonlinear dynamic behaviours and (ii)
to eliminate the presence of multistability and coexis-
tence behaviours in power grids.

In our opinion, the fractional order derivative should
match both in the modeling and control. If the frac-
tional order is different in either case, implementation
issues may arise during real time scenario. However,
this is still open as a contemporary debatable topic
for researchers. Finally, the present study and control
may be utilised in the large scale or complex power
grid, since multistability or coexisting behaviours cre-
ate serious problem of global stability in the large scale
or complex power grid network and control of multista-
bility becomes a challenging task and researchers may
explore in future.
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