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Abstract This work is a pedagogical survey about the hierarchical equations of motion and their imple-
mentation with the tensor-train format. These equations are a great standard in non-perturbative non-
Markovian open quantum systems. They are exact for harmonic baths in the limit of relevant truncation
of the hierarchy. We recall the link with the perturbative second-order time convolution equations also
known as the Bloch–Redfield equations. Some theoretical tools characterizing non-Markovian dynamics
such as the non-Markovianity measures or the dynamical map are also briefly discussed in the context of
HEOM simulations. The main points of the tensor-train expansion are illustrated in an example with a
qubit interacting with a bath described by a Lorentzian spectral density. Finally, we give three illustrative
applications in which the system–bath coupling operator is similar to that of the analytical treatment. The
first example revisits a model in which population-to-coherence transfer via the bath creates a long-lasting
coherence between two states. The second one is devoted to the computation of stationary absorption and
emission spectra. We illustrate the link between the spectral density and the Stokes shift in situations with
and without nonadiabatic interaction. Finally, we simulate an excitation transfer when the spectral density
is discretized by undamped modes to illustrate a situation in which the TT formulation is more efficient
than the standard one.

1 Introduction

Simulating quantum dynamics of complex systems with
a large number of degrees of freedom (DoF) remains
a computational challenge. However, measured observ-
ables often depend on a limited number of DoFs. Thus,
the full system can be described as an active subsystem
embedded in an environment, which makes fluctuate
the energy levels of the subsystem. The latter is often
described quantum mechanically while the extended
environment is treated by a wide range of possibil-
ities based on semi-classical or quantum or statisti-
cal approaches adequately chosen with respect to the
choice of system-environment partitioning. When the
number of DoFs increases, standard methods become
computationally untractable, which is known as the
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“curse of dimensionality”. In this context, the low-rank
tensor decomposition has aroused a constantly grow-
ing interest. When the surrounding is modeled by an
ensemble of discrete modes, Multi Configuration Time-
Dependent Hartree (MCTDH) and the multi-layer ver-
sion (ML-MCTDH) [1–4] are based on tensor network
algorithms, mainly the Tucker and hierarchical Tucker
tensors [5, 6]. Similarly, the expression of the time-
dependent multi-mode wave functions in Matrix Prod-
uct State (MPS) also called Tensor-Train (TT) [7–10]
expansion has revealed its efficiency in many applica-
tions [11–20].

In the usual approach of open quantum systems
based on statistical mechanics with a surrounding at
thermal equilibrium, the environment is described less
explicitly and the active system is treated by a reduced
density matrix by tracing over the bath degrees of free-
dom. Path integrals derived from the Feynman–Vernon
influence functional [21] and the hierarchical equa-
tions of motion (HEOM) [22–24] are a priori exact
methods for harmonic baths and are closely related
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[25, 26]. HEOM may also be derived from the Naka-
jima–Zwanzig [27, 28] partition of the Liouville equa-
tion using the cumulant expansion of the reduced
propagator and properties of the Gaussian distribu-
tion of the bath linked to the harmonic approxima-
tion [29]. Both Path Integral and HEOM formalisms
have also been recently treated by the tensor formalism
in the Tensor Network Path Integral [30] and in the
MPS [31–34] or Tucker and hierarchical Tucker ten-
sor format for HEOM [35]. HEOM has been applied
to describe many physico-chemical processes (see the
recent review by Tanimura [24]), for instance, excita-
tion transfer in photosynthetical complexes [29, 36–40]
or in other devices [41], non-adiabatic interactions and
electron transfer [42–44], dynamics via conical intersec-
tions [45–50], proton transfer [51], laser optimal control
[50, 52], non-equilibrium fluxes [53–55], and non-linear
spectroscopies [24, 56–58].

It is worth noting that accounting for temperature
is handled in a similar way in the HEOM system of
equations with discrete undamped modes [59] and in
a recent MPS implementation with wave functions [60]
in the context of T-TEDOPA formalism [61] . In the
latter, the wave function approach uses discrete vibra-
tional bath transformed into a chain and introduces
finite temperature by sampling two baths representing
absorption and emission, respectively, with the latter
being described by a bath of oscillators with negative
frequencies. Emission into the vacuum of these negative
modes mimics the absorption of environmental quanta
that would be present in a physical (mixed-state) ther-
mal bath, allowing a pure wavefunction description
to capture the physics of a mixed-state initial condi-
tion without the need for thermal sampling [60, 61].
On the other hand, the particular implementation of
HEOM with undamped discrete modes also samples
baths with positive and negative frequencies [59]. By
comparing these methods, we also emphasize that even
if the reduced density matrix in open quantum systems
is obtained by tracing over the bath modes, this does
not mean that the information about the environment
disappears. Relevant information about the baths may
be extracted, for instance, the time-dependent distri-
bution of the collective bath modes in each electronic
state, which may be seen as the square modulus of a
dissipative wave packet [48, 59, 62, 63] or projection of
the coherence among electronic states along the collec-
tive modes [48] and fluxes [54].

In this work, we present a pedagogical survey about
HEOM and their implementation with the TT format.
We recall the main lines and in particular the link
with the perturbative second-order time convolution
equations also known as the Bloch–Redfield equations,
which are an illuminating step to understand the com-
plicated structure of HEOM. We briefly discuss how
HEOM may be used to compute some theoretical tools
(non-Markovianity measure or dynamical map) related
to non-Markovian dynamics. We then present the prin-
cipal points of the TT expansion by giving the expres-
sions related to a simple example where a qubit inter-
acts with a bath. Finally, we give three applications

based on models in which the system–bath coupling
operator is similar to the one used in the survey. Finally,
the appendix explains how to encode the main expres-
sions with a Python package.

2 Open quantum systems and HEOM

The standard starting point in open quantum system
[64–66] is the partition of the DoFs of the full complex
system. The active subsystem may be only electronic
DoFs like in the usual spin-boson model or include some
Brownian coordinates coupled to residual baths [43, 45,
67, 68]. The generic partitioning of the full Hamiltonian
in three parts is written as:

H = HS + HSB + HB , (1)

where HS and HB are the Hamiltonians of the active
system and of the vibrational or phonon bath(s) respec-
tively. The system Hamiltonian may be time dependent
if it contains interaction with external fields. When the
system interacts with Nbath, the system–bath coupling
is HSB =

∑Nbath
α=1 SαBα. Sα and Bα are operators in the

space of the system and in the complementary space,
respectively.

In the electronic-nuclear partition, the system oper-
ators Sα are n × n matrices with n the number
of electronic states. They act as projectors on some
states when the baths tune the electronic energies (i.e.,
are diagonally coupled) or transition matrices between
some of them when the baths make fluctuate the off-
diagonal electronic coupling such as in the case of coni-
cal intersections [46–50]. In other system–bath partition
cases, the system operators are the Brownian coordi-
nates included in the active subspace [43, 45, 67, 68].
Furthermore, each bath operator Bα is a linear com-
bination of the position operators qj of the oscillators
Bα =

∑Nα

j c
(α)
j qj in the discrete bath representation

with N oscillators. The expression of the coupling coef-
ficients c

(α)
j depends on the partition and on the choice

of the coordinates. In the following, we adopt mass-
weighted coordinates and the electronic-nuclear parti-
tion.

The initial total density operator ρtot(0) = ρS(0) ⊗
ρB, eq is assumed to be factorized and is the prod-
uct of the system density operator ρS(0) and a ther-
mally equilibrated bath density operator ρB, eq =
e−βHB/TrB

[
e−βHB

]
where β = 1/kBT is the Boltz-

mann factor. Extension to correlated initial conditions
has been proposed in Refs. [69–72].

2.1 Second-order auxiliary operators

It is very instructive to first examine the non-Markovian
perturbative equations, which contain all the crucial
tools occurring in HEOM. To do so, we consider the
simplest case with only one bath, i.e., HSB = SB.
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The exact formal Nakajima–Zwanzig equation given
the evolution of the reduced density matrix ρ̇S(t) =
− i

�
TrB [H, ρtot(t)] may be written as:

ρ̇S(t) = LSρS(t) +
∫ t

0

K(t, τ)ρS(τ)dτ + I(t) (2)

with LS � = −i[HS , �] the system Liouvillian and � = 1.
K(t, τ) is the memory kernel which embeds the bath
influence on the system and I (t) is an initial correlation
term which cancels when the system and bath can be
initially factorized (i.e., I(t) = 0 when ρtot(0) = ρS ⊗
ρB, eq).

At the second order in the HSB coupling, the memory
kernel becomes [73]:

∫ t

0

dτK(t, τ)ρS(τ) =
∫ t

0

dτK(2)(t, τ)ρS(τ)

= i

∫ t

0

dτ

[

S,

{

iC(t − τ)US(t − τ)SρS(τ)

× U †
S(t − τ)

}

+ {hc}
]

, (3)

where C (t) is the correlation function of the collective
bath mode C(t) = 〈B(t)B(0)〉eq, B(t) is the Heisen-
berg representation of the operator with Hamiltonian
HB and 〈�〉eq denotes the average over a Boltzmann dis-
tribution at a given temperature T . US(t) = e−iHSt is
the propagator of the system. The treatment up to the
fourth order may be found in Ref. [74] and the extension
by the generalized master equation method in Ref. [75].

The quantum bath correlation function is the main
descriptor of the bath [76]. The usual step to go towards
the second order auxiliary density operator (ADO) or
HEOM is the representation of the correlation function
as a sum of damped decaying functions:

C(t − τ) = 〈B(t)B(τ)〉eq =
K∑

k=1

αkeiγk(t−τ), (4)

where αk and γk are complex parameters. The sum is a
priori infinite but truncated to K modes, which have
been called the “artificial bath modes” in Ref. [73].
Some extensions to different analytical forms or arbi-
trary correlation functions have been proposed recently
in Refs. [77–81].

By inserting Eq. (4) in Eqs. (2) and (3), each artificial
mode corresponds to a particular memory integral of
the time-dependent integro-differential equation. Each
integral is set equal to an ADO:

ρk(t)/(iαk)

=
∫ t

0

dτ
[
S,
{

ie−γk(t−τ)US(t − τ)SρS(τ)

×U †
S(t − τ)

}
+ {hc}

]
. (5)

Fig. 1 Schematic representation of the auxiliary operators
associated with each artificial bath mode k = 1, K and
involved in the second-order master equation (Eq. (6)). Each
ADO corresponds to a single excitation in the mode

The dimension of ρk(t) is that of the S operator and
thus of HS . A time local system of coupled equations
may be obtained by taking the first derivative [69, 73,
82]. Different choices are possible to define the ADOs.
From Eq. (5), we obtain the operational equations [69]:

ρ̇S(t) = LSρS(t) + i

K∑

k=1

[S, ρk(t)]

ρ̇k(t) = (iγk + LS)ρk(t) + i[αkSρS(t)
−α̃kρS(t)S], (6)

where LS is the system Liouvillian. The α̃k parameters
will be discussed below.

Each ADO being associated only with one decay
mode, it may be considered as resulting from a sin-
gle excitation in this mode and denoted by an array
of K indexes with one in the kth position and zero
everywhere else as shown in Fig. 1. These ADOs will
constitute the first level of the HEOM hierarchy.

A real classical correlation function may be obtained
by molecular dynamics [15, 38, 44, 83] or directly
from experimental results [84] and corrected to get
the complex quantum correlation function satisfy-
ing the fluctuation-dissipation theorem [76]. Direct
parametrization of C (t) fitted by different approaches
[81], Prony method [80] or expansion on Chebyshev or
Bessel functions [77] have also been proposed. However,
the relation with the bath spectral density, defined as
follows:

C(t) =
∫ ∞

−∞
dωJ(ω)

(
eβω − 1

)−1
e−iωt, (7)

where β = 1/kBT is the Boltzmann factor, is cur-
rently used and the {αk, γk} parameters are obtained
from the parametrization of C(ω) = J(ω)

(
eβω − 1

)−1,
where J(ω) is independent of the temperature and
(
eβω − 1

)−1 is the Bose function related to the quantum
fluctuation–dissipation theorem. In the discrete case,
the spectral density is defined from the system–bath
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coupling coefficients cj related to Ndisc discrete modes

J(ω) =
π

2

Ndisc∑

j=1

c2
j

ωj
δ(ω − ωj). (8)

In the continuous representation, the spectral density
is often approximated by an Ohmic function JOhm ≈
cωfcutoff(ω) or a super-Ohmic function JSuperOhm ≈
cω3fcutoff(ω), with c a constant and fcutoff an exponen-
tial or Lorentzian cutoff. The Ohmic function is used for
solvents, while the super-Ohmic one is relevant for the
solid phase and phonon baths. To get a parametriza-
tion of the bath correlation function (Eq. (4)) through
Eq. (7), one has to perform a fitting procedure of the
spectral functions with relevant analytical functions. A
special care in fitting the spectral density low frequency
behavior is often necessary to get accurate results [85].
Here, we will discuss only the cases of Ohmic and
super-Ohmic Lorentzian functions. We adopt the Tan-
nor–Meier parametrization [73] in which the spectral
density is fitted by nlor two-pole Lorentzian functions
depending on three parameters (pl, Ωl, Γl) where pl is
the associated weight, Ωl the central frequency, and Γl

the bandwidth.

JOhm(ω) =
nlor∑

l=1

plω

Υ(Ωl, Γl)
(9)

with

Υ(Ωl, Γl) =
[
(ω + Ωl)

2 + Γ2
l

][
(ω − Ωl)

2 + Γ2
l

]
.

All the {αk, γk} parameters may be obtained from
the integral (7) after substitution of Eq. (9). Each
Lorentzian corresponds to two artificial decay modes.
The Bose function generates an infinite series of terms
coming from its poles. They are known as the Mat-
subara terms. In practice, the number of Matsub-
ara terms is very small at high temperature but may
become numerous at low temperature rendering the
ADO method computationally more demanding. In
the low-temperature regime, Padé approximants of the
Bose function [86], fitting procedure of C (t) used to
capture the Matsubara terms [87] or a recent correc-
tion scheme [88] can be used. The analytical expressions
of {αk, γk} (Eq. (4)) as functions of the (pl, Ωl, Γl)
parameters of JOhm(ω) and those related to the Mat-
subara terms are given in Refs. [69] or [67]. One also
could find in these references the expression of the α̃k

parameters (see Eq. (6)). They come from a particular
expression of the complex conjugate of C (t) that may
be written as: C∗(t) =

∑K
k=1 α̃keiγkt with the same

γk as in Eq. (4). In the super-Ohmic case, the fitting
functions have four poles leading to four artificial decay

channels

JSuperOhm(ω) =
nlor∑

l=1

plω
3

Υ(Ωl, 1, Γl, 1)Υ(Ωl, 2, Γl, 2)
.

(10)

The analytical expressions to get the {αk, γk} param-
eters of C (t) (Eq. (4)) from (pl, Ωl, 1, Γl, 1, Ωl, 2, Γl, 2)
parameters of JSuperOhm(ω) are gathered in Ref. [89].

2.2 HEOM

First, we discuss the case with a single bath, i.e., we
consider only one S operator. The generalization will
be discussed at the end of the section. When the bath
correlation time becomes long with respect to the sys-
tem characteristic timescale due to a strongly peaked
spectral density, the high non-Markovianity generally
involves a non-perturbative regime. HEOM are one of
the reference dynamical methods for open quantum
systems modeled with a harmonic bath. The equa-
tions giving the evolution of the reduced density matrix
were originally derived for a Drude–Lorentz spectral
density in the high-temperature limit from the Kubo
stochastic Liouville equation [22–24, 90] and the Feyn-
man–Vernon influence functional formalism [25, 26].
Another approach to derive these equations is by refer-
ring to the remarkable property that the cumulant
expansion limited to second order is exact when the
bath statistics are Gaussian [29, 91]. This is based on
the Wick theorem [92]. The reduced density matrix
ρS, I(t) for the system in interaction representation
ρS, I(t) = eiH0tρS(t)e−iH0t with H0 = HS + HB , is
given by the partial trace over the bath of the time
evolution of the total density matrix:

ρS, I(t) = TrB

⎡

⎣T (+)e

t∫

0
dτLSB, I(τ)

ρeq
B

⎤

⎦ρS, I(0),

(11)

where T (+) is a time-ordering operator and a factoriza-
tion is assumed at the initial time t = 0. LSB, I(t) is the
Liouvillian in interaction representation, LSB, I(t)� =
−i[S(t)B(t), �], where S(t) = eiHStSe−iHSt and B(t) =
eiHBtSe−iHBt.

At the second order in the cumulant expansion,
Eq. (11) becomes

ρS, I(t) = T (+)e

t∫

0
dτKI(τ)

ρS, I(0). (12)

KI(τ) =
∫ τ

0
dt′K(2)

I (τ , t′) corresponds to the second-
order memory term occurring in the second-order per-
turbation theory (Eq. (3)) but here, the second order is
an exact expression for the cumulant expansion:
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∫ τ

0

dt′K(2)
I (τ , t′)�

= −[S(τ),

τ∫

0

dt′C(τ − t′)S(t′) � −{h.c.}]. (13)

By inserting the correlation function parametrization
(Eq. (4)), Eq. (13) is separable into a sum of K oper-
ators KIk where K is the number of artificial decay
modes. In addition, each KIk is decomposed as:

KIk(τ) = ΦI(τ)WIk(τ), (14)

where

ΦI(τ)� = −[S(τ), �] (15)

and

WIk(τ) =

τ∫

0

dt′eiγk(τ−t′)ΘIk(t′) (16)

with

ΘIk(t′)� = αkS(t′) � −α̃k � S(t′). (17)

The exact solution takes the following form:

ρS, I(t) = T (+)
∏K

k
e
∫ t
0 dτKIk(τ)ρS, I(0)

= T (+)
∏K

k
e
∫ t
0 dτ

∫ τ
0 dt′ΦI(t′)eiγk(τ−t′)ΘIk(t′)

× ρS, I(0). (18)

The master equation can then be derived as

ρ̇S, I(t) = T (+)
∑K

k
KIk(t)ρS, I(t). (19)

This equation is time non-local since KIk(t) contains
an integral. A time local system of coupled equations
is obtained by defining the ADOs by the same strategy
as in the second order approach:

ρn, I(t) = T (+)
∏K

k
WIk(t)nke

∫ t
0 dτKIk(τ)ρS, I(0),

(20)

where

n = {n1, . . . , nk, . . . nK} (21)

in a vector of nonnegative integers giving the occupa-
tion number in each artificial decay mode. The case
n = {0, . . . , 0, . . . 0} corresponds to ρS, I . Time local
coupled equations among the ADOs may be derived
by working with the Fourier–Laplace transforms of

Eqs. (18) and (20) and using integration by parts [36,
48]. One recovers the relations established in Ref. [22].
After the inverse Laplace–Fourier transform and the
return in the Schrödinger representation, the HEOM
read:

ρ̇n(t) = LSρn(t) + i

K∑

k=1

nkγkρn(t)

− i

[

S,
K∑

k=1

ρn+
k
(t)

]

− i

K∑

k=1

nk

(
αkSρn−

k
(t) − α̃kρn−

k
(t)S

)
(22)

or more shortly using definitions (15) and (17) in
Schrödinger representation (i.e., Φ(τ)� = −[S, �] and
Θk� = αkS � −α̃k � S):

ρ̇n(t) = LSρn

+ i
K∑

k=1

(
nkγkρn − Φρn+

k
− nkΘkρn−

k

)
. (23)

The subscripts

n+
k = {n1, . . . , nk + 1, . . . , nnK

}

and

n−
k = {n1, . . . , nk − 1, . . . , nnK

}

denote the matrices for which one occupation num-
ber differs by one unit in the hierarchy nk → nk ± 1.
The sum of the occupation numbers defines the level
of the hierarchy L =

∑
nk. The total number of

matrices when the hierarchy is limited at level L is
(L+K)! /L!K! . Each matrix is connected to the matri-
ces of the lower or the upper levels. Figure 2 illustrates
the case with two artificial decay channels (i.e., one
Ohmic Lorentzian in the spectral density and no Mat-
subara term). Initially, ρ00...0 = ρS and all the ADOs
are zero. They represent the initial bath at equilib-
rium. When the final relaxed state is reached, the con-
verged ADOs represent the new equilibrium and may
be taken as the initial condition to describe another
process affecting the equilibrated system. For instance
to describe the stationary fluorescence. All the terms
occurring in the derivative of each ADO are schema-
tized in Fig. 2 for a simple example with two bath
modes.

The generalization is straightforward when there are
Nbath uncorrelated baths, each associated with Kb arti-
ficial bath modes. Then, K =

∑Nbath
b=1 Kb. Each bath is

linked to the system by an operator Sb and the equa-
tions become:

ρ̇n(t) = LSρn + i

Nbath∑

b

Kb∑

k=1

(
nb, kγb, kρn

−Φbρn+
k

− nb, kΘb, kρn−
k

)
. (24)
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Fig. 2 Schematic representation of the auxiliary operators
of the HEOM hierarchy up to level L = 2 for the case
with two artificial bath modes K = 2. Φ acts on matri-
ces for which one occupation number increases by one unit.
Θk is applied on matrices for which one occupation number
decreases by one unit. The sum of the decay rates nkγk mul-
tiplying each matrix is indicated. The schematic represen-
tation of the terms involved in the derivative of one matrix
is complete for ρ00 (orange); ρ10 (blue) and ρ01 (green)

An alternative to the continuous representation of the
spectral density with K artificial modes is the dis-
cretization with Ndisc undamped modes in the spirit of
MCTDH or ML-MCTDH computations [93–96] or MPS
simulations in the Hilbert space [12–15]. Discretization
has also been illustrated with HEOM [59] and checked
in TT format [31, 35]. The expression of the correspond-
ing HEOM equations are given in Refs. [31, 59]. The
active system is then coupled to two identical baths
with positive or negative frequencies describing emis-
sion and absorption of energy. Since there are two baths,
the number of terms in the correlation function is large
K = 2Ndisc but there are no Matsubara terms asso-
ciated with the poles of the Bose function in the con-
tinuous case. The discrete couplings are smaller than
those of the artificial modes. We will illustrate in one
application that the TT implementation may be more
efficient than the standard one in that case.

The system of the coupled differential equations (24)
or those related to discrete modes given in Refs. [31,
59] can then be solved using standard numerical meth-
ods such as Runge–Kutta 4 (RK4), Cash–Karp (RK4-
5) adaptative step-size or Arnoldi algorithms. Although
HEOM are an infinite system of differential equations,
they are truncated at a maximum value of nk = nmax.
Thus, several simulations with increasing values of nmax

should be carried out until the results (density matrix
or observables) are properly converged. For compar-
ison between the standard and TT formulations, we
have used a home-made fortran code parallelized with
OpenMP. Other implementations in python or on new
architectures such as GPU [97] could be useful. See a
review of different software in Ref. [81].

2.3 HEOM and non-Markovianity

As mentioned above, HEOM are a standard method
to tackle non-perturbative and non-Markovian regimes.
Non-Markovianity obviously depends on the parti-
tion since it is roughly predicted by the character-
istic timescales of the active system and the corre-
sponding bath. These typical dynamical times may be
very different with respect to the system definition.
Inserting some effective bath coordinates into the sys-
tem part (to reduce the coupling towards the residual
bath and modify the corresponding timescales) may
be an efficient strategy to change the Markovianity
regime [43, 48, 67, 68, 98, 99]. When the partition
leads to a non-Markovian regime, an abundant liter-
ature has been devoted to the characterization of the
non-Markovianity by different measures and from a
fundamental perspective, to a mathematical definition
of non-Markovian quantum dynamical maps, which is
still an open problem. These fundamental questions are
reviewed for instance in Refs. [100, 101]. A detailed pre-
sentation of these items is beyond the scope of this
paper and we summarize here only the main points.
A Markovian behavior is linked to a continuous loss
of information from the open system to the surround-
ing while a flow from the environment back to the
open system is the signature of a non-Markovian effect.
The return of information from the bath could modify
the system dynamics. The measures aim at quantify-
ing this backward flow. One may cite, among others,
the trace distance measure [100, 102], the entanglement
measure [103], negativity of time-dependent canonical
rates [104], and the Bloch volume measure [105]. They
are compared for instance in Refs. [104, 106]. In the
last case, the measure is based on an estimation of the
volume of the accessible states in the generalized Bloch
sphere for a n-state system. A non-monotonic decrease
of this volume is a signature of non-Markovianity. Any
density matrix may be expanded in the basis set of
n2 operators: the normalized identity G0 = I/

√
n and

Gi(i = 1, . . . , n2 − 1): the n2 − 1 generators of SU (n)
[107, 108]. They are the Pauli matrices for n = 2 and the
Gell-Mann matrices for n = 3. The volume of accessible
states V (t) = det(F(t)) is obtained from the determi-
nant of the matrix Fm, n(t) = Tr(Gm(0)Gn(t)). This
requires n2 propagations of the basis operators and is
easily obtained with HEOM [48, 52, 63, 89, 109, 110].
Similarly, the n2 basis operators may be used to build
the n2 × n2 decoherence matrix [89, 104] Dij(t) =
∑n2−1

m=0 Tr[GmGiΛt[Gm(t)]Gj ], where Λt[Gm(t)] is the
map of the time local equation Ġm(t) = Λt[Gm(t)] =
∑n2−1

k=0 φ̇t[Gk]F (t)−1
km. φ̇t[Gk] is the derivative of the sys-

tem density matrix when the initial state is Gk (see
Eq. (22)). The eigenvalues of this decoherence matrix
are called the canonical decay rates γk(t) [89, 104]. They
witness non-Markovianity when some of them become
negative signalizing an information return towards the
system.

The concept of dynamical map in the theory of open
quantum systems is relevant when the initial state of
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the total system is a factorized product state but it
remains a debated point for initial system–bath entan-
gled state [100, 111, 112]. While the master equation
is related to the time derivative ρ̇(t) = Λt[ρ(t)], the
corresponding dynamical map φt transformed any ini-
tial state ρ(0) to ρ(t), i.e., ρ(t) = φt[ρ(0)]. The map
is expected to be completely positive or at least posi-
tive to ensure that φt maps physical states to physical
states. This preserves the Hermiticity and the trace of
operators. The mathematical properties of the map are
discussed mainly in the quantum information commu-
nity. By expanding both φt[ρ(0)] and ρ(0) in the basis
of the n2 operators Gk, the map may be expressed in
matrix notation ρ(t) =

∑n2−1
k, l=0 Flk(t)Tr[Glρ(0)]Gk, i.e.,

as a function of the F(t) matrix discussed above and
easily computed by HEOM. To analyze the positivity,
it is rather the n2 ×n2 Choi matrix [104, 113, 114] that
is used. It corresponds to the expansion of the map in
the basis set of the n2 projector matrices |j〉〈k| related
to a basis of the system Hilbert space in place of the
generators Gn. The map is completely positive if and
only if the eigenvalues of the Choi matrix are positive.
This Choi matrix would be easily obtained by HEOM
by a procedure similar to that providing the F(t) matrix
via the propagation of the n2 projector matrices |j〉〈k|.
To our knowledge, this systematic analysis has not been
carried out with HEOM and could be interesting. In our
previous works, we have mainly computed with HEOM
F(t) [109, 110] and the canonical rates γk(t) [52, 89].
Anyhow, we did not detect a loss of conservation of the
trace of ρS(t) even when dynamics is non-Markovian
as shown by the volume of accessible states or by the
canonical rates. It is well known that numerical insta-
bilities with non-conservation of the norm may occur
mainly for long time in the standard formulation of
HEOM [115] or in the TT approach due to the vari-
ational approach [32] and limitation of the tensor ranks
[33].

The control of open quantum systems [116] has
aroused a renewed interest mainly in the context of
quantum technologies that rely on the coherent manip-
ulation and transfer of information, encoded in quan-
tum states [117–119]. Non-Markovianity is expected to
be a resource to improve the control by exploiting the
transitory flow back. The HEOM formalism has proven
its efficiency when it is coupled with different control
strategies, in particular with optimal control protocols
[50, 52].

3 HEOM in tensor-train format

In this section, we summarize the main relations of
the tensor-train formalism (also named matrix product
state (MPS)) that is an interesting way for representing
a high-dimensional tensor as the one we are using for
HEOM. The idea of this TT format is to decompose the
tensor into a network of low-dimensional tensors called

TT cores coupled in a chain. MPS has received a grow-
ing interest in the quantum physics community [11–20].
The application in HEOM was already suggested by
Shi [31, 32] who also uses the Tucker representation
[35] and later by Borelli [33, 34]. We present a ped-
agogical survey showing the way the super-operators
involved in the TT-HEOM formalism are written and
by expliciting them in a simple case of a two-level sys-
tem coupled to a bath with a spectral density fitted by
an Ohmic Lorentzian (Eq. (9)) leading to two artificial
decay modes. The Appendix gathers the main steps for
the encoding in python.

3.1 Representation of the ADOs

When the system is a n-state case, each ADO is a n×n
matrix that may be reshaped in a super-vector with n2

elements ρ̄α
n, where α ∈ [1, n2] stands for a (a, b) ele-

ment of the system density matrix (a, b ∈ [1, n]). The
global index n corresponds as in Eq. (21) to the occupa-
tion number in each decay mode. When the TT format
is adopted, each occupation number nk runs from 0 to
nmax. The total number of matrices is then larger than
when the hierarchy is truncated at a given level L in
the standard formulation. Each element of the high-
dimensional array ρ̄ is written in TT format as:

ρ̄α
n ≈

∑

j0

∑

j1

· · ·
∑

jk

· · ·
∑

jK+1

A0(j0, α, j1)

× A1(j1, n1, j2) · · · Ak(jk, nk, jk+1)
× · · · AK(jK , nK , jK+1). (25)

The summation index jk goes from 1 to rk, where rk

is the rank also called the bond (r0 = rK+1 = 1 for
dimensionality consistency). K is the number of decay
modes. Ak are the cores, i.e., arrays of dimension rk ×
ndim × rk+1, where ndim = n2 for k = 0 and ndim =
nHEOM = nmax+1 for k 	= 0 (nHEOM = L+1, where L is
the hierarchy level). The choice of the rank rk is crucial
and convergence must be carefully checked. Complex
baths (and realistic ones) often need many decay modes
and high hierarchy level: K and L increase dramatically
which leads to heavy simulations.

TT decomposition allows a priori to deal with this
dimensionality curse. Indeed, instead of using an array
with n2 ×nHEOM

K in a standard approach, the tensor-
train decomposition stores n2r1 × nHEOM

∏K
k=1 rkrk+1

tensor elements. For instance, if the ranks for every core
are all the same (∀k ∈ [1, K], rk = r), the number
of elements is r(n2 + nHEOM) + Kr2nHEOM in the TT
approach. With the TT formalism, the increase with the
number of modes is linear with K . This might allow to
deal with large values of K and thus extend the capa-
bilities of the HEOM method to describe more complex
environments. However, the TT decomposition approx-
imates the real tensor and is exact only if the ranks rk

grow up to infinity. In practise, they are truncated to a
sufficiently high value to ensure the computation con-
vergence. Choosing the best ranks is not a trivial task
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Fig. 3 Upper panel: Schematic representation of a tensor train with the HEOM formalism for a two-level system (n = 2)
with a bath modeled by two single Tannor–Meier Lorentzian functions with no Matsubara frequencies (K = 4) at a
hierarchy level of nHEOM = 3. Individual matrices or vectors are called cores of the tensor (and often denoted as Ak).
Arbitrary values have been chosen here for the tensor ranks: r1 = 4, r2 = 2, r3 = 3 and r4 = 4. For instance, the tensor
element ρ2, 3, 2, 2, 1, which corresponds to ρ12

3, 2, 2, 1, i.e., the element 1,2 of the ADO for occupation number n = 3, 2, 2, 1, is
computed by performing vector–matrix, matrix–matrix or matrix–vector products with the blue cores on the figure. As the
initial and final tensor ranks (r0 = rK+1 = 1) are equal to one, the final result is a scalar number. Lower panel: Tensor-train
representation of the ADOs. Ak are the cores of the tensor. The circles represent the physical legs. α runs from 1 to n2,
where n is the number of states in the system and nk is the index (occupation number) for each decay mode that runs from
0 to nmax. The rectangles are matrices rk−1 × rk, where the rank rk is also called the bond

and goes beyond the scope of this article. We discuss
this point in Sect. 3.3.

Tensor representations are schematized in Fig. 3.

3.2 HEOM super-Liouvillian

The HEOM equations (23) and (24) contain a Liouvil-
lian operator related to the Hamiltonian of the system,
a damping term, a term coupling to matrices of a higher
level in the hierarchy and a term coupling to a lower
level. In super-operator notation, one has:

L = LS +
K∑

k′=1

(Lk′ + Lk′+ + Lk′−), (26)

where k′ = (k, b) is a collective index which addresses
both the index of the correlation function terms (k ∈
[1, ncor, b]) and the bath b.

For pedagogical purpose, in this section, we give the
expression of the different contributions to the super-
operator of the forward propagation with TT for a sim-
ple example. We consider a two-level system (n = 2).
The excited state is coupled to a single bath that tunes
the energies and is coupled diagonally to the system.
The spectral density is a two-pole Lorentzian leading to

two decay modes (K = 2). We assume a high tempera-
ture, so there is no Matsubara term. The corresponding
coupling operator is

Sk =
(

0 0
0 1

)

(27)

for decay mode k = 1, 2. HEOM is treated at order two
nHEOM = 2, i.e., for each mode, the occupation number
nk may take the value 0 or 1 (nmax = 1). The hierar-
chy contains 4 (2 × 2) matrices related to occupation
numbers 00, 01, 10, and 11. The super-operator is then
a (16 × 16) matrix in this example.

All the elements of all the ADOs (n × n matri-
ces) are reshaped in a super-vector that contains n2

groups corresponding to a given element of the system
density matrix α = (a, b) when the ADO indexes of
{n1, . . . , nk, . . . , nK} run from 0 to nmax beginning by
the last one. In the example with a two-level system,
two decay modes (K = 2) and nmax = 1, there are 4
groups labeled 00, 01, 10, and 11 (see Fig. 4).

3.2.1 Matrix LS

The expression of the n2×n2 super-operator for the sys-
tem Liouvillian, which must act on the system density
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Fig. 4 Matrix LS (Eq. (29)). The Lij elements are the con-
cise notation for (LS(ADO))ij defined in Eq. (28). The empty
regions correspond to zero

matrix and on each auxiliary density operator (ADO),
is straightforward (⊗ denotes here the Kronecker prod-
uct):

LS(ADO) = −i(H ⊗ In − In ⊗ H)

= −i

⎛

⎜
⎜
⎝

0 − H12 H12 0
−H21 H11 − H22 0 H12

H21 0 H22 − H11 − H12

0 H21 − H21 0

⎞

⎟
⎟
⎠.

(28)

The expression of the super-operator LS is then

LS = LS(ADO) ⊗
K∏

k′′=1

InHEOM (29)

becoming LS = LS(ADO) ⊗ I2 ⊗ I2 in the example with
K = 2 and nHEOM = 2. The corresponding matrix
is given in Fig. 4, where we have adopted the concise
notation Lij = (LS(ADO))ij .

3.2.2 Damping Liouvillian Ldamp

The damping term is Ldamp =
∑K

k′=1(Lk′), where

Lk′ = iγk′In2 ⊗
K∏

k′′=1

Mk′′ (30)

with Mk′′ = InHEOM if k′′ 	= k′ and Mk′′, lm = (l − 1)
δl, m if k′′ = k′ (l, m ∈ [1, nHEOM]). It is diagonal in the
super-operator representation. For each decay mode k′,
all the elements of the matrices ρn are multiplied by

the decay rate γk′ times the occupation number nk′ . In
the two-level and two-decay case with nHEOM = nmax,
one has:

L1 = iγ1In2 ⊗ M ⊗ InNHEOM

= iγ1

⎛

⎜
⎜
⎝

1
1

1
1

⎞

⎟
⎟
⎠⊗

⎛

⎜
⎜
⎜
⎝

0
1

. . .
nmax

⎞

⎟
⎟
⎟
⎠

⊗

⎛

⎜
⎜
⎜
⎝

1
1

. . .
1

⎞

⎟
⎟
⎟
⎠

(31)

and

L2 = iγ2In2 ⊗ InNHEOM ⊗ M

= iγ2

⎛

⎜
⎜
⎝

1
1

1
1

⎞

⎟
⎟
⎠⊗

⎛

⎜
⎜
⎜
⎝

1
1

. . .
1

⎞

⎟
⎟
⎟
⎠

⊗

⎛

⎜
⎜
⎜
⎝

0
1

. . .
nmax

⎞

⎟
⎟
⎟
⎠

. (32)

When nmax = 1 and, thus, nNHEOM = 2, M =
(

0
1

)

and InNHEOM = I2. The corresponding Ldamp matrix
divided by i is given in Fig. 5.

3.2.3 Matrix L+

Each term Lk′+ addressing the upper level of the hier-
archy in Eqs. (23) or (24) corresponds to the super-
operator

Lk′+ = −i(Sk′ ⊗ In − In ⊗ Sk′) ⊗
K∏

k′′=1

M ′
k′′ ,

(33)

where M ′
k′′ = InHEOM if k′′ 	= k′ and M ′

k′′, lm = δl+1, m if
k′′ = k′ (l, m ∈ [1, nHEOM]). We consider the case with
a single bath with a system–bath coupling operator S
(Eq. (27)). Then, Sk′ is independent of k′. The factor
Q+ = (S⊗In −In ⊗S) in the two-state case with n = 2
is:

Q+ =

⎛

⎜
⎜
⎝

0 0 0 0
0 − 1 0 0
0 0 1 0
0 0 0 0

⎞

⎟
⎟
⎠. (34)
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Fig. 5 Color on line. Damping super-operator (L1 +L2)/i (Eqs. (31) and (32)). a Example of a two-state system with two
artificial decay modes and nmax = 1. L1 in blue and L2 in red. b Block related to a particular element ρα

n, where α = ij,
when nmax > 1. All the blocks (ij ) have the same structure

The two contributions Lk′+ for two decay modes and
nmax > 1 are:

L1+ = −iQ+ ⊗ M ′ ⊗ InNHEOM

= −i

⎛

⎜
⎜
⎝

0 0 0 0
0 − 1 0 0
0 0 1 0
0 0 0 0

⎞

⎟
⎟
⎠⊗

⎛

⎜
⎜
⎜
⎜
⎝

0 1

0
. . .
. . . 1

0

⎞

⎟
⎟
⎟
⎟
⎠

⊗

⎛

⎜
⎜
⎜
⎝

1
1

. . .
1

⎞

⎟
⎟
⎟
⎠

(35)

and

L2+ = −iQ+ ⊗ InNHEOM ⊗ M ′

= −i

⎛

⎜
⎜
⎝

0 0 0 0
0 − 1 0 0
0 0 1 0
0 0 0 0

⎞

⎟
⎟
⎠⊗

⎛

⎜
⎜
⎜
⎝

1
1

. . .
1

⎞

⎟
⎟
⎟
⎠

⊗

⎛

⎜
⎜
⎜
⎜
⎝

0 1

0
. . .
. . . 1

0

⎞

⎟
⎟
⎟
⎟
⎠

. (36)

When nmax = 1, InNHEOM = I2 and M ′ =
(

0 1
0 0

)

. The

corresponding matrix of the sum (L1+ + L2+)/(−i) is
displayed in Fig. 6. By comparing with Eq. (22), the

contribution to ρ̇00 of the term related to the upper
ADOs with only single excitation is −i[S, ρ10 + ρ01],
i.e., ρ̇12

00 → −ρ12
01 − ρ12

10, ρ̇21
00 → ρ21

01 + ρ21
10 and ρ̇11

00 =
ρ̇22
00 → 0. Matrix–vector products of lines 5 and 9 with

the column vector ρα
n in Fig. 6 provide these expressions

for the contribution to ρ̇12
00 and ρ̇21

00, respectively. The
results for ρ̇11

00 and ρ̇22
00 can be obtained in the same way

at lines 1 and 13.

Fig. 6 Matrix (L1+ + L2+)/(−i) in the case of a two-state
system with two artificial decay modes and nmax = 1. L1+

in blue and L2+ in red
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3.2.4 Matrix L−

The super-operator connecting the ADOs with a lower
layer in the hierarchy involves the operator:

Lk′− = −i(αk′, t/cSk′ ⊗ In − α̃k′, t/cIn ⊗ Sk′)

⊗
K∏

k′′=1

M ′′
k′′ , (37)

where M ′′
k′′ = InHEOM if k′′ 	= k′ and M ′′

k′′, lm = (l − 1)
δl−1, m if k′′ = k′ (l, m ∈ [1, nHEOM]). In the two-level
case with Sk′ independent of k′, for each mode, one has
the factor:

Q−k′ = αk′S ⊗ In − α̃k′In ⊗ S

= αk′

(
0 0
0 1

)

⊗
(

1 0
0 1

)

− α̃k′

(
1 0
0 1

)

⊗
(

0 0
0 1

)

=

⎛

⎜
⎜
⎝

0 0 0 0
0 −α̃k′ 0 0
0 0 αk′ 0
0 0 0 αk′ − α̃k′

⎞

⎟
⎟
⎠. (38)

The two contributions to the super-Liouvillian when
nmax > 1 are:

L1− = Q−1 ⊗ M ′′ ⊗ InHEOM

=

⎛

⎜
⎜
⎝

0 0 0 0
0 −α̃1 0 0
0 0 α1 0
0 0 0 α1 − α̃1

⎞

⎟
⎟
⎠⊗

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1 0

2
. . .
. . . . . .

nmax 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗

⎛

⎜
⎜
⎜
⎝

1
1

. . .
1

⎞

⎟
⎟
⎟
⎠

(39)

and

L2− = Q−2 ⊗ InHEOM ⊗ M ′′

=

⎛

⎜
⎜
⎝

0 0 0 0
0 −α̃2 0 0
0 0 α2 0
0 0 0 α2 − α̃2

⎞

⎟
⎟
⎠⊗

⎛

⎜
⎜
⎜
⎝

1
1

. . .
1

⎞

⎟
⎟
⎟
⎠

⊗

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1 0

2
. . .
. . . . . .

nmax 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (40)

Fig. 7 Matrix (L1− + L2−)/(−i) in the case of a two-state
system with two artificial decay modes and nmax = 1. L1+

in blue and L2+ in red

In the example of the two decay modes with nmax = 1,

one has M ′′ =
(

0 0
1 0

)

. The matrices for L1− and L2−

are given in Fig. 7.

3.3 Dynamics with tensor-train format

Dynamics is driven by solving

˙̄ρ(t) = Lρ̄(t), (41)

where ρ̄ is the full TT-converted vector of the ele-
ments of all the ADOs and L is the super-operator
described in Sect. 3.2. We use the projector-splitting
KSL scheme [9, 19, 120, 121] implemented in the ttpy
package (tt.ksl.ksl) [122]. The method is based on
the dynamical low-rank approximation which is equiv-
alent to the Dirac–Frenkel time-dependent variational
principle used in MCTDH. It consists in using an
approximate low-rank tensor with fixed ranks instead
of getting a solution with a high rank tensor and then
truncate it with singular value decomposition (SVD).
To comply with this goal, the derivative of the approx-
imate low-rank tensor is obtained by orthogonally pro-
jecting the derivative of the tensor on the tangent space
of the approximate low-rank tensor at its current posi-
tion. Time integration is then obtained by a splitting
scheme (second order in this work) of the projector (see
Refs. [9, 19, 120, 121] for more details). An adaptative
rank may be necessary during the propagation as pro-
posed in Refs. [123, 124]. We have adopted a mixed
strategy. The standard Runge–Kutta integrator (writ-
ten with TT algebra available with the ttpy package)
is run after some time steps to allow the increase of the
ranks during the propagation. In the application, we
use a Runge–Kutta run after 10 timesteps.
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4 Illustrative applications

We give three examples for which dynamics is driven by
the TT method. In the first two cases, the spectral den-
sity is continuous and is an Ohmic two-pole Lorentzian
function (Eq. (9)) leading to two artificial bath modes.
The third application uses undamped discrete modes.

4.1 Population-to-coherence transfer via a bath

The zero-order model and the eigenstates are schema-
tized in Fig. 8. This model was introduced to analyze
one of the first applications of an experimental ‘quan-
tum simulator’ for molecular quantum dynamics [125].
As we show, using a circuit of qubits to represent a
network of chromophores gives access to strongly non-
Markovian regimes of open dynamics, including situa-
tions in which strong dissipation actually induces coher-
ent dynamics. Indeed, one of the original motivations
for the experiment and analysis of Ref. [126] was to
explore the existence, robustness and uses of coherent
transport in photosynthetic light-harvesting proteins,
which are described by analogous models. However,
they are much harder to control compared to supercon-
ducting circuits. The Hamiltonian of the active subsys-
tem is:

HS(t) = Hs + Hren

−
3∑

n=0

3∑

m �=n=0

μnm|n〉〈m|E(t) (42)

with

Hs =
3∑

n=0

εn|n〉〈n|+
3∑

n=0

3∑

m �=n=0

Hnm|n〉〈m|, (43)

where Hren is the renormalization term given below and
μij is the dipolar coupling. The ground state is coupled
to the excited states only radiatively, i.e., H0j = 0 for

Fig. 8 Schematic representation of the energy levels, the
interstate couplings Hij , the dipolar couplings μij , and the
system–bath couplings of a device in which a long-lasting
coherence in a dark doublet may be created by interaction
with a bath after excitation of a bright state. a zero-order
basis, b eigenstates

j 	= 0 and only μ02 and μ03 induce the radiative cou-
pling. Two degenerate excited bright states (|2〉 and |3〉)
strongly interact by interstate coupling H23 and state
|2〉 is weakly coupled to a dark lower state |1〉 and to a
tuning bath that makes fluctuate the energy. The strong
H23 coupling leads to eigenstates that are mainly the
bright in phase and the dark out of phase superpositions
denoted |B〉 and |D+〉, respectively. Both eigenstates
|D+〉 and |D−〉 form a dark doublet. Their dipole tran-
sition moments μ0D± are very weak, being two orders of
magnitude smaller than the transition moment μ0B to
the |B〉 state. Spontaneous radiative decay is not taken
into account in the simulation.

The bath is coupled to state |2〉 only. The correspond-
ing system–bath operator takes the form:

S =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞

⎟
⎟
⎠. (44)

The spectral density is highly structured and peaks
nearly at the mean (ΔB−D = 〈B|Hs|B〉 − 〈D|Hs|D〉)
transition energy, 〈D|Hs|D〉 being the average energy
of states 〈D+|Hs|D+〉 and 〈D−|Hs|D−〉. It is a sin-
gle Ohmic Lorentzian (Eq. (9)) with parameters p =
2.0 × 10−12a.u., Ω = 4.5 × 10−3a.u. and Γ = 4.0 ×
10−4a.u. It is represented with the correlation func-
tion at T = 298 K in Fig. 9. The renormalization
energy is λ = (1/π)

∫∞
0

dωJ(ω)/ω. The correspond-
ing renormalization term is Hren = λ|2〉〈2|. The sys-
tem–bath coupling is weak. It is estimated by the ratio
η = λ/Δ(|B〉−|D〉) where Δ(|B〉−|D〉) is the energy gap

Fig. 9 a Spectral density of the model presented in Fig. 8
to illustrate the population-to-coherence transfer. The spec-
tral density maximum is close to the mean BD energy gap;
b corresponding normalized correlation function C (t)/C (0)
(Eq. (4)) at T = 298 K with real part (dashed line), imagi-
nary part (dots) and modulus (solid line)
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Fig. 10 Upper panels: populations in the eigenstates
B , D− and D+, a ideal preparation in the bright state
B , b excitation of the B state from the ground state by
a π pulse of 24 fs. Lower panels: modulus of the coherence
(ρS)D+D− , c ideal preparation in the bright state, d exci-
tation by a π pulse

corresponding here to the cutoff of the spectral den-
sity. It is a perturbative regime; however, the correla-
tion time is long (about 250 fs) due to the peaked shape
of the spectral density. It is longer than the Rabi period
of the (|B〉 − |D〉) transition that is 34 fs. Dynamics is
then non-Markovian with nHEOM = 5.

In the eigenstate representation (Fig. 8b), the S oper-
ator becomes:

Seigen =

⎛

⎜
⎜
⎝

0 0 0 0
0 0.26 0.25 0.36
0 0.25 0.24 0.34
0 0.36 0.34 0.50

⎞

⎟
⎟
⎠. (45)

In this basis set, the bath is coupled diagonally and
off-diagonally to the system. This is an interesting
device leading to a population-to-coherence transfer
from the bright |B〉 state to the dark doublet. This
process requires exact non-Markovian dynamics tak-
ing terms that are neglected in the secular approxi-
mation of a Redfield treatment [126, 127]. From the
analysis in Ref. [126], we choose a coupling strength
η = 0.013 relevant to illustrate an efficient population-
to-coherence process. The populations in the eigen-
states and the modulus of the coherence (ρS)D+D−
between the two dark states are displayed in Fig. 10a
and c when the initial state is the bright state |B〉.
In this ideal case, the population-to-coherence is com-
plete in 250 fs. The coherence is long-lasting and slowly
decays in about 25 ps. Figure 10b and d compare this
ideal preparation with the results obtained by an exci-
tation from the ground state by a laser field of 24 fs.
To respect the condition that the area of the oscillat-
ing field must be equal to zero [128, 129], the field is
then given by E(t) = −∂A(t)

∂t with the vector potential

A(t) =
(E0

ω

)
sin2
(

π(t−ti)
τ

)
sin(ω(t − ti)), where ti is the

initial time of the pulse, ti = 0 here, τ is the pulse
duration and E0 is the field maximum amplitude. The

Fig. 11 Excitation of the bright state B by a π pulse of dif-
ferent durations. a Population in the ground state, b modu-
lus of the coherence (ρS)D+D− generated in the dark doublet

carrier frequency is in resonance with the |0〉 → |B〉
transition. When the number of cycles is large for a
pulse duration longer than about 20 fs, the expression
becomes similar to a pulse with a sine square envelope
E(t) = E0sin2

(
πt
τ

)
cos(ω0Bt). We use this expression to

estimate E0 providing a π pulse for which the integral
of the Rabi frequency Ω(t) = E0sin2

(
πt
τ

)
μ0B/� is equal

to π [130, 131]. μ0B is the transition dipole. Then,
E0 = 2π/(μ0Bτ). This field would induce a complete
transfer towards the bright state in the absence of cou-
pling to the bath. A slight modification of the amplitude
should be necessary for short pulses with few cycles for
which the envelope slightly differs from a sine square.

Figure 11 shows the influence of the pulse duration
τ on the coherence generation in the dark doublet. The
result is close to the ideal case for pulses with τ in the
range 20–50 fs. The decrease of the yield comes from
the environment that makes fluctuate the energies.

Simulations are made with a timestep of 0.24 fs and
the maximum rank is 10 with ε = 10−15. The tempera-
ture is 298 K. No Matsubara term is needed due to the
high temperature and the narrow spectral density. No
significant change has been observed when carrying out
this simulation with 3 additional Matsubara terms.

4.2 Simulation of absorption and emission spectra

HEOM have already been used to simulate station-
ary absorption σabs and emission σem spectra [23, 24,
132–135]. They are computed by the linear response
theory as:

σabs(ω) =Re
∫ ∞

0

dteiωtTrS

[
ρ†μ−(t)ρμ−(0)

]
, (46)

σem(ω) =Re
∫ ∞

0

dteiωtTrS

[
ρ†μ+(t)ρμ+(teq)

]
,

(47)
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where μ− =
∑

k �=0 μk|0〉〈k| and μ+ =
∑

k �=0 μk|k〉〈0|.
The initial conditions for the absorption is ρμ−(0) =
μ−ρS(0) where ρS(0) is the reduced density matrix of
the system in its ground state and all the ADOs are
zero. The stationary emission is computed at the ther-
mal equilibrium of the emitting state. The first strategy
is to propagate an arbitrary system density matrix with
population in the excited states towards the thermally
equilibrated state, which is independent of the chosen
initial state [70, 132, 135]. Then, the initial conditions
for the emission is ρμ+(teq) = μ+ρS(teq) where ρS(teq)
is the reduced system density matrix at equilibrium and
the ADOs take their asymptotic values at time teq. teq is
estimated by verifying the population and the average
value of the collective bath mode. Another possibility
to reach the equilibrium involves propagation with an
imaginary time [69, 71, 72].

Figure 12 schematizes the model. According to the
value of the interstate coupling H12, we consider a sin-
gle bright state when H12 = 0 or a two-excited-state
case with a nonadiabatic coupling with the dark state
when H12 	= 0. The spectra are computed by mak-
ing the electronic-nuclear partition. The system is com-
posed of two or three electronic states corresponding to
vertical energies at the ground state equilibrium geome-
try. The bath consists in all the nuclear intermolecular
and solvent vibrators. Within this partition, the sys-
tem–bath couplings cj = ω2

j Δeq, j depend on the dif-
ference Δqe

between the equilibrium position of all the
vibrational modes in the ground and excited state. In
our example, only state |B〉 is displaced and, therefore,
coupled to the bath. In the first example (H12 = 0), the
system–bath coupling operator is that given in Eq. (27).

Fig. 12 Schematic representation of the diabatic potential
energy surface of the excited states used in the simulation of
absorption and emission spectra. q is a bath nuclear coor-
dinate and Δqe is the difference of equilibrium positions.
The bath is at equilibrium in the ground state and in the
dark state |D〉 since the equilibrium positions are assumed
to be the same. The electronic energies of the system cor-
respond to Franck–Condon vertical energies represented by
full circles. λ is the renormalization energy. Two cases are
simulated, the first one with H12 = 0 (the |D〉 state is spec-
tator) and the second one with H12 �= 0

In the second case, in the diabatic representation, it
becomes

S =

⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠. (48)

We intend to illustrate the strong influence of the
spectral density on the Stokes shift by referring to
Mukamel’s κ parameter [76]

κ =
Λ
Δ

. (49)

Λ corresponds to the cutoff of the spectral density.
Λ−1 is an estimation of the bath fluctuation timescale.
Δ2 = C(t = 0) is related to the initial value of the bath
correlation function, which is a real value obtained from
Eq. (7). Δ is an estimation of the amplitude of the fluc-
tuations.

Figure 13 displays the four spectral densities adopted
in the simulation and the corresponding κ.

(i) The case with a single excited bright state is the
basic example for which the behavior is well predicted
by the κ value.

When κ > 1, the bath dynamics become fast and
this situation is known as a homogeneous dephasing
case leading to Lorentzian profiles for linear absorp-
tion or relaxed emission spectra and no Stokes shift.
On the contrary, when κ < 1, bath dynamics become
slow, this is the static limit or inhomogeneous case for
which the profiles become Gaussian and the maximum
Stokes shift is given by 2λ. The four simulations are
presented in Fig. 14. One could observe the expected
behavior passing from no Stokes shift when κ = 1.45
to a large shift when κ = 0.21 for which λ = 0.52

Fig. 13 Spectral densities used in the simulation of the
absorption and emission spectra. κ is defined in Eq. (49).
The Δ parameter is given by the initial value of the corre-
lation function (Eq. (4)). The cutoff Λ is estimated by the
energy at the maximum. The renormalization energy λ for
decreasing values of κ are 0.034 eV, 0.17 eV, 0.34 eV, and
0.52 eV
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Fig. 14 Normalized absorption (solid lines) and emission
(dashed lines) spectra for the case with a single bright state
(H12 = 0) represented in Fig. 12. The panels correspond to
the different spectral densities given in Fig. 13. κ is defined
in Eq. (49)

eV. In this example, the relaxation is simply the evo-
lution towards the thermal mixture at the new equi-
librium geometry of the excited bright state. This sta-
tionary state is obtained in about 150 fs. The ADOs are
taken after a propagation of 180 fs. Generally, the com-
putation of the emission spectrum is more demanding
than for the absorption. Convergence of the correla-
tion function requires higher HEOM level (up to level
55 for κ = 0.21). Propagation with the TT method
has required a small time step of 0.012 fs. The max-
imum tensor rank remains below 10 with ε = 10−20.
The spectra are computed at 298 K. We have verified
for the case with κ = 0.21 that no Matsubara term is
necessary.

(ii) In the second example presented in Fig. 15,
dynamics is more complicated since the emission occurs
from the eigen vibronic states having a component on
the bright state. The propagation duration to reach
the asymptotic populations and prepare the ADOs
depends on λ. It is 500 or 600 fs for the different
examples. The absorption spectrum is more affected
by the nonadiabatic interaction. For the emission spec-
trum, one recovers the shape corresponding to the
relaxed bright state in this example since the second
excited state is assumed to be dark. The evolution
of the Stokes shift with respect to the κ parameter
is the same and corresponds to the expected behav-
ior.

These results highlight that tools like HEOM can
now predict optical spectra with great precision, given
the spectral density. Therefore, attention must now be
given to extracting high-quality spectral densities to
match experimental results, particularly in condensed
phases where there can be very distinct timescales in
the environment, i.e., fast intramolecular motions and
slow solvent/lattice/protein reorganization. The impor-
tance of including the latter and a way of obtaining
them from first principles was given in Ref. [15].

Fig. 15 Normalized absorption (solid lines) and emission
(dashed lines) spectra for the case with a bright state cou-
pled to a dark state (H12 �= 0) represented in Fig. 12. The
panels correspond to the different spectral densities given in
Fig. 13. κ is defined in Eq. (49)

4.3 Excitation transfer with discrete bath modes

In this example, the bath is formed by discrete
undamped vibrational modes. We revisit the excitation
transfer in a dimer oligothiophene (OT4)-fullerene(C60)
investigated by I. Burghardt and coworkers [67, 93,
95, 136]. The excited states may be schematized as
in Fig. 12 with D being the excitonic state XT and
B becoming the charge transfer (CT) state. We con-
sider the parameters for an inter-fragment distance
of 0.35 nm [67]. The energy gap is 0.07 eV and the
electronic coupling is 0.007 eV. The continuous spec-
tral density has been obtained from the difference of
the equilibrium position Δqeq of the fragment normal
modes [136]. The reference position of the equilibrated
bath is taken at the middle point Δqeq/2 so that the
coupling operator is

S =
(

−0.5 0
0 0.5

)

. (50)

The smooth spectral density [93] is fitted by five two-
pole Lorentzians (Eq. (9)) and displayed in Fig. 16a.
The parameters are given in the supplementary mate-
rial of Ref. [67]. This leads to K = 10 artificial decay
modes without Matsubara terms at 298 K. We have
used the discretization procedure of Ref. [137] provid-
ing unequally spaced modes that correspond to equal
fractions of the reorganization energy. The discrete
spectral density at the Ndisc = 40 selected points k
(πc2

k/(2ωkΔ(ω)), where Δ(ω) is the local state density)
is shown in Fig. 16b. Since two baths are involved in
the discrete procedure, this corresponds to K = 80
modes. Figure 16c gives the occupation probability of
the XT and CT states when the initial state is XT.
The dashed lines are obtained with the continuous spec-
tral density and the five artificial modes, at level 5 of
the hierarchy, with the tolerance parameter ε = 10−10

and the maximum rank (rmax) is 20 (see Appendix).
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Fig. 16 Excitation energy transfer dynamics with a con-
tinuous or discretized spectral density by the TT imple-
mentation. a Continuous spectral density fitted by five two-
pole Lorentzian functions (Eq. (9)), see Refs. [67, 93], b dis-
cretization in Ndisc = 40 modes by the Makri procedure (see
Ref. [137]) leading to K = 2Ndisc decay modes, c population
in the XT (black) and CT (red) states when the initial state
is XT. Dashed lines: TT implementation with the continu-
ous spectral density leading to K = 10 decay modes without
Matsubara terms at 298 K; solid lines: TT implementation
with K = 80 discrete modes

This example requires only 3003 matrices and the TT
formulation is not more advantageous than the stan-
dard one. However, the discrete case may emphasize
the utility of the TT propagation when compared with
a standard treatment. The corresponding population
are drawn in solid lines in Fig. 16c. We may estimate
the total number of elements in the full matrix array.
One has n = 2, K = 80, L = 5 leading to Nstandard =
n2(K + L)! /(K!L! ) = 131,206,068 elements. This is
a computationally heavy simulation (≈ 21 GB for the
density matrix only) and intractable with our current
Fortran implementation. In the TT implementation,
one has n = 2, K = 80, L = 5 and rmax = 80. The num-
ber of stored elements might reach a maximum value of
NTT = (n2 +L)∗rmax +rmax

2 ∗(K −1)∗L = 2,528,720.
The storage is obviously more attractive (≈ 400 MB).
The tolerance is ε = 10−8. The norm is well conserved
up to about 250 fs. The result is promising but it will be
necessary to improve the adaptation of the maximum
rank to further extend the performance [33, 123].

5 Conclusion

We have given a detailed description of the TT formu-
lation of HEOM and how it is implemented which we
hope will be a useful guide to newcomers to the field.
This is an exciting development, linking the widely used
HEOM method with rapidly developing advances in

tensor networks across physics and theoretical chem-
istry. One could connect to them the recent explo-
sion of physical science applications of machine learn-
ing, for example: tensor network simulation of multi-
environmental open quantum dynamics via machine
learning [138, 139] and entanglement renormalization
[140].

We have shown three examples where the TT method
allows us to obtain highly accurate results for com-
plex phenomena, such as ‘noisy’ generation of coher-
ences (population to coherence transfer) and the dra-
matic impact of bath relaxation times on optical spec-
tra. The latter is important, as Stokes shifts are often
used as a direct measure of system–bath coupling. This
is clearly only one part of the story, as the relaxation
time is also important. Hence, suitable techniques that
can handle multiple timescales (long and short-lived
ADOs) are essential. These effects described above will
be even more important in larger multistate systems.
The third example simulates an ultrafast excitation
transfer using only undamped decay modes. This exam-
ple illustrates the efficiency of the TT formulation when
compared to the standard method, which would involve
a huge number of matrices. All the applications involve
non-Markovian dynamics, either due to long correlation
times or high level of hierarchy.

It would be interesting to consider extensions to
time-dependent spectroscopies, 2D spectroscopies [24,
56–58], and optical control. Adaptation of the TT for-
mulation for optimal control has already been given in
Ref. [50]. Another important prospect is the consider-
ation of non-harmonic environments, for instance by
including some modes in the active system [43, 45, 67,
68] and the treatment of fermionic baths [55, 81].
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Appendix: Numerical implementation
of HEOM with ttpy

Most of the TT algebra is carried out by the ttpy pack-
age developed by Oseledets and coworkers [122]. In this
appendix, we show a minimal code to build the system
Liouvillian and time-integrate a given system density
matrix with initial system–bath factorization in TT for-
mat with Python3, Numpy and ttpy packages.

The system Liouvillian is defined as LS(ADO) =
−i(H ⊗ In − In ⊗ H) where H is the system Hamil-
tonian, In the identity matrix with n the number of
system states. Thus, LS(ADO) is a n2 ×n2 matrix which
can be built from standard numpy functions (np.eye
returns the identity matrix and np.kron the Kronecker
product of both matrices):

where ids is the identity matrix of size n×n and j the
imaginary unit. To convert this numpy array to a TT
format, tt.matrix routine performs an approximation
of LS(ADO) for a maximal rank (rmax) and an accuracy
eps:

where Ls is the system Liouvillian super-operator. At
this point, we are still only dealing with a representa-
tion of an array of n2 × n2 dimensions. The HEOM
super-operator LS which spans over the whole Liou-
ville space is defined as LS = LS(ADO)⊗

∏K
k′′=1 InHEOM .

To avoid memory issues due to the high dimensionality
of the array, one must work with the Kronecker prod-
ucts (tt.kron) of ttpy packages instead of the one of
numpy (np.kron). Indeed, numpy will build the full
tensor which can be very large and thus might suffer
from the dimensionality curse. To carry out this task, a
single loop iterates over the number of artificial decay
modes K with successive Kronecker products:

The total Liouvillian super-operator L is a sum of
several other super-operators, i.e., Lk′ , Lk′+, Lk′−

(see Eq. (26)). Addition can be performed directly with
the usual algebraic symbol (+) on TT objects. The
ttpy library carries out automatically the correct ten-
sor operations. However, tensor ranks increase at each
iteration. Thus, rounding operations are regularly per-
formed to reduce the rank for a given accuracy and
maximum rank with the following command:

where L is the total HEOM Liouvillian super-
operator.
The initial vectorized density matrix is defined directly
from its cores. The first core is filled with the initial sys-
tem density matrix. As all auxiliary density matrices
are vectors of zeros when assuming system–bath fac-
torization all the other cores are vectors of dimensions
nHEOM with only the first index equal to 1.

For a given system density matrix rho defined as a
numpy array and r the initial core rank (equal to 1) in
this example, we compute rho the initial density matrix
in TT format with the following algorithm:

Time integration is performed with the KSL second-
order splitting algorithm [120]. For each time step dt,
the density matrix in TT format is updated using the
function ksl implemented in tt.ksl routines:

By iterating over the desired number of timesteps, we
compute the full density matrix at time t . To extract
the system density matrix, projection techniques (by
expressing projectors on the full Liouville space in the
TT format) or core manipulations can be used.
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