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Abstract A chaotic analysis of thermal convection for non-Newtonian fluid is investigated by employing
fractal–fractional differential operators. The most attractive novelty of this investigation is to retrieve the
chaotic behavior of non-Newtonian fluid saturated by porosity for the chaotic behavior of Newtonian fluid
saturated by porosity. The mathematical modeling of governing equations of non-Newtonian fluid satu-
rated by porosity is constructed in terms of the Caputo–Fabrizio fractal–fractional differential operator
subject to the appropriate imposed conditions. For the sake of mathematical analysis, chaotic convection
problem of non-Newtonian fluid is explored for dissipation, equilibrium points and criteria of stability.
The numerical simulations through Adam–Bashforth method in connection with Caputo–Fabrizio frac-
tal–fractional differential operator are performed for two cases: (1) chaotic convection of non-Newtonian
fluid in presence of porosity and (2) chaotic convection of Newtonian fluid in presence of porosity. Finally,
the phase portraits have been depicted to identify the similarities and differences among non-Newtonian
and Newtonian fluids in presence of porosity.

1 Introduction

Flow of non-Newtonian (non-linear) fluids occurs not
only in nature but also various thermal-based indus-
tries; in general, these fluids exhibit certain distinct
features, for instance, time dependent response (his-
tory effects), viscoelasticity (creep or relaxation), shear-
thinning or shear-thickening aspects of the fluid (shear-
rate dependency of the viscosity), die-swell and rod-
climbing (normal stress effects), viscoplasticity (yield
stress effects) and several others [1–9]. Massoudi and
Christie [10] presented the first study on the non-
Newtonian nature of the fluid for the skin friction and
heat transfer in which they focused natural convec-
tion of a homogeneous incompressible fluid of grade
three between two infinite concentric vertical cylinders.
They investigated the velocity and temperature profiles
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through numerical experimentation. Guha and Prad-
han [11] explored the effective role of free convection
flow of non-Newtonian power-law fluids over a hor-
izontal plate on the basis of magnetohydrodynamics
and constant heat flux. Their focused study was Hart-
mann number. They concluded that surface temper-
ature and thermal boundary layer thickness decreases
subject to the increment in Hartmann number. The flow
of non-Newtonian fluids along an isothermal horizon-
tal circular cylinder by means of mathematical mod-
eling of the boundary-layer equations is studied by
Bhowmick et al. [12]. They applied numerical tech-
nique, namely, implicit finite difference method with
double sweep technique and emphasized their results
for shear-thinning as well as shear thickening non-
Newtonian fluids. Abro et al. [13] investigated the com-
bined effects of Newtonian and non-Newtonian flu-
ids through analytical study using Fourier analysis on
the Burger fluid. They retrieved few types of non-
Newtonian fluids so called second grade, Maxwell and
Oldroyd-B fluids as the limitations of the problem.
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Mohsan et al. [14] presented the viscoelastic poly-
dimethylsiloxane non-Newtonian nanofluid on the basis
of flow of natural convection in presence of nanoparti-
cles. The nanoparticles showed high performance for
temperature profile and the rate of heat transfer and
proved to be efficacious in comparison tiny size particles
to large particles. The studies on non-Newtonian fluids
can be continued but we end here by adding recent
attempts for different types of non-Newtonian fluids
[15–25] therein. As this manuscript has core objective
to analyze chaotic analysis of thermal convection prob-
lem based on non-Newtonian fluid saturated by poros-
ity by means of Caputo–Fabrizio fractal–fractional dif-
ferential operator in Caputo sense; this is because frac-
tional order models have the potential to capture non-
local relationships in time and space with the memory
kernels of the exponential, power and Mittag–Leffler
type laws even to handle phenomena with high com-
plexities [26–29]. Kashif et al. [30] studied the free con-
vection flow of nanofluid via new fractional derivatives
within magnetite nanoparticles in which A-Band C–F
fractional operators have been compared for the heat
transfer in presence and absence of magnetic effects.
Atangana and Goufo in [31], presented analysis of non-
linear partial differential equation through numerical
simulations in which Caputo–Fabrizio fractional deriva-
tive is invoked on garden equation. They investigated
on existence and uniqueness of the exact solution using
the Laplace iterative methods. Very interested work has
been presented for the extension of fractional derivative
so called fractal–fractional derivative by an African pro-
fessor of University of the Free, South Africa [32] in
which fractional derivative is more generalized for frac-
tal–fractional derivatives. Keeping the importance of
newly presented fractal–fractional derivatives, Kashif
and Atangana [33] applied the new concept of frac-
tal–fractional derivatives on the convective fluid motion
in rotating cavity. The rotating cavity has been ana-
lyzed by means of three types of fractal–fractional
derivatives so called Atangana–Baleanu, Caputo and
Caputo–Fabrizio. Ilknur [34] employed the concept of
fractal–fractional derivatives on heat transfer problem,
where analytical study has been emphasized by com-
paring the Atangana–Baleanu and Caputo–Fabrizio
fractal–fractional derivatives. The studies on frac-
tal–fractional differential operators and fractional dif-
ferential operators can be continued but we end here
in terms of categorical sciences as epidemiological mod-
els [35–37], circuits and electrical transmissions [38–45],
nanofluid and fluids [46–50] and multi-disciplinary
[51–55] therein. Motivating by discussion, the most
attractive novelty of this investigation is to retrieve
the chaotic behavior of non-Newtonian fluid saturated
by porosity for the chaotic behavior Newtonian fluid
saturated by porosity. The mathematical modeling of
governing equations of non-Newtonian fluid saturated
by porosity is constructed in terms of Caputo–Fabrizio
fractal–fractional differential operator subject to the
appropriate imposed conditions. For the sake of math-
ematical analysis, chaotic convection problem of non-
Newtonian fluid is explored for dissipation, equilibrium

points and criteria of stability. The numerical simu-
lations through Adam–Bashforth method in connec-
tion with Caputo–Fabrizio fractal–fractional differen-
tial operator are performed for two cases: (1) chaotic
convection of non-Newtonian fluid in presence of poros-
ity and (2) chaotic convection of Newtonian fluid in
presence of porosity. Finally, the phase portraits have
been depicted to identify the similarities and differences
among non-Newtonian and Newtonian fluids in pres-
ence of porosity.

2 Mathematical modeling for convection
of non-Newtonian fluid

We assume non-Newtonian fluid (viscoelastic fluids) so
called Oldroydian fluid saturated porous medium of
height d and width l that is cooled from above and
heated from below. The upper surface temperature Tu

and lower surface temperature Tl, respectively, in which
vertical walls are adiabatic. We assume that the convec-
tive fluid and porous medium are in local thermody-
namic equilibrium; due to this fact Boussinesq approx-
imation is applied. The governing equations for conti-
nuity, state, two-phase temperatures, and momentum,
respectively, are described as

∇ · q = 0, (1)

ρ = ρR − βρRT − ρRβTR, (2)

∂T

∂t
− ∇2T

α
q · ∇T = 0, (3)

K

μ

(
∇P − ρg +

ρR
ε

∂q

∂t

)
=

(
λ2

∂
∂t + 1

)
(
λ1

∂
∂t + 1

)q. (4)

To analyze the sustainable behavior of fluids, we
employ the dimensionless quantities, transformations
and also introducing the stream functions in the gov-
erning Eqs. (1–4) for continuity, state, two-phase tem-
peratures and momentum, as defined below:

(5)

v =
∂ψ

∂x
, u = −∂ψ

∂y
, (u∗, v∗) =

kε

dρc
, (x∗, y∗)

= d (x, y) , t∗ =
td2

α
, T = Tu + θTl − θTu,

Also, we eliminate pressure from the momentum
equation, we arrive at the following suitable expressions
as

1
Ra

{(
λ2

∂

∂t
+ 1

)(
∂2ψ

∂y2
+

∂2ψ

∂x2

)

+
∂

∂t

(
λ1

∂

∂t
+ 1

)(
∂2ψ

∂y2
+

∂2ψ

∂x2

)
(PrD)−1

}

=
∂θ

∂x

(
λ1

∂

∂t
+ 1

)
, (6)
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∂2ψ

∂y2
+

∂2ψ

∂y∂x
+

∂2ψ

∂x2
− ∂2ψ

∂x∂y
=

∂θ

∂x
(7)

where the letting parameters for Eqs. (6–7) are λ2 =
kλ2
d2 represents retardation time, λ1 = kλ1

d2 is relax-
ation time, Pr = μ

kρ denotes Prandtl number, PrD =

Da(εPr)−1 signifies Darcy–Prandtl number, Da = k
d2

is Darcy number and Ra = (Tl−Tu)gKdβρ0
kμε suggests

Darcy–Rayleigh number. Now, applying the concept of
truncated Galerkin expansion on Eqs. (6–7) and then
an infinite Fourier series with the series coefficients
dependent on time alone is considered. Meanwhile, the
temperature distribution and stream function can be
obtained as

(8)θ + y = 1 + B02sin (2πy) + B11sin (πy) cos
(πx

L

)
,

ψ = A11sin(πy)sin
(πx

L

)
, (9)

employing Eqs. (8–9) into Eqs. (6–7) and then solv-
ing their integration with respect to spatial domain, we
arrive at the three differential equations for the time
evolution described as below:

A11χπ3

B11α3RaPrD

{
α3PrD

π2

(
α2α1

∂

∂τ
+ 1

)

+
d
dτ

(
α1

∂

∂τ
+ 1

)}
=

(
α1

∂

∂τ
+ 1

)
, (10)

dB11

dτ
+ B11 =

(
πB02A11 + A11

χπ

)
, (11)

dB02

dτ
+

B11A11

2χ
+ 4B02α3 = 0. (12)

To rescale the time among Eqs. (10–12), we introduce
the rheological quantities as τ = π2+(πL)2

L2 , α3 = L2

1+L2 ,

χ = 1+L2

L , α5 = Ra
(πχ)2

and α4 = γPrD

π2 . In addition,
one can derive the set of non-linear governing ordi-
nary differential equations by rescaling the amplitudes
as (p1, p2, p3) =

(
2−1A11χ−1
√
2α5χ−2χ

, 2−1πB11α5√
2α5χ−2χ

, πB02α5
1−α5

)
, we

get:

dp1(t)
dt = p4 (t) ,

dp2(t)
dt = α5p1 (t) − p2 (t) − α5p1(t)p3(t),

dp3(t)
dt = 4α5 (p1 (t) p2 (t) − p3 (t)) ,

dp4(t)
dt = α4

{(
α5 − α−1

1

)
p1 (t) +

(
α−1
1 − 1

)
p2 (t)

− (α5 − 1) p1 (t) p3 (t) − (α2 + α−1
1 α−1

4 )p4 (t)
}

,
(13)

Subject to initial conditions as

p1(0) = p2(0) = p3(0) = p4(0) = 0.9. (14)

The set of non-linear governing ordinary differential
equations characterized by the dynamical system (13)

is for non-Newtonian fluid (viscoelastic fluids). Mean-
while, the set of non-linear governing ordinary differen-
tial equations characterized by the dynamical system
(13) contains a special case for the Newtonian fluid
when α4 → 0. The set of non-linear governing ordinary
differential equations characterized by the dynamical
system (13) for non-Newtonian fluid can be retrieved
as written below:

dp1(t)
dt = p4(t),

dp2(t)
dt = α5p1(t) − p2(t) − α5p1(t)p3(t),

dp3(t)
dt = 4α5(p1(t)p2(t) − p3(t)),

dp4(t)
dt = 0,

(15)

The set of non-linear governing ordinary differential
equations characterized by the dynamical system (15)
is for Newtonian fluid subject to same initial condi-
tions described in Eq. (14). In addition, the nonlinear
mathematical model say (13) for non-Newtonian fluid
can be fractal–fractionalized for Caputo–Fabrizio frac-
tal–fractional differential operator in the Caputo sense
as developed in the following equation:

Dφ1,φ2
t p1(t) = p4 (t) ,

Dφ1,φ2
t p2(t) = α5p1 (t) − p2 (t) − α5p1(t)p3(t),

Dφ1,φ2
t p3 (t) = 4α5 (p1 (t) p2 (t) − p3 (t)) ,

Dφ1,φ2
t p4 (t) = α4

{(
α5 − α−1

1

)
p1 (t)

+
(
α−1
1 − 1

)
p2 (t)

− (α5 − 1) p1 (t) p3 (t) − (α2 + α−1
1 α−1

4 )p4 (t)
}

.

(16)

Equation (16) is set by replacing the classical deriva-
tive into the non-integer form by newly proposed frac-
tal–fractional derivatives of Caputo–Fabrizio that is
defined in Eqs. (17–18) for fractal–fractional differential
and integral operators, respectively, under the suitable
limitation 0 < φ1, φ2 < 1 [32]

Dφ1,φ2
t p (t)

=

t∫
0

M (φ1)
d

dtφ2
exp

{−φ1 (t − r)
1 − φ1

}
(1 − φ1)

−1
p (r) dr.

(17)

(18)

Iφ1,φ2
t p (t) =

t∫
0

φ1φ2M (φ1) qφ1−1p (r) dr

+
p (t) rφ2−1 (1 − φ1) φ1

M (φ1)
.
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3 Dissipation, point of equilibrium
and criteria of stability for nonlinear
mathematical model of non-Newtonian
fluid

3.1 Dissipation

Dissipation signifies a physical process in which energy
becomes irrecoverable. The phenomenon of dissipation
discloses the increase and decrease in volume with
respect to time. To analyze these aspects, we consider
the fractal-fractionalized dynamical system (16) is dis-
sipative, since

∇V = ∂ ˙p1(t)
∂p1(t)

+ ∂ ˙p2(t)
∂p2(t)

+ ∂ ˙p3(t)
∂p3(t)

+ ∂ ˙p4(t)
∂p4(t)

,
= −(

α−1
1 + α2α4 + 4α3 + 1

)
,

(19)

For the sake of the endpoints of the corresponding
trajectories, a set of initial points in the phase space
can occupy a region and the volume can be filled as

V (τ) = V (0)e−(α−1
1 +α2α4+4α3+1)τ . (20)

Thus, Eq. (20) indicates that the volume decreases
monotonically with time.

3.2 Equilibrium points

The stare of art of equilibrium points of non-linear
system is at which the dynamical system will stay if
it starts from that point. We can have the equilib-
rium points of fractal–fractional system of equations
say (16) by the letting Dφ1,φ2

t p1(t) = Dφ1,φ2
t p2(t) =

Dφ1,φ2
t p3(t) = Dφ1,φ2

t p4(t) = 0, we get:

p4 (t) = 0,
α5p1 (t) − p2 (t) − α5p1 (t) p3 (t) = 0,
4α5 (p1 (t) p2 (t) − p3 (t)) = 0,
α4

{(
α5 − α−1

1

)
p1 (t) +

(
α−1
1 − 1

)
p2 (t)

− (α5 − 1) p1 (t) p3 (t) − (α2 + α−1
1 α−1

4 )p4 (t)
}

= 0,
(21)

Equation (21) suggests the equilibrium
points as p1(t)1, 2, 3 = (0, 1, −1), p2(t)1, 2, 3 =
(0, 1, −1),p3(t)1, 2, 3 = (0, 1, 1) and p4(t)1, 2, 3 =
(0, 0, 0). In addition, it is noted that one trivial
solution is obtained for the origin in phase space
p1(t)1 = p2(t)1 = p3(t)1 = p4(t)1 = 0; this trivial
solution corresponds a pure heat conduction.

3.3 Criteria of stability

Stability plays critical role of non-linear mathematical
model, because it assures that unstable a system in
which small perturbations give rise to large variations
and stable a system in which small perturbations give
rise to small variations. Now, differentiating the non-
linear model of non-Newtonian fluid (21), we traced out
the Jacobian matrix J as

J =

⎡
⎢⎢⎣

0 0 0 0
α5p3(t) − α5p3(t) − α5 −1 p1(t) − α5p1(t) 0

4α3p2(t)
α1(p3(t) − α5p3(t)) − α4(α−1

1 − α5)
4α3p1(t)
α−1
1 α4 − α4

4α3

α4α5p1(t) + α5p1(t)
0
α−1
1 + α4α2

⎤
⎥⎥⎦. (22)

Generating the characteristics equation for the Eigen
values (λ1, λ2, λ3 and λ4) with the help of Eq. (22) for
two types (i) pure conduction solution, and (ii) convec-
tion solution, we arrived at

(23)

(λ − 4α3)
[
λ3 +

(
1 + α2α4 + α−1

1

)
λ2

+
(
α−1
1 α4 + α2α4 + α−1

1 − α5α4

)
λ

+ α−1
1 α4(1 − α5)

]
= 0,

λ4 +
(
1 + α4α2 + 4α3 + α−1

1

)
λ3

+
{

α−1
1 (1 + α4 + 4α3) + α5 (4α3 − α4) + α4α2 (4α3 + 1)

}
λ2

+
{
4α3α−1

1 (α4 + α5) + 4α3α4 (α5 + α2 − 2)
}

λ

+8α−1
1 α3α4 (α5 − 1) = 0,

(24)

In addition, for Eq. (23), the stability of the fixed
point associated with the pure conduction solution
{p1(t)1 = p2(t)1 = p3(t)1 = p4(t)1 = 0} is controlled by
the zeros for the eigenvalues (λ1, λ2, λ3andλ4) and the
origin loses its stability to the two other steady-state
solutions. On the contrary, there is an exchange of sta-
bility for Eq. (24), the stability depends on the value
of α1 for which α1 < 1+α4

(1−α2)α4
. While, if α1 > 1+α4

(1−α2)α4

there is a pair of pure imaginary roots representing over-
stability.

4 Generation of numerical scheme
for Caputo–Fabrizio fractal–fractional
model

To generate the numerical scheme of the nonlinear
mathematical model say (13) for non-Newtonian fluid,
the methodology takes place as

Dφ1,φ2
t p1(t) = φ1t

φ1−1ω1(p1, p2, p3, p4, t),
Dφ1,φ2

t p2(t) = φ1t
φ1−1ω2(p1, p2, p3, p4, t),

Dφ1,φ2
t p3(t) = φ1t

φ1−1ω3(p1, p2, p3, p4, t),
Dφ1,φ2

t p4(t) = φ1t
φ1−1ω3(p1, p2, p3, p4, t),

(25)123
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Utilizing Eq. (18) on Eq. (25), we have transferred
format of Eq. (25) as

p1(t) = p1(0) + φ2tφ2−1(1−φ1)
M(φ1)

ω1 (p1, p2, p3, p4, t)

+ φ1φ2
M(φ1)

t∫
0

Ψφ2−1ω1 (p1, p2, p3, p4, Ψ) dΨ,

p2(t) = p2(0) + φ2tφ2−1(1−φ1)
M(φ1)

ω2 (p1, p2, p3, p4, t)

+ φ1φ2
M(φ1)

t∫
0

Ψφ2−1ω2 (p1, p2, p3, p4, Ψ) dΨ,

p3(t) = p3(0) + φ2tφ2−1(1−φ1)
M(φ1)

ω3 (p1, p2, p3, p4, t)

+ φ1φ2
M(φ1)

t∫
0

Ψφ2−1ω3 (p1, p2, p3, p4, Ψ) dΨ,

p4(t) = p4(0) + φ2tφ2−1(1−φ1)
M(φ1)

ω4 (p1, p2, p3, p4, t)

+ φ1φ2
M(φ1)

t∫
0

Ψφ2−1ω4 (p1, p2, p3, p4, Ψ) dΨ,

(26)

By the setting at tξ+1 in Eq. (26), we obtained the
numerical scheme as

p1ξ+1 (t)
= p1(0) + φ2tφ2−1(1−φ1)

M(φ1)
ω1

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)

+ φ1φ2
M(φ1)

tξ+1∫
0

Ψφ2−1ω1 (p1, p2, p3, p4, Ψ) dΨ,

p2ξ+1 (t)
= p2(0) + φ2tφ2−1(1−φ1)

M(φ1)
ω2

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)

+ φ1φ2
M(φ1)

tp+1∫
0

Ψφ2−1ω2 (p1, p2, p3, p4, Ψ) dΨ,

p3ξ+1 (t)
= p3(0) + φ2tφ2−1(1−φ1)

M(φ1)
ω3

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)

+ φ1φ2
M(φ1)

tp+1∫
0

Ψφ2−1ω3 (p1, p2, p3, p4, Ψ) dΨ,

p4ξ+1 (t)
= p4(0) + φ2tφ2−1(1−φ1)

M(φ1)
ω4

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)

+ φ1φ2
M(φ1)

tp+1∫
0

Ψφ2−1ω4 (p1, p2, p3, p4, Ψ) dΨ,

(27)

After simplification and solving Eq. (27), we invoked
the approximation subject to the defined interval
[tξ, tξ+1] as

p1ξ+1 (t)
= p1ξ + φ2tφ2−1(1−φ1)

M(φ1)
ω1

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)
−φ2t

φ2−1
ξ−1 (1−φ1)

M(φ1)

×ω1

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)

+ φ1φ2
M(φ1)

tξ+1∫
tξ

Ψφ2−1ω1 (p1, p2, p3, p4, Ψ) dΨ,

p2ξ+1 (t)
= p2ξ + φ2tφ2−1(1−φ1)

M(φ1)
ω2

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)
−φ2t

φ2−1
ξ−1 (1−φ1)

M(φ1)

×ω2

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)

+ φ1φ2
M(φ1)

tξ+1∫
tξ

Ψφ2−1ω2 (p1, p2, p3, p4, Ψ) dΨ,

p3ξ+1 (t)
= p3ξ + φ2tφ2−1(1−φ1)

M(φ1)
ω3

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)
−φ2t

φ2−1
ξ−1 (1−φ1)

M(φ1)

×ω3

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)

+ φ1φ2
M(φ1)

tξ+1∫
tξ

Ψφ2−1ω3 (p1, p2, p3, p4, Ψ) dΨ,

p4ξ+1 (t)
= p4ξ + φ2tφ2−1(1−φ1)

M(φ1)
ω4

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)
−φ2t

φ2−1
ξ−1 (1−φ1)

M(φ1)

×ω4

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)

+ φ1φ2
M(φ1)

tξ+1∫
tξ

Ψφ2−1ω4 (p1, p2, p3, p4, Ψ) dΨ,

(28)

Deriving Eq. (27) using the concept of integration
and Lagrange polynomial piecewise interpolation, we
obtain
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p1ξ+1 (t)
= p1ξ + φ2tφ2−1(1−φ1)

M(φ1)
ω1

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)
−φ2t

φ2−1
ξ−1 (1−φ1)

M(φ1)

×ω1

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)
+ φ1φ2

M(φ1)

{
3h
2 tφ2−1

ξ ω1

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)
−h

2 tφ2−1
ξ−1 ω1

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)}
,

p2ξ+1 (t)
= p2ξ + φ2tφ2−1(1−φ1)

M(φ1)
ω2

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)
−φ2t

φ2−1
ξ−1 (1−φ1)

M(φ1)

×ω2

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)
+ φ1φ2

M(φ1)

{
3h
2 tφ2−1

ξ ω2

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)
−h

2 tφ2−1
ξ−1 ω2

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)}
,

p3ξ+1 (t)
= p3ξ + φ2tφ2−1(1−φ1)

M(φ1)
ω3

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)
−φ2t

φ2−1
ξ−1 (1−φ1)

M(φ1)

×ω3

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)
+ φ1φ2

M(φ1)

{
3h
2 tφ2−1

ξ ω3

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)
−h

2 tφ2−1
ξ−1 ω3

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)}
,

p4ξ+1 (t)

= p4ξ + φ2tφ2−1(1−φ1)
M(φ1)

ω4

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)
−φ2t

φ2−1
ξ−1 (1−φ1)

M(φ1)

×ω4

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)
+ φ1φ2

M(φ1)

{
3h
2 tφ2−1

ξ ω4

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

)
−h

2 tφ2−1
ξ−1 ω4

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)}
,

(29)

Writing Eq. (29), we investigated the numerical
scheme for Caputo–Fabrizio fractal–fractional operator
as

p1ξ+1(t) = p1ξ + φ2t
φ2−1
ξ

(
1−φ1
M(φ1)

+ 3φ1h
2M(φ1)

)
ω1

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

) − φ2t
φ2−1
ξ−1

(
1−φ1
M(φ1)

+ φ1h
2M(φ1)

)
×ω1

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)
,

p2ξ+1(t) = p2ξ + φ2t
φ2−1
ξ

(
1−φ1
M(φ1)

+ 3φ1h
2M(φ1)

)
ω2

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

) − φ2t
φ2−1
ξ−1

(
1−φ1
M(φ1)

+ φ1h
2M(φ1)

)
×ω2

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)
,

p3ξ+1(t) = p3ξ + φ2t
φ2−1
ξ

(
1−φ1
M(φ1)

+ 3φ1h
2M(φ1)

)
ω3

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

) − φ2t
φ2−1
ξ−1

(
1−φ1
M(φ1)

+ φ1h
2M(φ1)

)
×ω3

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)
,

p4ξ+1(t) = p4ξ + φ2t
φ2−1
ξ

(
1−φ1
M(φ1)

+ 3φ1h
2M(φ1)

)
ω4

(
p1

ξ, p2
ξ, p3

ξ, p4
ξ, tξ

) − φ2t
φ2−1
ξ−1

(
1−φ1
M(φ1)

+ φ1h
2M(φ1)

)
×ω4

(
p1

ξ−1, p2
ξ−1, p3

ξ−1, 4ξ−1, tξ−1

)
.

(30)

5 Simulated results and conclusion

By applying the concept of non-Newtonian fluid (vis-
coelastic fluids) so called Oldroydian fluid saturated
porous medium, we deduced governing system of non-
Newtonian fluid (13), governing system of Newtonian
fluid (15) and governing fractal-fractionalized system
of non-Newtonian fluid (16) to describe the dynamics
of thermal convection. The effects of non-Newtonian
verses Newtonian fluids are performed on the basis of
numerical simulations for the chaotic convection and
the thermal efficiency. For the sake of industrial purpose
subject to the optimization of thermal analysis, the
techniques of fractal–fractional differentials can illus-
trate the arbitrary trajectories of a fluid particle con-
vected by time in which considerable amount of energy
consumption through the chaotic behavior can be esti-
mated. In addition, the phase portraits for Newtonian
verse non-Newtonian fluids for p1(t) − p2(t), p1(t) −
p3(t), p2(t) − p1(t), p3(t) − p1(t), p1(t)p2(t)p3(t) and
p1(t)p2(t)p4(t) planes with initial conditions p1(0) =
p2(0) = p3(0) = p4(0) = 0.9 taking in consider-
ation the parametric values as α1 = 1, α2 = 0.2,
α3 = 0.5, α4 = 100, α5 = 15 have depicted. The
comparative performances for chaotic configuration on
the basis of phase portraits for Newtonian fluid and
phase portraits for non-Newtonian fluid have been high-
lighted in this regard. In addition, Fig. 1 is prepared
for showing the contrasting behavior of phase por-
traits for Newtonian fluid verses non-Newtonian fluid
via Caputo–Fabrizio fractal–fractional differential oper-
ator for p2(t) − p1(t) plane (Fig. 2). It can be observed
that chaotic trajectories of non-Newtonian fluid are
more complex and amorphous than chaotic trajecto-
ries of Newtonian fluid. Meanwhile, p3(t) − p1(t) plane
has also similar trend in structures. In this continu-
ity, the comparison between phase portraits for Newto-
nian fluid and phase portraits for non-Newtonian fluid
as depicted in Fig. 3 as p3(t) − p2(t) has showed con-
tinuous and non-continuous states in thermal perfor-
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Fig. 1 Phase portrait for Newtonian verse non-Newtonian fluids for p1(t) − p2(t) plane with initial conditions p1(0) =
p2(0) = p3(0) = p4(0) = 0.9 and α1 = 1, α2 = 0.2, α3 = 0.5, α4 = 100, α5 = 15

Fig. 2 Phase portrait for Newtonian verse non-Newtonian fluids for p1(t) − p3(t) plane with initial conditions p1(0) =
p2(0) = p3(0) = p4(0) = 0.9 and α1 = 1, α2 = 0.2, α3 = 0.5, α4 = 100, α5 = 15

Fig. 3 Phase portrait for Newtonian verse non-Newtonian fluids for p1(t) − p3(t) plane with initial conditions p1(0) =
p2(0) = p3(0) = p4(0) = 0.9 and α1 = 1, α2 = 0.2, α3 = 0.5, α4 = 100, α5 = 15
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Fig. 4 Phase portrait for
purely non-Newtonian fluid
for p1(t) − p4(t) plane,
p1(t) − p3(t) plane and
p1(t) − p3(t) plane with
initial conditions p1(0) =
p2(0) = p3(0) = p4(0) = 0.9
and α1 = 1, α2 = 0.2,
α3 = 0.5, α4 = 100, α5 = 15
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mance. Physically, non-continuous case induces a better
thermal performance in comparison with the continu-
ous case. An interested observation for non-Newtonian
fluids via Caputo–Fabrizio fractal fractional differential
operator is explored; this because that all characteris-
tics of non-Newtonian fluid cannot be described due to
inadequacy of Navier–Stokes equations. Figure 4 dis-
closes the hidden aspects of purely non-Newtonian flu-
ids in terms of chaotic behavior. It is noted that each
plane p4(t) − p1(t), p4(t) − p2(t) and p4(t) − p3(t) has
typical and divergent chaotic geometries for convective
heat transfer. The resultant chaotic behavior observed
in Fig. 4 reflects sensitivity to initial conditions and
kinematic mechanisms among governing equations. The
similar trend can also be seen in Fig. 5 that is illustrated
for 3D planes for the observations of phase portraits for
Newtonian fluid and phase portraits for non-Newtonian
fluid. In brevity, it is believed that Fig. 5 has proto-
type chaotic comparison between fluids that confirm

the thermal performances of the selected geometry as
stated in problem statement. Figure 6 presents phase
portrait for Newtonian fluid for p1(t) − p2(t) plane,
p1(t) − p3(t) when fractional parameter and fractal
parameter are varying. While, a similar phase portrait
can be obtained for non-Newtonian fluid for p1(t)−p2(t)
plane, p1(t)−p3(t) when fractional parameter and frac-
tal parameter are varying. For the sake of future recom-
mendation, some latest extensions of fractional differ-
ential operators with different domains of definitions
can extend this research work in the field of fluids.
The latest extensions of fractional differential opera-
tors with different domains of definitions are (i) Abu-
Shady-Kaabar fractional differential operator and (ii)
Yang-Abdel-Cattani fractional differential operator.

Fig. 5 Three-dimensional phase portrait for Newtonian verse non-Newtonian fluids for p1(t)p2(t)p3(t) plane and
p1(t)p2(t)p4(t) plane, respectively, with initial conditions p1(0) = p2(0) = p3(0) = p4(0) = 0.9 and α1 = 1, α2 = 0.2,
α3 = 0.5, α4 = 100, α5 = 15

Fig. 6 Phase portrait for Newtonian fluid for p1(t)−p2(t) plane, p1(t)−p3(t) plane with initial conditions p1(0) = p2(0) =
p3(0) = p4(0) = 0.9 and α1 = 1, α2 = 0.2, α3 = 0.5, α4 = 100, α5 = 15 when fractional parameter φ1 = 0.988 and fractal
parameter is φ2 = 0.89
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