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Abstract Ultrafast processes initiated in molecules by light or collision are extremely widespread. The
intrinsic timescale of nuclear motion is the femtosecond (1 fs = 10−15 s) and the one of electrons, lighter
particles, is the attosecond (1 as = 10−18 s). Dynamics simulations are essential for understanding the mech-
anism, rate and yield of ultrafast processes. In this article, we review recent theoretical works, performed
in France, to describe photon-induced or collision-induced ultrafast processes in molecules. In particular,
we discuss recent studies on quantum dynamics of small molecules or Hamiltonian models, and works
focused on “on-the-fly” mixed quantum-classical dynamics of molecules. Both state-of-the-art applications
and method developments towards overcoming current bottlenecks are presented.

1 Introduction

Two of the most fundamental and widespread pro-
cesses in chemistry and physics are the absorption of
light and the collision with atomic or molecular systems
to excite electrons of matter and potentially induce a
rearrangement of the nuclei [1]. The intrinsic timescale
of nuclear motion is the femtosecond (1 fs = 10−15

s) while the intrinsic timescale of the motion of elec-
trons, lighter particles, is the attosecond (1 as = 10−18

s). As a result of excitation into an electronic excited
state, the distribution of electrons and thus the reac-
tivity of a molecule differ significantly from the ones in
the ground state. We distinguish photochemistry, when
the absorption of light causes a chemical reaction, from
photophysics— otherwise. The most common photon-
induced or collision-induced chemical reactions are iso-
merization, pericyclic reaction, dissociation and elec-
tron transfer. Although the applications of these pro-
cesses cover many fields today, their practical use is lim-
ited by the quantum yield of the desired process, the
latter almost always competing with other processes. A
challenge for chemists is therefore to design more effi-
cient molecular systems and optical control methods.
The idea of understanding the behaviour of a molecule
upon light absorption or molecular collision has thus
motivated, and continues to motivate researchers in the
field of physical chemistry.
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From the late 1980s, the development of femtosecond
lasers has allowed the experimental study of the struc-
ture and dynamics of atoms in molecules [2]. By using
a light pulse that is shorter than the characteristic time
for nuclear motion, it is possible to promote the system
in a localised region on an excited electronic potential
energy landscape. The subsequent nuclear motion could
then be probed as a function of the time delay between
pump and probe pulses. In 2001, the “femtosecond bar-
rier” was broken with the first generation of attosec-
ond pulses [3, 4]. This generation relies on the time-
energy uncertainty principle: ΔEΔt ≥ �. By collect-
ing together coherent light sources with a large energy
bandwidth ΔE of several eV, one can obtain an ultra-
short pulse with duration τ ≈ �/ΔE of few attosec-
onds. The emergence of attosecond measurement tools
opened up the possibility to experimentally observe and
control electrons, on their intrinsic timescale. Attosec-
ond pulses were first applied to atoms [5] and then
condensed-matter [6] and polyatomic molecules [7], the
latter giving birth to the field of “attochemistry”. One
could finally investigate changes in the electronic distri-
bution during a chemical reaction, until now considered
as instantaneous.

From a theoretical perspective, in order to under-
stand the behaviour of a molecule upon photon- or
collision-induced excitation, one needs to evaluate the
importance of the different relaxation pathways. Only a
dynamic strategy, which simulates the evolution of the
molecular wavepacket over time, provides a complete
and intuitive image of the electronic states and nuclear
structures visited by the system after excitation, and
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of the different relaxation pathways. Describing the
time evolution of an electronically-excited molecule
implies going beyond the Born-Oppenheimer approx-
imation [8]. Huge advances have been made and differ-
ent flavours of non-adiabatic dynamics methods have
been developed over the last decades to model, from
first principles, the chemical properties and dynamics
of molecules in their electronic excited states [9, 10].

The scope of the present article is to review and
illustrate the recent advances made in France in the-
oretical chemistry and physics, to describe ultrafast
processes in molecules, both in terms of applications
and method developments. We chose to limit our-
selves to several French theoretical studies published in
the last few years, investigating the ultrafast coupled
electron-nuclear dynamics in molecules (two atoms or
more). In Sect. 2, we present recent studies of quan-
tum dynamics on small molecules or Hamiltonian mod-
els. In Sect. 3, works focused on state-of-art “on-the-
fly” mixed quantum-classical dynamics are reported.
Section 4 concludes this article with a summary of the
recent advances and some perspectives for the future of
this field.

2 Quantum dynamics of small molecules
and model systems

The most accurate quantum nuclear dynamics methods
are either grid-based simulations or using the Multi-
Configuration Time-Dependent Hartree (MCTDH)
method [11]. These imply a fully quantum treatment
of the molecular dynamics. As will be seen from the
cited examples, grid-based quantum dynamics simula-
tions are often limited to few nuclear coordinates. Using
the MCTDH method and extensions of it, one can
afford more nuclear coordinates. In the following, we
first detail several state-of-the-art applications of such
methods. We then present works focused on develop-
ments to improve the practical use of these methods.

2.1 From applications...

Using grid-based calculations with the resolvent-
operator method [12], Catoire et al. studied the dynam-
ics of the He2+2 diatomic ion induced by a strong IR
laser pulse [13]. They investigated in particular the role
of electronic excited states in the dissociation dynam-
ics. Cornaggia and co-workers studied nuclear dynam-
ics of H2 laser-induced double ionization using one-
dimensional grid-based simulations [14].

A typical illustration of theoretical work of nuclear
quantum dynamics by the same group is the study of
molecular reorientation during photo-ionization using
a two-dimensional model [15, 16]. Alignment of lin-
ear molecules induced by light leads to time-dependent
observables. The latter can be analysed in terms of
spectral periodic components A2l, with l being a posi-
tive integer. Using available calculated ionization yields

of fixed-in-space molecules of CO2—a symmetric lin-
ear molecule, they performed numerical calculations of
laser-induced impulsive alignment and tunnel ioniza-
tion. Figure 1 shows, for l = 1 and l = 2, four fractional
revivals within each rotational period τ2l. The revivals
exhibit constant successive phase shifts that depend on
the parity of the initial rotational states. This analy-
sis provides an alternative explanation for the so-called
high-order revivals.

Using the MCTDH method, Lasorne, Lauvergnat
and co-workers studied the ozone photolysis induced
by deep ultraviolet radiation [17]. Upon excitation to
the B state of ozone by a 10-fs pulse, the quantum
dynamics simulations show an early splitting of the
wavepacket at an inflection point of the potential energy
surface between a path leading to dissociation and an
oscillating path revolving around the Franck–Condon
region at around 20 fs. As the non-dissociative part of
the wavepacket oscillates between the Franck–Condon
region and the inflection point, both revivals around
the Franck–Condon region and dissociation occur peri-
odically, approximately every 20 fs. The same collab-
oration also studied the ultrafast internal conversion
in 4-aminobenzonitrile upon UV light absorption, from
a charge-transfer state to a locally-excited state [18].
Using the multi-layer (ML) version of the MCTDH
method, the Hamiltonian model constructed included
three diabatic electronic states and all nuclear coor-
dinates, i.e. 39 dimensions. They showed that the
relaxation occurs sequentially along an extended seam
of conical intersections, with planar geometries dom-
inating at early times (t < 20 fs). Using two sin-
glet and four triplet electronic states, and 63 vibra-
tional modes, Huix-Rotllant and co-workers studied the
ultrafast intersystem crossing in xanthone [19]. Their
ML-MCTDH quantum dynamics simulations provided
a sequential mechanism, consistent with the El Sayed’s

Fig. 1 A2l components of the ion signal CO+
2 as a func-

tion of time. a l = 1 and b l = 2. For each l value, the
period τ2l and its multiples are represented by vertical red
lines. Reprinted figure with permission from [15]. Copyright
(2015) by the American Physical Society
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rule for intersystem crossing: from the second singlet
excited state, (i) an internal conversion between sin-
glets 1ππ∗ → 1nπ∗ occurs on a timescale of 85 fs,
(ii) an intersystem crossing 1nπ∗ → 3ππ∗ on a 2.0
ps timescale, and (iii) an internal conversion between
triplets 3ππ∗ → 3nπ∗ on a timescale of 602 fs. The
unusually fast transition was explained by the absence
of barriers in the paths to the conical intersections
and the proximity of the latter with the minimum
energy structures. With a similar approach (but in
reduced dimensionality), the same group simulated, for
a heme-CO complex, the photolysis and spin-crossover
reactions happening concurrently on a femtosecond
timescale [20]. Using the MCTDH method as well,
Gatti and co-workers simulated the collision reactions
between an atom and small molecules [21–23]. Using
a two-level spin-boson Hamiltonian model, the same
group studied the role of initial bath conditions in the
photo-induced electron transfer and electronic coher-
ence in plant cryptochromes [24]. A spin-boson model
has also been used by Mangaud et al. [25] with the
hierarchical equations of motion method, to describe
the time evolution of an open quantum system strongly
coupled to a bath.

Another typical example of MCTDH quantum
dynamics study is the work on transition metal car-
bonyl α-diimine complexes by Fumanal et al. [26]. Using
a reduced-dimensional Hamiltonian model (15 nor-
mal modes) of [M(imidazole)(CO)3(phenanthroline)]+
(M = Mn, Re), they studied the competition
between luminescence, electron transfer, and pho-
toinduced CO release, with a focus on the role
of the metal atom on the branching ratio between
these paths. Figure 2 shows the diabatic populations
of [Re(imidazole)(CO)3(phenanthroline)]+ (left) and
[Mn(imidazole)(CO)3(phenanthroline)]+ (right). In the
rhenium complex, the intersystem crossing occurs read-
ily in the S2 state to the long-lived lowest triplet
state T1 within 100 fs while, in contradiction with the
Kasha’s rule, the lowest singlet state S1 is not popu-
lated. In contrast, in the manganese complex, the low-
est S1 state is efficiently populated within 50 fs from S2,
and the low-lying triplet states remain marginally pop-
ulated because of modest spin-orbit coupling strength.
In other works, the same group studied in detail the
CO release pathway [27] and the effects of ligand sub-
stitution and conformers [28]. For a review on ultrafast
processes in transition metal complexes, the reader is
referred to the review by Daniel [29].

2.2 ...to method developments

A key ingredient to quantum dynamics simulations is
the choice of system of nuclear coordinates. Physically
well-adapted curvilinear coordinates have the advan-
tage to lead to a Hamiltonian operator as separable
as possible and thus simplifies the resolution of the
time-dependent Schrödinger equation. The correspond-
ing curvilinear expression of the kinetic energy opera-
tor can be used either analytically or numerically, the

memory requirement for the latter approach becoming
often extremely demanding. Nauts et al. [30] develop an
on-the-fly algorithm to reduce the memory storage bot-
tleneck. They tested it recently on a three-dimensional
model of the cis-trans photoisomerisation of part of the
retinal chromophore [31].

The MCTDH method involves the development of a
model Hamiltonian often based on harmonic potentials
and, typically, a reduced number of nuclear coordinates.
The development of a model Hamiltonian implies a
heavy work of calculating the potential energy surfaces
and relevant couplings on a grid and fitting them, prior
to any dynamics simulations. Due to computational
cost, the coupling constants are sometimes approxi-
mated from excited-state energies. Fumanal et al. [32]
developed a protocol to calculate more accurate inter-
state vibronic coupling constants at the time-dependent
density functional theory level through the overlap inte-
grals between excited-state adiabatic auxiliary wave-
functions. To address the same problem, Yalouz et al.
[33] work on a variational quantum eigensolver to esti-
mate analytically non-adiabatic couplings between elec-
tronic states (and gradients for excited states).

Another important point is that electronic structure
quantities needed to construct the model are calculated
in the adiabatic basis, while the quantum dynamics
is simulated in a (quasi-)diabatic basis. The diabati-
sation (procedure to convert the adiabatic data into
diabatic ones) is not straightforward. Lasorne and co-
workers develop strategies to perform this step. They
for instance showed how a pseudofragmentation scheme
can be used to define relevant diabatic representations,
and illustrated it with small oligomers [34]. They also
develop a “black-box” valence-bond-based automatic
diabatization method [35]. The idea is to first reduce
the full Hamiltonian to a low rank matrix that pre-
serves the target eigensubspace. This is followed by
a sequence of Householder transformations. The dia-
baticity criterion is implemented in a way that maxi-
mizes the diversity of valence bond structure weights
between different diabatic states. They also proposed
a pointwise phase correction scheme [36]. They illus-
trated their approach on several prototypical examples.
For instance, Fig. 3 shows a two-dimensional descrip-
tion of the cyclopentadienyl radical Jahn-Teller coni-
cal intersection spanned by 2-fold degenerate displace-
ments Q(a) and Q(b). Figure 3A displays the adiabatic
potential energy surfaces of the ground and first excited
states, with a typical Mexican hat shape. Figure 3B and
C display the diabatic potential energy surfaces and
the phase-corrected diabatic coupling, respectively: the
developed approach produces a smooth crossing, with
no cusp in the diabatic coupling. Along Q(a), the two
diabatic states appear degenerate and the diabatic cou-
pling is a nonzero quasi-linear function; along Q(b), the
diabatic potentials are close to the adiabatic ones and
the diabatic coupling is near zero.

To overcome the bottleneck of constructing and
fitting the model before simulating the dynamics,
Panadés-Barrueta et al. develop an automated method-
ology for the generation of global potential energy
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Fig. 2 Time evolution of
the diabatic electronic
populations of (left)
[Re(imidazole)(CO)3(phenanthroline)]+

and (right)
[Mn(imidazole)(CO)3(phenanthroline)]+.
Adapted with permission
from [26]. Copyright 2018
American Chemical Society

surfaces and molecular properties surfaces [37]. Their
approach includes, in particular, a tensor decomposi-
tion algorithm to turn an automatically generated sur-
face into sum of products (Tucker) form, as required in
the MCTDH method. They tested their methodology
on the cis-trans isomerisation reactions in HONO in
full dimensionality (6 dimensions).

3 “On-the-fly” mixed quantum-classical
dynamics of molecules

To address the different issues of quantum dynamics,
“on-the-fly” dynamics methods have been developed.
In these, the potential energy surfaces are calculated as
needed along nuclear trajectories, the latter serving as
a basis to describe the nuclear wavepacket motion. The
nuclear trajectories are most of time moving classically
in all nuclear dimensions, according to Newton’s equa-
tions of motion. Similarly to the previous section, we
first detail several state-of-the-art applications of such
mixed quantum-classical dynamics methods. We then
present works focused on the impact of the approxima-
tions of these methods and on developments to improve
their accuracy.

3.1 From applications...

The most popular on-the-fly mixed quantum-classical
method is surface hopping: it uses an ensemble of inde-
pendent classical trajectories, and a quantum propa-
gation of the electronic wavepacket inducing stochas-
tically jumps between electronic states. To illustrate
such a method, one can present the work of Vacher
and co-workers on the cis-to-trans photoisomerisation
of azobenzene [38]. One of the most interesting proper-
ties of azobenzene is the dependence of the measured
quantum yield on the wavelength of the incident light
used to trigger the photo-isomerisation. While there
have been numerous works focusing on the trans-to-cis

isomerisation of azobenzene, the cis-to-trans photoiso-
merisation has been much less investigated. Their sur-
face hopping simulations of the dynamics in full dimen-
sionality (33 dimensions) provided the quantum yields
of cis-to-trans isomerisation upon excitation to the nπ∗
(S1) and ππ∗ (S2) states, which occur on the timescale
of several hundred of fs. They reproduced the decrease
in quantum yield of 0.10 measured recently when excit-
ing to the higher energy state and suggested a mech-
anism for it, different from the one accepted for the
trans-to-cis direction. Figure 4 summarises the major
relaxation pathways accessible to cis-azobenzene, and
the fraction of trajectories which follow each pathway
in both excitation cases. Two factors explain the quan-
tum yield reduction: (i) a potential well that, after ππ∗
excitation, traps photochromes which under nπ∗ exci-
tation would have exclusively formed trans-azobenzene
and (ii) photochromes in this well excited initially to
the ππ∗ state are more likely to reform cis-azobenzene
upon leaving the well than those excited to the nπ∗
state.

Vacher and co-workers also simulated with the sur-
face hopping method the competition between several
relaxation pathways in furanone and derivatives [39]:
ring-puckering spreads the excited state wavepacket
quickly enough to influence the outcome of an oth-
erwise expectedly direct ring-opening reaction in less
than 50 fs. The same group also simulated the inter-
system crossing that occurs within 1 ps in thiopyri-
done [40], and studied the role of conical intersection
topography in the non-adiabatic transition probabil-
ity [41]. Using the surface hopping method as well,
Huix-Rotllant and co-workers simulated the behaviour
of photoexcited thymine [42]: their dynamics explained
the unusual long excited-state lifetime by an ultrafast
(≈ 30 fs) S2 → S1 internal conversion, followed by
a trapping in S1 state from which the decay to the
ground state is slow (≈ 6.1 ps). The same group sim-
ulated the ultrafast internal conversion on porphine
[43]: the dominant mechanism demonstrated by the
dynamics is sequential involving a set of dark states
populated within ≈ 20 fs from the initially excited B
band, and which then populate the Q band within ≈
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Fig. 3 Potential energy
surfaces of the
cyclopentadienyl radical
around the conical
intersection along Q(a) and
Q(b) distortions: A
Adiabatic energies. B
Diabatic diagonal energies
(H11 and H22). C
Phase-corrected diabatic
coupling (H12). Reproduced
with permission from [36].
Copyright 2021 American
Chemical Society
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Fig. 4 Major pathways,
and the fraction of
trajectories which follow
each pathway, accessible to
cis-azobenzene upon
excitation to the nπ∗

(numbers in yellow) and
ππ∗ (numbers in green)
states. Reproduced from
[38] with permission from
the PCCP Owner Societies

100 fs. Barbatti and co-workers studied the photody-
namics of coumaryl Meldrum and sinapoyl Meldrum
[44, 45]. The fast (<1 ps) and efficient nonradiative
decay to repopulate the electronic ground state upon
UV absorption makes these molecules good candidates
for sunscreen applications. The same group also simu-
lated the dynamics of benzene excimer formation in 2 ps
after S1 excitation [46], the photoinduced formation of
hydrogen-bonded ion pair in hydrochlorofluorocarbon-
133a in the sub-ps timescale [47], and the photoisomer-
ization of a macrocyclic cyclobiazobenzene molecule in
less than 100 fs [48]. Monari and co-workers studied and
compared the intersystem crossing rate for formyluracil
and formylcytosine, i.e. oxidative lesions and epigenetic
intermediates possibly acting as intrinsic DNA photo-
sensitizers [49]. The same group investigated the impor-
tance of hydrogen transfer in photoexcited curcumin
which happens in the sub-ps regime and compete with
the intersystem crossing channel [50], and the photo-
physics of phenanthrene [51].

3.2 ...to method developments

A key ingredient to the mixed quantum-classical
dynamics simulations are the initial conditions. Bar-
batti and co-workers worked on their definition and
impact on the subsequent dynamics, in particular try-
ing to take into account the effect of temperature
[52], or when a reaction is initiated by thermal light
[53]. Another important choice in the surface hopping
method is how to adjust the velocity after a jump
between electronic states in order to conserve total
energy. The several options are for instance the nonadi-
abatic coupling vector, the momentum, and the energy

gradient difference. Barbatti studied the impact of this
choice on time constants and structural evolution of
photoexcited ethylene, and the comparison did not
show any significant differences [54]. The same group
extended the surface hopping method to describe irre-
versible decay mechanism using an imaginary poten-
tial [55]. They employed to survey the relaxation mech-
anisms of the shape resonant anions of iodoethene.
The main bottleneck of such mixed quantum-classical
dynamics simulations remain the electronic structure
calculations. Barbatti and co-workers develop machine-
learned potentials to be used in dynamics [56] to dras-
tically reduce the cost of the simulations and allow to
reach longer timescales [57]. The aim is to generate
accurate machine-learned models of potential energy
surfaces with no more than 10,000 points while conven-
tional on-the-fly mixed quantum-classical simulations
would typically require 100 trajectories with a time step
of 0.5 fs for 1 ps, i.e. 200,000 electronic structure calcu-
lations.

The limits of these on-the-fly mixed quantum-
classical methods like surface hopping are the classi-
cal treatment of the motion of nuclei and the non-
exact description of electronic coherence. To address
these points, the strategy is to couple the trajectories to
recover some “quantumness”. Along those lines, Agos-
tini and co-workers develop a coupled-trajectory mixed
quantum-classical algorithm, based on the exact factor-
ization equations [58]. In the latter approach, instead
of using the Born-Huang expansion, the total molecular
wavefunction is exactly expressed as a single product of
an electronic wavefunction and a nuclear wavefunction
[59]. There, the electronic wavefunction is of course not
an eigenfunction (nor a superposition of eigenfunctions)
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Fig. 5 At two different times of the simulation a t = 295 au and b t = 675 au: comparison of the adiabatic potential
energy surfaces (left and right, in blue) with the time-dependent one (left in red, middle and right in orange) and (right)
nuclear densities in states 1 and 2 along a cut in the X direction. Reproduced with permission from [61]. Copyright 2017
American Chemical Society

of the traditional Born–Oppenheimer electronic Hamil-
tonian, but that of a somewhat more involved electronic
Hamiltonian which depends on the nuclear wavefunc-
tion itself. An important feature of the exact factor-
ization formalism is that dynamics occurs on a time-
dependent potential energy surface, as in the Ehren-
fest method. But, in contrast to Ehrenfest, an addi-
tional “coupled-trajectory” term appears in both the
electronic and nuclear equations [60]. To illustrate the
fundamental difference between Born-Huang and exact
factorization formalisms, in particular in the vicinity
of a conical intersection, dynamics was simulated on a
two-state two-dimensional model [61]. Initial conditions
were chosen so that once promoted from state 1 to state
2, the molecular wavepacket rapidly approaches a first
conical intersection region (t = 295 au), and almost
fully transfers back to state 1 non-radiatively with a
small portion remaining in state 2 after passing through
the conical intersection (t = 675 au). The molecu-
lar wavepacket enters then a second coupling region.
Figure 5a compares the adiabatic and exact factoriza-
tion representations of the dynamics at t = 295 au. The
conical shape formed by the adiabatic surfaces is absent
from the time-dependent potential energy surface. The
latter shows a smooth character bridging the two adia-
batic surfaces diabatically, as confirmed by the initially
pure diabatic behaviour of the molecular wavepacket.
However, at t = 675 au (Fig. 5b), the time-dependent
potential energy surface continues to follow the adia-
batic surfaces diabatically at large X on either side of
the second conical intersection but it also exhibits addi-
tional features at smaller X. This is a signature of part
of the molecular wavepacket that has remained in state

2 after the first conical intersection. In other words, the
splitting of the molecular wavepacket enforces a step in
the time-dependent potential energy surface. The exact
factorization method has recently been extended to
describe for instance spin-forbidden intersystem cross-
ings [62, 63], quantum nuclear effects [64], mass and
inertia effects of all molecular particles (i.e. electrons
as well) [65], and electron dynamics in the Floquet for-
malism [66].

Another promising on-the-fly method with quan-
tum accuracy is the direct-dynamics variational multi-
configurational Gaussian (DD-vMCG) method, based
on the propagation of variationally coupled Gaus-
sian wavepackets following quantum trajectories [67].
Vacher and co-workers applied it to simulate the very
early nuclear dynamics induced in benzene induced
upon tunnel ionization and measured using high har-
monic spectroscopy [68].

4 Summary and perspectives

In this article, we reviewed and illustrated several recent
studies, performed in France, dedicated to the theo-
retical description of ultrafast processes in molecules
induced by light or collision, both in terms of state-of-
the-art applications and method development works.

We first highlighted studies simulating quantum
dynamics of systems ranging from diatomic molecules
using grid-based methods, to transition metal com-
plexes using the MCTDH method and Hamiltonian
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models. We then presented works focused on devel-
opments to improve the practical use of fully quan-
tum dynamics methods, including for instance on-the-
fly algorithms to overcome memory storage bottleneck,
diabatisation strategies, automated methodologies to
generate global potential energy surfaces.

We then turned our attention toward studies focus-
ing on on-the-fly mixed quantum-classical dynamics
of molecules. In particular, we illustrated applications
of the popular surface hopping method on several
medium-sized organic molecules. Moreover, we pre-
sented works focused on the impact of the approxi-
mations intrinsic to these methods (initial conditions,
velocity rescaling, etc.) and we highlighted the recent
efforts made to go beyond the classical treatment of the
nuclear motion in on-the-fly dynamics methods.

A common bottleneck of all dynamics methods is the
electronic structure calculations, either for the genera-
tion and fitting of global potential energy surfaces for
quantum dynamics or in an on-the-fly manner for direct
dynamics methods. Not only potential energy but also
quantities such as energy derivatives and non-adiabatic
couplings are required. To overcome this bottleneck,
novel technologies such as machine learning [37, 56, 57]
or quantum computing [33] are being developed and
could be adapted to the theoretical description of ultra-
fast processes in molecules. These would really revolu-
tionize the application of the current state-of-the-art
dynamics methods. This would allow describing more
complex and realistic systems, treating for instance
the environment of molecules in solvent or in biolog-
ical medium. This would also allow the simulation of
dynamics over longer times bridging the processes hap-
pening on ultrafast timescales to those happening on
longer ones. All of this will help us pushing the cur-
rent limits of the fundamental understanding about the
behaviour of molecules upon light absorption.

Acknowledegment M.V. thanks Jérémie Caillat for fruit-
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