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5 Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
6 Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
7 Consiglio Nazionale Delle Ricerche/National Research Council (CNR)-IOM C/o International School for Advanced

Studies (SISSA/ISAS), Via Bonomea 265, 34136 Trieste, Italy
8 Department of Physics, AlbaNova University Center, Stockholm University, 106 91, Stockholm, Sweden
9 Institut Charles Gerhardt de Montpellier, CNRS, ENSCM, Université de Montpellier, 34296 Montpellier, France
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Abstract We summarize in this article the recent progress made in our laboratories in the development of
numerical approaches dedicated to investigating ultrafast physicochemical responses of biological matter
subjected to ionizing radiations. Our modules are integrated into the deMon2k software which is a readily
available program with highly optimized algorithms for conducting Auxiliary Density Functional Theory
(ADFT) calculations. We have developed a computational framework based on Real-Time Time-dependent
ADFT to simulate the electronic responses of molecular systems to strong perturbations, while molecular
dynamics simulations in the ground and excited states (Ehrenfest dynamics) are available to simulate
irradiation-induced ultrafast bond breaking/formation. Constrained ADFT and Multi-component ADFT
have also been incorporated to simulate charge transfer processes and nuclear quantum effects, respectively.
Finally, a coupling to polarizable force fields further permits to realistically account for the electrostatic
effects that the systems’ environment has on the perturbed electron density. The code runs on CPU or
hybrid CPU/GPU architectures affording simulations of systems comprised up to 1000 atoms at the DFT
level with controlled numerical accuracy. We illustrate the applications of these methodologies by taking
results from our recent articles that aimed principally at understanding experimental data from pulse
radiolysis experiments.
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ADFT Auxiliary DFT
ADSIC Average density self-interaction correc-

tion
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CAP Complex absorbing potential
CT Charge transfer
DEA Dissociative electron attachement
DFT Density functional theory
ELF Electron localization function
EMD Ehrenfest molecular dynamics
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GGA Generalized gradient approximation
ITP Imaginary time propagation
KS Kohn–Sham
LDA Local density approximation
MAC Mulliken averaged configuration
MC-DFT Multi-component DFT
MD Molecular dynamics
MO Molecular orbital
NBE Non-bonded electrons
PBE Perdew, Burke, and Ernzerhof
QM/MM Quantum mechanics/molecular

mechanics
RT-TD-DFT Real-time TD-DFT
SCF Self-consistent-field
TD Time-dependent
USP Urinidine sugar phosphate
XC Exchange–correlation
XUV EXtreme ultra-violet

1 Introduction

The consequence of matter irradiation by high-energy
particles is a topic of major interest in biology,
medicine, physics, chemistry, or material sciences [1].
Fast ions (H+, He2+, . . . .) or other massive particles
(μ−, e+, . . . .) with average kinetic energy falling in
the range of a few tens of keV to a few MeV, as well as
high-energy photons (extreme UV, X, γ. . . ) are ionizing
radiations. They interact so strongly with the electron
cloud of molecules that they cause high-energy elec-
tronic excitations, eventually expelling electrons toward
the continuum. Ionizing radiations leave matter with
several electronic holes and a great amount of energy
deposited within the electron cloud, not to mention the
production of copious amounts of near-free electrons
that further irradiate surrounding matter. A complex
succession of physical, chemical, and eventually biolog-
ical processes—spanning up to sixteen orders of mag-
nitude in space and time—follows, finally leading to
functional alterations of the irradiated systems. Irra-
diation damage of biological systems is a well-known
example of radio-induced dysfunctions which, for exam-
ple, are helpful to kill cancer cells (i.e., radiotherapies)
[2, 3]. Actually, the issues raised by ionizing radiations
are important also in the nuclear industry, aeronautics,
the space industry, or for understanding astrochemistry.
In all cases, the ultra-fast events taking place upon, and
immediately after irradiation, are of the utmost impor-
tance as they condition all successive events.

It is customary to define the physical stage as
the one covering the atto-to-femtosecond timescale
(10–18–10–15 s). Only the light electrons manifest
appreciable motion within this timescale. The physi-
cal stage sees the deposition of energy into the elec-
tron cloud by the irradiating particle(s), inducing elec-
tronic excitations and, eventually, ionizations. In the

latter situation, the photoelectrons (also known as sec-
ondary electrons) emitted to the continuum thermal-
ize by collisions with surrounding matter and, eventu-
ally, excite other molecules. After the physical stage,
the physicochemical stage (10–15–10–12 s) witnesses
complex non-adiabatic nuclear dynamics propelled by
the energy deposited in the electron cloud. Energy
is dissipated into vibrational modes, eventually lead-
ing to covalent bond cleavage. Subtle quantum effects
involving electronic state crossings, interferences, coher-
ence/decoherence, etc. are at play at this stage too.
Secondary electrons lying in the continuum might get
solvated or trapped in molecular cavities, typically in
less than 1 ps in water [4, 5]. They may also be cap-
tured in molecular resonant states, opening the door
toward chemical bond breaking by dissociative electron
attachment mechanisms [6]. Once the irradiated sys-
tem has relaxed back to the ground electronic state, a
rich chemistry is expected to expand over the nano-
to-microsecond timescale depending on the reaction
energy barriers to be overcome. This is usually referred
to as the chemical stage of irradiation and has been
extensively studied over the last decades, for instance,
in the context of biological damages [7, 8]. The bio-
logical stage refers to consequences happening in even
longer timescales at the level of large biological struc-
tures [9], DNA repair mechanisms [10], genome insta-
bility, and epigenetic regulations [11, 12].

Focusing back on the ultrafast time scales, the first
quarter of the XXI century has been particularly excit-
ing due to the emergence of ultrafast spectroscopies and
the advent of sophisticated numerical algorithms [13].
It is now possible to uncover the earliest mechanisms
taking place after irradiation. High-harmonic genera-
tion and extreme free electron lasers provide extraor-
dinary approaches to probe the responses of matter
with attosecond resolution. For example, Loh et al.
observed that proton transfer from an ionized water
molecule to neighboring water takes place within a few
tens of femtoseconds using tunable femtosecond soft
X-ray pulses from an X-ray free electron laser [14].
Other examples are the observation of ultrafast charge
migrations following ionization [13, 15], or the forma-
tion of doubly ionized water by intra-coulomb decay
in water. As often, the development of experimental
techniques stimulates that of theoretical frameworks
and of numerical simulation algorithms (e.g., [16–19]).
The French theoretical community is also very active
and develops diverse methodologies. Far from being
exhaustive, and restricting here our attention to the
short time scales, we mention Miteva, Sisourat, and
co-workers who have developed a configuration interac-
tion method to model Fano resonances with application
to intra-Coulomb decay processes [20]. Luppi and co-
workers have explored the use of time-dependent config-
uration interaction for high-harmonic generation spec-
troscopy calculations [21]. Other groups have developed
dedicated theoretical frameworks to interpret attosec-
ond experiments, including photoionization [22–25].
Semi-classical theoretical frameworks to deal with non-
adiabatic dynamics are developed by Vacher [26, 27],
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Agostini [28, 29], Lasorne [30], Joubert-Doriol [31] and
co-workers, while other groups develop fully quantum
dynamical approaches such as the multi-configuration
time-dependent Hartree scheme [32, 33] or dissipative
quantum dynamics approaches [34, 35]. Other groups in
France have investigated by simulation the first stages
of biological matter radiolysis [36, 37] or even the longer
consequences for large biostructures [38]. In this article,
our objective is to review recent methodological devel-
opments carried out in our group at the Institute of
Physical Chemistry to address the early stages involved
in the radiolysis of biological matter by means of numer-
ical simulations.

Our primary focus is to decipher the molecular mech-
anisms that lead to physicochemical damage on bio-
logical systems although we occasionally explore other
intriguing territories such as the chemical degradation
of organic extractants of interest for the nuclear indus-
try. We work in tight collaboration with experimental
groups (atto- and femtosecond spectroscopists, radia-
tion chemists, and biochemists). Having in mind the
perspective of reaching more and more realistic descrip-
tions of the simulated systems, we have decided to base
our work on Density Functional Theory (DFT). DFT
has emerged as a powerful quantum mechanical method
in the second half of the XX century to investigate the
electronic structure of molecules and solids [39, 40]. The
extension of DFT to the time-dependent (TD) domain
in the early 1980s has opened the door to the investiga-
tion of excited electronic structure and time-dependent
phenomena [41, 42]. In particular, Real-Time TD-DFT
(RT-TD-DFT) permits the simulation of the responses
of the electron cloud subject to strong, ionizing radia-
tions [43–45]. It gives access in principle to the superpo-
sition of states produced by the irradiation. When cou-
pled to the classical Newtonian dynamics of the atom
nuclei (“ions” in physicists’ language), it gives access to
the physicochemical stages of matter radiolysis [37, 46].

Within the overwhelming literature dedicated to
(TD-)DFT developments [47, 48], our objective has
been modestly focused on new implementations of RT-
TD-DFT, for dedicated applications to radiolysis sim-
ulations of nanometric, inhomogeneous systems such
as those encountered in biology. Our objective is to
devise, step-by-step, a set of integrated methodologies
within a consistent simulation environment. In this arti-
cle, we summarize these efforts and illustrate the kind
of insights that become accessible to large-scale simu-
lations. We mainly borrow illustrative examples from
our previous publications, although some new results
are presented too. We start our review by introducing
the equations of motion to conduct electron dynam-
ics simulations in the framework of Auxiliary DFT
(ADFT), describing the main algorithms enabling sim-
ulations of large molecular systems. A multicomponent
ADFT method to simulate proton transfers in elec-
tronic excited states with the inclusion of nuclear quan-
tum effects or electrons/positrons systems is then intro-
duced. We then move on to the description of compu-
tational techniques to deal with the emission of elec-
trons in the continuum. Notably, we detail the complex

absorbing potentials available in our code to cope with
these phenomena. We dedicate a section to issues aris-
ing from the approximations of exchange–correlation
functionals available in our code. Regarding the prob-
lem of electronic self-interaction error, we report a
time-dependent descriptor designed to chase spurious
charge transfer dynamics in RT-TD-DFT simulations.
We then introduce the topological analyses of the time-
dependent electron localization function. In the last
sections, we describe, on the one hand, the coupling
of (TD-)ADFT to molecular dynamics in the ground
or excited electronic states and, on the other hand,
the coupling of RT-TD-DFT to polarizable molecular
mechanics. We review a few examples of applications
we have published recently using these methodologies.

2 Electron dynamics simulations

When a high-energy photon or a particle irradiates mat-
ter, the interaction takes place at the level of the elec-
tron cloud. A methodology giving access to the dynam-
ics of electrons on the attosecond time scale is therefore
mandatory to properly capture the physics at play. On
this time scale, atom nuclei can be regarded as static,
and in the so-called pure RT-TD-DFT approach, only
electronic motion is propagated in time. In this first
section, we introduce the basic equations of motion
for electron dynamics simulations together with the
kind of irradiation amenable to simulation with our
code. All our implementations have been carried out
in the framework of the deMon2k program [49], which
is a readily available program for academic groups.
deMon2k is specialized in the realization of stationary
electronic structure calculations, in the calculation of
response properties by perturbative approaches, and in
first-principles molecular dynamics. Instead of devising
an RT-TD-DFT program from scratch, we considered
it more appealing to build on an already existing and
highly optimized code. Unless otherwise stated, we will
use Hartree atomic units throughout the article. Vec-
tors will be written with bold characters.

2.1 Real-time propagation of electron densities

The foundations of DFT for stationary electronic struc-
ture calculations were exposed in the seminal article
of Hohenberg and Kohn [39]. It was proven there the
existence of a one-to-one mapping between the elec-
tron density and the external potential, up to a con-
stant potential value. In principle, the electronic energy
can be obtained as a functional of the electron den-
sity, comprising the electronic kinetic energy, the elec-
tron–electron interaction, and the potential energy aris-
ing from the interaction of the electron density with an
external potential. Later, Kohn and Sham proposed to
invoke an auxiliary (reference) non-interacting electron
gas that has the same density as the real system [40]. In
this approach, the total electronic energy is the sum of
the kinetic energy of the non-interacting electron gas,
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of the classical Coulomb repulsion between electrons, of
their interaction with the external potential (vext), and
an exchange–correlation (XC) energy that collects all
the interacting quantum effects related to the quantum
nature of the electrons. The external potential includes
the one created by atom nuclei of the quantum system
and eventually by the environment (see below).

The extension of DFT to time-dependent external
potentials is due to Runge and Gross [41]. These
authors showed that there is a unique mapping between
the time-dependent external potential (up to a con-
stant) of a system and its time-dependent density pro-
vided that an initial wave function is known. The TD-
DFT equations may be expressed with a Liouville–von
Neumann equation [50, 51].

i
∂ρ(r, t)

∂t
= [H(r, t), ρ(r, t)] (1)

in which ρ is the electron density and H is the electronic
Hamiltonian. Within the Kohn–Sham (KS) framework,
ρ is built from the so-called KS molecular orbitals Ψi

(MO):

ρ(r, t) =
∑

i
ψ∗

i (r, t)ψi(r, t) (2)

where the sum index i runs over all electrons of the
system. The full electronic Hamiltonian can therefore
be written as:

(3)

H (t) = −
∑

i

1
2
∇2

i +
∫

ρ (r′, t)
|r − r′| dr′

+ vXC [ρ (r, t)] + vext (r, t)

The last three terms on the r.h.s. vXC, vext are respec-
tively the electronic Coulomb repulsion potential, the
exchange–correlation potential, and the external poten-
tial, the sum of which defines the so-called Kohn–Sham
potential vKS. External perturbations such as the elec-
tric field generated by laser fields or by fast-moving ions
are other contributors to vext. The types of perturba-
tions available in deMon2k will be described in a fol-
lowing section. The numerical propagation of Eq. (1)
faces the issue that H, being a functional of the den-
sity, is intrinsically time-dependent. Propagation over
long time scales (e.g., for tens of attoseconds) is there-
fore not possible. In practice, we achieve propagation
by discretizing the time variable into small time steps
Δte of the order of 0.1–5 as. The propagator should ful-
fill two important properties: it has to be unitary and
time-reversible [48, 52]. In deMon2k, we currently have
implemented the second-order Magnus method [48, 53].

ρ(tn + Δte) = e−iH(t+Δte
2 )×Δteρ(tn)eiH(t+Δte

2 )×Δte

(4)

Equation (4) propagates the electron density from tn
to tn +Δte, knowing the Kohn–Sham potential at time

tn + Δte
2 . Two propagation schemes, relying either on

an iterative [52] or on a predictor–corrector [54] (PC)
solvers, are available in deMon2k. The iterative solver
is the most robust and provided a sufficiently small
time step, almost always ensures a stable propagation
[48]. The PC solver turned out, in our experience, to
be also stable in most simulations if it is used with
time steps of the order of 1 as. As the PC solver needs
only one evaluation of the KS potential per propaga-
tion step, it allows large computational time savings.
A demanding task is the evaluation of the exponen-
tial of the KS matrix. In deMon2k, the user has the
choice between a straightforward diagonalization of the
matrix, a Taylor expansion, a Chebyshev expansion, or
a Baker–Campbell–Haussdorff [51] expansion to oper-
ate this task [52].

2.2 Imaginary time propagation of electron densities

Before conducting a RT-TD-DFT propagation, it is
necessary to obtain the electronic ground-state density
of the system. This can be done by solving the station-
ary Kohn–Sham equations [55]. Each orbital ψi is the
solution of an eigenvalue equation,

(− 1
2∇2

i + vKS

)
ψi =

εiψi, involving the KS potential vKS. These eigenvalue
equations are highly nonlinear because the KS poten-
tial is itself a functional of the electron density. As with
most quantum chemistry codes, deMon2k solves the set
of homogeneous KS equations via a self-consistent field
procedure (SCF) involving the diagonalization of the
KS Hamiltonian.1 Imaginary time propagation (ITP) is
an alternative to obtain the electronic ground state [57].
ITP has been made available in deMon2k as part of this
work. ITP is an approach based on the Wick rotation of
time, from t to −it, in Eq. (3). This leads to the propa-
gator U(t + Δte) = eH(t+Δte

2 )×Δte . Therefore, starting
from a trial wavefunction |Ψ(0)〉 decomposed over the
eigenstates |φi〉 with amplitudes Ai(0), ITP leads to
a wave function |Ψ(τ)〉 =

∑∞
i=0Ai(0)e−τEi |φi〉 after a

propagation time τ . Because of the exponential term, it
is apparent that the system accumulates ground-state
character over time.

ITP may have advantages over SCF in cases where
SCF convergence is tedious to obtain, for example in
systems with highly degenerate electronic structures
like transition metal complexes with partially filled d ,
or in lanthanides with partially filled 4f orbitals. For
instance, Flamant et al. reported ITP simulations for
Cu15 and Ru55 nanoclusters [58]. The implementation
in periodic DFT systems reported by McFarland et al.
[59] and Hekele et al. [60] evidenced that the ITP frame-
work allows to reach ground-state energy of metallic
systems, usually difficult to achieve with conventional
SCF iterations. In addition to SCF convergence issues,
the diagonalization step involved at each SCF cycle may

1To mitigate this last statement though, we indicate that
a diagonalization-free SCF solver has been recently devel-
oped by Köster and co-workers in deMon2k [56].
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also become computationally expensive for large sys-
tems and can be handled more easily by ITP. ITP also
permits to find electronic ground states in the presence
of complex absorbing potentials, a feature that proves
useful when trying to identify resonant states.

2.3 Ground state density perturbation, first
applications

An electronic propagation is generally launched from
the ground-state density on which an external pertur-
bation is applied. deMon2k currently implements sev-
eral kinds of perturbations opening the door toward
the simulation of several physicochemical phenomena of
interest. Our code can cope with irradiation with XUV
(eXtreme Ultra-Violet) photons (or lower-energy pho-
tons) and with light fast ions (e.g., H+, He2+. . . ). Irra-
diation with higher-energy photons (X-, γ-rays), heavy
ions (e.g., Ni22+. . . ), or with another kind of quantum
particles (e.g., μ−) is left for future work.

For photon irradiation, we adopt the electronic dipole
approximation. The electric field component (F e) of the
electromagnetic wave interacts with the dipole moment
of the molecule (µ): Epert(t) = −µ(t) · F e(t). F e may
be modeled as the product of a monochromatic light
electric field and a carrier function (i.e., a Gaussian
pulse, a squared sinusoidal pulse, or a linear ramp).
Although not yet implemented, a succession of pulses is
also straightforward to implement and would be useful
to simulate pump-probe experiments. F e may alterna-
tively be an instantaneous electric kick, which is use-
ful for simulating the absorption spectra of a molecule.
Indeed, the line shape of the absorption spectrum of
a molecule can be estimated from the dipole strength
function S that is related to the absorption cross-
sectional tensor σ expressed in the frequency domain:
S(ω) = 1

3Tr[σ(ω)]. σ is evaluated from the imagi-
nary part of the complex polarizability tensor α, i.e.,
σ = 4πω

c Im[α(ω)], with c being the speed of light.
Therefore, an absorption spectrum can be evaluated
using RT-TD-DFT launching three individual electron
dynamics simulations from a stationary electron den-
sity and perturbed by a weak electric field of strength
κ applied along either the x , y or z directions (d). The
Fourier transform of the dipole moment (μj) recorded
along the simulation gives access to the polarizability
tensor α: αd, j = 1

κμd, j(ω) [61]. Eventually, one may
simplify the procedure and run a unique simulation
with the field aligned in the x , y and z directions at
a time. As an illustrative example, Fig. 1 depicts the
absorption spectra of gold nanoparticles, which we have
calculated for this article with one RT-TD-ADFT sim-
ulation for each field direction. The spectra reveal a red
shift of the lowest-energy absorption peak when increas-
ing the nanoparticle size.

Excitations caused by fast ions are achieved
via Coulomb scattering. The interaction energy
for a projectile holding an electric charge qproj

and traveling with speed vproj is best described
with a Liénard–Wiechert potential [62]: Epert(t) =

∫
space

γρ(r)qproj/Rdr with γ being the angle-dependent

Lorentz factor
(
1 − v2

proj(sinΘ)2/c2
)−1/2

. In these last
expressions, R is the distance between an electron and
the projectile, and Θ is the angle formed between the
projectile propagation line and electron-projectile axis.
For projectiles traveling at speeds much smaller than c,
the Liénard–Wiechert reduces to a standard Coulomb
potential (γ → 1).

Finally, an alternative method to the application of
an external perturbation to the ground-state density
is to manually modify the occupation numbers of the
ground state MOs so as to create a fictitious start-
ing electronic state. We may either conduct a sep-
arate Casida’s TD-DFT calculation [42] to prepare
a desired excited state or hole(s) can be created in
the electronic structure (“sudden ionization approxima-
tion”). Figure 2 compares the charge migrations taking
place after the ionization of an uridine monophosphate
molecule, around the sugar moiety, caused either by a
collision with an α-particle or by depopulation of a MO
localized in the sugar (after applying a Pipek–Mezey
MO localization procedure [65]). Both approaches indi-
cate that the hole initially created on the sugar part
delocalizes on the nucleobase after a few fs, while the
phosphate group does not accumulate charge over the
simulation. On the other hand, we see noticeable dif-
ferences between the two graphs. The charge on the
nucleobase is higher 3 fs after ionization with the sud-
den ionization approximation. The charge on the water
solvation shell is largely negative when we simulate col-
lision indicating the localization sites of the electrons

Fig. 1 Absorption spectra of gold nanoparticles of different
sizes obtained by RT-TD-DFT simulations with deMon2k.
After ITP, a Dirac electronic kick of strength 0.06 a.u. was
applied. RT-TD-ADFT propagations were pursued for 9 fs
with a 0.001 fs time step. PBE XC functional [63] and rel-
ativistic core potentials with associated basis set have been
used [64]
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Fig. 2 Charge migrations following ionization a uridine
monophosphate molecule solvated in water at the level of
the sugar moieties. The hole on the sugar group is created
either upon collision with an α-particle at 3.2 fs (top) or
by depopulation of MO localized on the sugar (bottom) at
time 0. The curve represents Hirshfeld [67] charge variations
with respect to the ground state. Color code: sugar in red,
nucleobase in green, phosphate group in yellow, solvation
shell in blue, and sugar + nucleobase in red-green. Adapted
with permission from [66]

expelled from the sugar. In fact, with the sudden ioniza-
tion approximation, an electron is completely removed
from the system. Thus, the water shell’s charge remains
rather small. We refer the reader to [66] for a deeper
analysis of these results.

2.4 Electronic propagations with auxiliary DFT
potentials

We describe in this section some practical details of
our implementation within the so-called Auxiliary Den-
sity Functional Theory framework. First, we expand the
Kohn–Sham molecular orbitals as linear combinations

of atomic orbitals:

ψi(r) =
∑

μ
cμiμ(r) (5)

where μ represents a basis function and cμi are the com-
plex molecular orbital coefficients. We use Gaussian-
type functions as basis sets. This methodological choice
raises caution points regarding the ability to describe
certain processes induced by strong perturbation of the
density such as ionization. A section will be dedicated
to this point below. The reason for choosing Gaus-
sian functions is the availability of highly performant
algorithms developed by the quantum chemistry com-
munity to calculate electronic integrals [68, 69]. The
Kohn–Sham energy expression for the system in the
presence of an external perturbation reads

E =
∑

μ, ν
PμνHcore

μν +
1
2

∑
μ, ν

∑
σ, τ

PμνHμν〈μν||στ〉
+ Exc[ρ] + Epert[ρ] (6)

where the Pμν is the density matrix defined as:

Pμν = 2
∑occ

i
c∗
μicνi, (7)

and Hcore
μν are elements of the core Hamiltonian for

one-electron interactions. The double vertical bar (||)
denotes the Coulomb operator. Although our code deals
either with closed- or open-shell electronic structures,
we will be focusing on the former case here, for the
sake of simplicity. The classical electron–electron repul-
sion (second term on the r.h.s. of Eq. (6)) represents a
computational bottleneck. If solved, a second bottle-
neck comes from the evaluation of the XC contribution
(Exc). To overcome these issues, deMon2k implements
the ADFT framework [70]. ADFT relies on the varia-
tional fitting of the Coulomb potential, which approx-
imates four-center electron repulsion integrals (ERIs)
by two- and three-center integrals [70–72]. To this end,
an auxiliary density function (ρ̃), expressed as a lin-
ear combination of auxiliary basis functions (ρ̃(r) =∑

kxkk(r)), is fitted to reproduce as closely as possible
the Coulomb repulsion energy. The procedure is varia-
tional and leads to the following energy:

EADFT =
∑

μ, ν
PμνHcore

μν +
∑

μ, ν

∑
k
Pμν〈μν||k〉xk

− 1
2

∑
k, l

xk〈k||l〉xl + Exc[ρ̃] + Epert[ρ] (8)

Note that the auxiliary density enters the
exchange–correlation contribution (XC) too. deMon2k
is equipped with an algorithm to automatically
generate auxiliary function sets (

{
k
}
) from a given

atomic orbital basis set. For the sake of computa-
tional efficiency, the auxiliary basis set functions are
atom-centered primitive Hermite–Gaussian functions
grouped in sets sharing the same exponent [73].
Importantly, ADFT is variational and the error made
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by introducing the fitted density can be systematically
reduced by augmenting the quality of the auxiliary
basis set. The matrix elements of the Kohn–Sham
potential derived from the ADFT energy expression
read

(9)

Kμν =
(

∂EADFT

∂Pμν

)
= Hcore

μν +
∑

k

μνk
(
xk + zk

)

+
(

∂Epert [ρ]
∂Pμν

)
,

zk =
∑

l
〈k‖l〉−1〈l|vxc〉 (10)

vxc ≡ ∂Exc/∂ρ̃ is the exchange–correlation potential.
The KS potential does not explicitly depend on the
orbital density, but only on the fitted density, hence
the ADFT denomination [74]. To investigate ionization
processes or electronic transport, it may be useful to
add complex absorbing potentials (CAP) to the KS
potential. This approach will be detailed in Sect. 3.1.
Actually, depending on the sign of the CAP, elec-
trons can be removed from or injected into the sys-
tem during RT-TD-ADFT simulations. All integrals,
except those involving XC contributions or CAP (when
defined in the real space, see below), are evaluated by
analytical methods, providing almost machine preci-
sion (16 decimals). The other integrals are evaluated
by numerical integration over atom-centered Lebedev
grids [75]. Tabulated grids or adaptive grids [75] with
user-defined accuracy are available to carry out this
task.deMon2k implements a wide range of models to
evaluate XC contributions and is interfaced with the
LibXC library [76]. The choice of functionals available
includes Local Density Approximation (LDA), general-
ized gradient approximation, or meta-generalized gra-
dient approximation functionals. Global hybrids and
range-separated hybrids that incorporate constant or
distance-dependent Fock potential contributions are
also available for RT-TD-ADFT simulations. In the
latter case, a variational fitting of the Fock potential
is introduced to avoid four-center integrals and reduce
computational cost. Importantly, this algorithm is cou-
pled to a localization procedure that permits the screen-
ing of integrals that do not contribute to the Fock
potential (see References [77, 78] for details). So far,
all functionals available in deMon2k to conduct RT-
TD-ADFT simulations ignore memory effects in the XC
potential (adiabatic approximation). This point will be
discussed in depth in Sect. 3.2.

In summary, the ADFT methodology from deMon2k
allows a drastic reduction of the computational cost
and the scaling law with system size, with controllable
accuracy, as compared to a “näıve” implementation of
KS-DFT. We have adapted this technology to RT-TD-
ADFT, thereby enabling electron dynamics simulations
within large systems. We extensively assessed the reli-
ability of RT-TD-ADFT for the calculation of absorp-
tion spectra, electronic stopping power, or attosecond

charge migrations, and found that ADFT is a reliable
methodology [79].

2.5 High-performance computing

We have dedicated substantial efforts to improving the
computational performance of our RT-TD-ADFT mod-
ule. Currently, systems with up to 1000 atoms can be
handled in routine simulations or, said alternatively,
systems containing a few thousands electrons [61, 80].
Effective core potentials and model core potentials [81]
are available to remove core electrons from the list of
explicitly represented particles and to reduce computa-
tional timing. Figure 3, left, is an example of the bench-
marks we have published in the last years for a series
of water clusters ranging from 50 to 500 molecules [19,
61, 79]. Obviously, the cost associated with the calcu-
lation of the Kohn–Sham potential is manageable even
for the largest droplet (5000 electrons) and exhibits a
favorable scaling law. This result indicates that our RT-
TD-ADFT module fully benefits from the algorithmic
machinery developed by Köster and co-workers for sta-
tionary calculations, notably, the MINRES approach
[82] to density fitting and the double asymptotic expan-
sions schemes [83, 84] to handle electronic integrals
calculations. The most demanding computational task
in RT-TD-ADFT is the calculation of the propagator
(“matrix exponentiation”), Eq. (4). It is evaluated here
using a Taylor series with an interface with the ScaLA-
PACK library [85] which shows good parallelization
properties [19, 61]. In the case depicted in Fig. 3, one
could use up to 400 CPUs with appreciable gain and to
further strongly decrease the cost of the simulation [19].
To go one step beyond in terms of efficiency, we have
recently developed a hybrid CPU/GPU code with very
encouraging results [86]. In our current implementa-
tion, matrix exponentiation and basis transformations
are handled by GPUs. The graph on the right-hand side
attests to the drastic decrease in the computational cost
now associated with these tasks, showing a reduction by
a factor of almost 40 for the largest droplet containing
500 molecules. There is actually still room for further
improvement of code performance.

2.6 Real-time time-dependent multicomponent
ADFT

Multi-component DFT (MC-DFT) provides a theoreti-
cal framework to describe quantum mechanical systems
composed of particles with different masses, charges, or
spins. MC-DFT is rooted in an extension of the Hohen-
berg–Kohn theorems for composite systems where the
total energy is a functional of the one-particle den-
sities, which are built from reference non-interacting
orbitals under the Kohn–Sham formalism [87]. MC-
DFT has been employed to incorporate nuclear quan-
tum effects beyond the Born–Oppenheimer approxima-
tion [88–90] and to analyze the interaction of atoms
and molecules with exotic particles, such as positrons
[91] and muons [92]. The MC-DFT approach provides
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Fig. 3 Large water droplets containing up to 5000 electrons are amenable to RT-TD-ADFT simulations (version 6.1.6).
Timings to conduct 1 fs simulations with a time step of 1 as, PBE functional with a direct scheme to calculate electronic
repulsion integrals. The x -axis represents the number of atomic orbitals. Calculations run on the Jean Zay supercomputer
(at IDRIS) on 2 Intel Cascade Lake 6248 processors (20 cores at 2.5 GHz), namely 40 cores per node, 192 GB of RAM
memory, and 4 Nvidia Tesla V100 16 GB GPU cards. Left: Pure CPU simulations conducted with ScaLAPACK (40 CPU
cores). Right: hybrid CPU-GPU simulations (40 CPUs and 4 GPUs used). Note the change of scale between the two graphs.
Adapted with permission from [79] and [86]

a more efficient framework for the inclusion of quan-
tum effects as compared to traditional path integral
methods [93]. Moreover, time-dependent (TD) MC-
DFT methodologies have been formulated based on
an extended Runge–Gross theorem for multicompo-
nent quantum systems [94]. Linear response TD-MC-
DFT has been employed to simultaneously compute the
vibrational and electronic absorption spectra of small
molecules [95, 96]. Those spectra have also been com-
puted from real-time (RT) propagation of the electronic
and nuclear densities [97]. In addition, RT-TD-MC-
DFT propagation has been used to study the dynamics
of a positronic molecule in a laser field [98]. Further-
more, the RT-TD-MC-DFT method has been coupled
with Ehrenfest dynamics to study excited-state proton
transfer reactions [99]. In this approach, the transferred
proton and the electron propagations are described with
RT-TD-MC-DFT while the remaining nuclei move clas-
sically [97].

It is important to note, however, that despite many
advances in the field, the development of quantum par-
ticle electron correlation functionals is still a major
challenge that hinders the widespread adoption of MC-
DFT methods.

Recently, we extended the Auxiliary DFT (ADFT)
formulation to multicomponent systems [100, 101]. In
the current deMon2k code, auxiliary densities can
be safely used to evaluate the electron–electron, pro-
ton–proton, and electron–proton Coulomb interactions,
along with the electron–proton correlation energy [101].
A few LDA functionals have been implemented to
evaluate the latter contribution [88–90]. Including the

ADFT formalism in the MC-DFT framework signifi-
cantly decreases the computational effort as it reduces
the formal scaling of the MC-DFT calculations with
respect to the number of electrons and protons [101].
The real-time propagation of the auxiliary density for
multicomponent systems has also been proposed. The
implementation of this RT-TD-MC-ADFT method is
currently underway and will be described in due course.

3 Matter under strong perturbations

3.1 Complex absorbing potential, Gaussian basis
sets, and all that

RT-TD-ADFT simulations give access to response
properties of molecules subjected to weak or strong
perturbations. Above and near ionization transitions
raise several issues related to the description of con-
tinuum states (non-bonded electrons, NBEs). These
transitions are characterized by resonance states that
quickly decay, eventually through auto-ionization chan-
nels [102]. Furthermore, because of the localized basis
set used in deMon2k, the continuum turns out to be rep-
resented as a succession of discrete electronic states [21].
This leads to artificially higher ionization transitions
than expected. These transitions also create spurious
absorption bands at high-energy spectra that further
can contribute to unreal auto-ionization events. NBEs,
on the other hand, are reflected back to the molecu-
lar system when they reach the border of the space
spanned by the chosen basis set, while in reality, NBEs
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would escape the system. In the presence of a laser field,
NBEs are driven back to the bath of bound electrons,
therefore perturbing the “real” electron dynamics tak-
ing place there. NBEs finally pose technical issues when
trying to define atomic charges and charge flows when
analyzing the outputs of the simulations.

To cope with the artificial confinement of NBEs, a
common approach is to introduce a complex absorb-
ing potential (CAP) that removes fractions of electrons
in the course of the simulation. As their name indi-
cates, CAPs are introduced in the imaginary part of
the Kohn–Sham potential (Eqs. (3) and (9)). Two fla-
vors of CAP are available in deMon2k. In the first one,
the potential is defined according to distance criteria in
the real space (“spatial CAP”) [102], while in the other
it is defined according to the energies of the Kohn Sham
MOs describing NBEs (“Energy CAP”). As in the work
of Schlegel and co-workers, the former is built from a
superposition of atom-centered CAPs (vspace

a )[103].

vspace(r) = mina

∑Natoms

a=1
vspace

a (r) (11)

vspace
a (r) =

⎧
⎪⎨

⎪⎩

0, r ≤ R◦

V maxsin2
[

π
2W

(r − R◦)
]
, R◦ < r < R◦ + W

V max, r ≥ R◦ + W

(12)

The CAP strength smoothly increases beyond a
threshold distance from the molecule (R◦) and reaches
a maximum value (V max), when the distance reaches
R◦ + W . In our code, spatial CAPs are calculated by
numerical integration of atom-centered Lebedev grids,
with a user-defined accuracy. The parameters R◦, W ,
and V max have to be carefully optimized, for exam-
ple, by running a perturbation-free RT-TD-ADFT sim-
ulation from the SCF solution and by checking energy
and wave function’s norm conservations. A spatial CAP
positioned too close to the molecule would absorb
bound electrons in the ground state, which is generally
not the desired outcome. Spatial CAPs are tricky to use
with localized basis sets. First, basis functions need to
be present to describe electrons at large distances, using
very diffuse functions and/or grids of ghost atoms [103].
This causes an increase of computational cost due to the
increase in the number of basis functions and of the grid
points necessary to evaluate XC integrals, not to men-
tion the risk of linear dependences within the basis set.
Second, spatial CAPs do not distinguish unbound elec-
trons from bound electrons in very diffuse states (e.g.,
Rydberg states). As a consequence, a spatial CAP will
not absorb the sole NBE, making the interpretation of
results delicate sometimes. Ideally one would position
a spatial CAP far away from the molecule (e.g., by set-
ting R◦ > 50 Å), but this would be associated to an
explosion of the computational cost with a code relying
on localized basis sets.

An alternative is to define CAP based on another
property of NBEs, namely their energies. We may
indeed decide to absorb electrons populating MOs of
high energy in the course of RT-TD-ADFT simulations.

Lopata and co-workers used this method to simulate
near-edge X-ray absorption spectra [104]. Energy CAP
can be defined as follow:

vener = C ′(t)ΓC
′∗(t), (13)

γi =
{

0, ε′
i ≤ 0,

γ0[exp(ξε′) − 1], ε′ > 0.
(14)

C
′

is the matrix of the MO coefficients in an
orthonormal basis [105] and Γ is a diagonal matrix, the
non-zero elements of which are defined by Eq. (14). γi

can be interpreted as an ionization rate of an electron
in state i associated to a lifetime 1/2γi. Three empir-
ical parameters define this lifetime, namely γ0, ξ, and
ε0. γ0 has units of energy and sets the energy scale. ξ
specifies the speed at which electrons populating state i
will be absorbed. It has units of reciprocal energy. The
higher the Kohn–Sham state the smaller the lifetime. ε0

is the vacuum energy cut-off introduced to shift the ith
MO level ε′

i = εi − ε0. This shift is needed to account
for the underestimation of the ionization potential with
almost all XC functionals (see the dedicated Sect. 3.2).
It is thus strongly dependent on the functional. As the
energy of the lowest unoccupied MO (εLUMO) equals
the opposite of electron affinity for the exact functional
[106], one can set ε0 to enforce this equality provided
separate calculations are done to evaluate the electron
affinity of the system of interest. Alternatively, one can
use Casida’s formulation of TD-DFT to estimate ε0

[104]. In general, ε0 is thus also system-dependent.
For weak perturbations, the energy CAP may be

evaluated only once from the SCF solution (see e.g.,
[104]). On the other hand, for stronger perturbations
associated with significant electron density absorption
the electronic spectrum varies (εi) and one should re-
evaluate the CAP on-the-fly. This is not an option we
have explored so far. At present, our experience with
CAP defined by Eqs. (11)–(14) is mitigated because
of the sensitivity of the results obtained with the cho-
sen CAP parameters. Room certainly exists to further
improve the treatment of electron emission with our
code.

For the sake of illustration, we report here the irradia-
tion of molecular nitrogen N2 (aligned along the z -axis
with bond distance 1.09 Å) with an XUV pulse and
with a fast proton. We start our discussion with XUV
irradiation. We apply a squared cosine-shaped pulse
along the z -axis. The maximum electric field strength
and energy of the XUV pulse are established at 0.005
Ha/bohr (3.5 × 1012 W/cm2) and 30 eV, respectively.
The total duration of the pulse is 30 fs. We have used
the PBE XC functional [63]. The simulation was con-
ducted for 50 fs with a time step of 1 as. A diffuse basis
set built from the aug-cc-pVTZ but complemented with
28 diffuse functions was used [103].

The threshold distance R◦, width W , and maximum
potential V max of the spatial CAP are set to 15 Å, 5 Å,
and 15 Ha, respectively. For the energy CAP, the energy
scale γ0 and damping strength ξ are set to 0.2 Ha and
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0.05 Ha−1 respectively. The vacuum energy cut-off has
been approximated as 0.0318 Ha so that the corrected
energy of the lowest unoccupied MO equals the electron
affinity calculated from two separate SCF calculations
of the neutral and anionic forms of the molecule.

Time-dependent profiles of the variation of total
energy relative to the ground state (ΔE ), of the num-
ber of absorbed electrons by the CAP (Nabs

e ), and of
the number of electrons in KS MOs of positive energy
(NMO+

e ) are depicted in Fig. 4. For simulations without
CAP (green line), ΔE increases upon application of the
pulse with a maximum at around 17 fs, then decreases

Fig. 4 N2 ionization by 30 eV XUV pulse (top) and by
an impact with a 0.07 MeV H+ ion (bottom). a Variation
of total energy (XUV pulse), energy deposition (H+ ion),
b number of electrons absorbed by the CAP and c the
numbers of electrons still in positive energy KS MOs, all
as function of the simulation time (fs). d corresponds to
the propagation of the dipole moment on the z-axis and the
pulse field between 16 and 18 fs. In order to easily compare,
the amplitude of the pulsed field is scaled

and remains stable after application of the pulse. Panel
c shows that the NMO+

e curves follow the same evo-
lution as ΔE . This feature arises when the delay of
propagation of the dipole moment varies compared to
the pulse field which produces destructive and construc-
tive superpositions, as shown in Panel d. When adding
a spatial or energy CAP, NBEs are quickly absorbed
and the number of electrons is, as expected, no longer
conserved (blue and red line) which also scales down
ΔE , but both kinds of CAP give similar results. After
a sharp increase at around 15 fs, when the external
electric field is the most intense, a rather steady situ-
ation is obtained. In the end, the introduction of CAP
was necessary to correctly describe the ionization and
dynamics of the XUV pulse interaction. Either type of
CAP can successfully remove the NBEs and decrease
NMO+

e .
We now consider the irradiation with a proton hav-

ing 70 keV of kinetic energy. The same methodology
and parameters are employed, except the CAP strength
which is slightly modified: the threshold distance R◦
of the spatial CAP was changed from 15.0 to 12.5 Å
and, the energy scale γ0 of energy CAP from 0.25 to
0.05 Ha. These modifications were needed to ensure
the stabilization of the propagation. The proton was
initially positioned 30 Å away from N2 and struck the
N–N bond after 816 as 60 eV are deposited upon col-
lision with the ion (Fig. 4, bottom). In the absence
of CAP, the energy is conserved after the collision, as
expected for an isolated system. The number of elec-
trons in positive energy KS MOs suddenly rises from 0
to 1.25 and smoothly increases up to 1.5 electrons. The
sharp increase is clearly due to electronic excitations at
the moment of the collision, while the slower phase is
likely due to many internal electronic transitions tak-
ing place within the electron cloud (e.g., some auto-
ionization processes). When a CAP is added, a fraction
of electrons is absorbed, with a consequent reduction
of total energy. CAP does not seem to affect much the
amount of energy deposited by charged particles. This
may be explained by the short interaction time com-
pared to a photon pulse. On the other hand, the two
flavors of CAP, either defined in spatial or in energy
space, give different results. With the chosen parame-
ters, the energy CAP absorbs electrons faster than the
spatial CAP. The low-energy electrons emitted upon
collision need time to reach the R◦ distance of the spa-
tial CAP while they are more readily absorbed with
the energy CAP after energy deposition. After 30 fs,
the number of electrons and the total energy of the sys-
tem haven’t converged to the same values. One could
probably tune the parameters of the energy CAP to
match more closely the results obtained with the spa-
tial CAP, for instance by decreasing the γ0 term. It is
actually hard to tell which of the two CAP formulations
is the most appropriate. This discussion illustrates the
aforesaid comment on the use of CAP with deMon2k
and the fact that more work is needed along this line.
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3.2 Exchange–correlation functionals

The exact exchange–correlation functional appearing in
the total energy expression in the Kohn–Sham formu-
lation is unknown. In practice, different approximate
XC functionals have been proposed and implemented
in deMon2k software (see Sect. 2.3).

Several issues are raised when using common func-
tionals to simulate matter under strong perturbations.
A prominent difficulty is the time dependence of the XC
potential vxc[ρ](r, t) that should incorporate memory
effects from previous times. This time dependence is
actually absent from most TD-DFT implementations,
including ours. The adiabatic approximation becomes
problematic when the system is brought far away from
the ground state, as in the case of strong perturbation.
Well-known limitations of adiabatic TD-DFT are the
difficulty to describe multiple electron/hole transitions,
and the inability to simulate charge migrations after
photoionization [107]. Important efforts are made to go
beyond the adiabatic approximation but the track is
long and tedious [108–111].

Besides the time dependence of vxc, another difficulty
is the incorrect asymptotic decay of the exchange poten-
tial, which should decay as −1/r. A wrong asymptotic
behavior was shown to severely underestimate high-
lying excited states such as Rydberg states [42]. In addi-
tion, the improper treatment of the derivative disconti-
nuity and of fractional occupations [112, 113] are other
sources of concern when dealing with charge migrations
flowing in and out of atoms in large systems. In the
past, we have used the correct asymptotic potential gen-
eralized gradient approximation functional developed
by Carmona-Esṕındola, Gázquez and co-workers [114].
Their recent “nearly correct CAP” exchange functional
(NCAP) [115, 116] that includes approximated deriva-
tive discontinuity looks promising too.

Global hybrid functionals, as they adopt a fraction of
exact exchange with the correct energy and potential
asymptotic character, allow a more accurate descrip-
tion compared to their generalized gradient approxima-
tion counterpart. Nevertheless, the asymptotic decay
of these XC functionals is modulated by a factor that
ranges from 0 to 1 representing the amount of the exact
exchange. As a consequence, the exchange potential
decay will be underestimated depending on this factor
and the one related to the DFT exchange. In range-
separated hybrid functionals, the asymptotic decay of
the potentials can be improved relative to their global
hybrid counterparts, allowing a better description of a
wide range of properties [117–119]. A physical justifica-
tion of range-separated hybrid functionals was proposed
by Savin in the 1990s [120, 121].

Another drawback arising from the use of an approxi-
mate XC functional is the so-called self-interaction error
[122]. The latter can be better illustrated considering a
one-electron system in which the electron should expe-
rience only the external potential and for which we
exactly know the KS potential and the total energy. In
the ground-state density, the system, which is assumed
to be self-interaction free, should fulfill the following

condition:

EH [ρi, σ] − EXC[ρi, σ] = 0. (15)

Over the years, several studies have shown how the
self-interaction error can affect, for example, ionization
processes [123], dissociation of molecules, and the pre-
diction of the energy of charge-transfer states (the lat-
ter is further explored below). To address this issue,
self-interaction correction (SIC) methods, based on the
Perdew–Zunger correction [122], are frequently used.
The latter involves the explicit subtraction of the self-
interaction error for each orbital. An alternative is the
average density SIC (ADSIC) [124], which assumes that
the single electrons can be represented by equal single-
particle densities, then replacing the single-electron
density ρi with the averaged density ρ/N (with N the
total number of electrons). ADSIC method is simple
and shows good scaling properties with system size. It
was shown to largely correct the ionization potential
for a variety of atoms and molecules of different sizes
and chemical compositions [125, 126]. ADSIC was later
tested in attosecond electron dynamics simulations with
comparisons against time-dependent Schrödinger equa-
tion on top of correlated field-free stationary electronic
states. RT-TD-DFT with ADSIC was found to perform
qualitatively well in the case of strong but non-ionizing
laser field irradiation [127]. On the other hand, a recent
(RT-)TD-DFT study of a protein chromophore (bacte-
rial chlorophyll) suggests that ADSIC still faces diffi-
culties for charge transfer excited states [128].

Self-interaction error, together with the incorrect
asymptotic behavior and the missing derivative dis-
continuity of XC functionals, can lead to an incorrect
description of long-range charge transfer (CT) processes
and charge recombination [129, 130]. Computational
tools have been developed to understand the reliabil-
ity of TD-DFT approach in describing CT processes.
A formula originally proposed by Mulliken [131] allows
evaluating the lower excitation energy for one-electron
intermolecular CT (ωCT) between a donor (D) and an
acceptor (A):

ωCT = IPD − EAA − 1
R

(16)

IPD is the ionization potential of the donor, EAA

is the electron affinity of the acceptor and 1/R repre-
sents the hole-electron coulombic interaction after CT.
Inspired by this expression, the MAC index [132, 133],
originally developed in linear-response TD-DFT, uses
a Koopman-type approach in which the IPD and EAA

are replaced by the weighted average of the starting (εi)
and final (εa) DFT-Hartree–Fock orbital energies that
are involved in the CT transition under analysis:

MAC =
∑

ia[cia
2
(
εa

DFT−HF−εI
DFT−HF

)
]∑

iacia
2

− 1
DCT

(17)
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The weights cia are the configuration interaction
coefficients obtained as solutions of perturbative TD-
DFT equations using Casida’s formulation and the
DFT-Hartree–Fock orbital energies are obtained with a
single-cycle Hartree–Fock calculation on the converged
SCF KS orbitals εa

DFT−HF and εi
DFT−HF. This ad hoc

correction aims at qualitatively correcting the underes-
timation of virtual orbitals due to self-interaction error
as discussed in [133]. Finally, the geometrical distance
between the donor and the acceptor units is replaced by
the DCT (distance of charge transfer) index, a descrip-
tor able to quantify the degree of locality of a charge
transfer process by giving an estimate of the hole-
electron separation at the excited state only on the basis
of the density redistribution upon the excitation [134].
The resulting MAC energy value represents in this way
a lower bound to the transition energy related to the
charge transfer state under analysis and the compari-
son of this value with the energy computed at TD-DFT
level of theory allows the identification of unphysical
states. If a given TD-DFT transition has an energy
greater than the related MAC energy, it will be asso-
ciated with a real state, while a TD-DFT energy lower
than the MAC index will identify a ghost or a spurious
state. Recently, some of us were involved in the modifi-
cation of the MAC index for simulation in the RT-TD-
DFT domain [135]. The time-dependent MRT

AC index at
time tj takes the following expression:

MRT
AC(tj) =

∑
virt

[
nvirt(tj)εvirt

DFT−HF
] − ∑

occu

[
noccu(tj)εocc

DFT−HF
]

∑
virtnvirt(tj) +

∑
occunoccu(tj)

− 1
DCT(tj)

(18)

where εDFT−HF
occu and εDFT−HF

virt are respectively the
eigenvalues of the contributing occupied (starting)
and virtual (final) molecular orbitals with single-cycle
Hartree–Fock correction, while the weights nvirt(tj) and
noccu(tj) are the related occupation number at time
tj extracted on-the-fly during the electron dynamics.
As well, the DCT index is computed at every time
tj using the on-the-fly density snapshots. Finally, by
comparing the set of MAC energy values from tinitial

to tfinal with the charge transfer state energy result-
ing from the dynamics, it is possible to assess which
regions of the simulation derive from a correct or erro-
neous description of the process for a given exchange
and correlation functional. We here report an example
of the MRT

AC application for a long-range charge transfer
state simulation in RT-TD-ADFT. In the latter study,
the molecules under analysis are a family of typical
push–pull systems containing two groups, one acting as
an electron donor (–NH2) and another playing the role
of electron acceptor (–NO2), connected via a spacer of
different lengths. We here consider as an example the
molecule with three phenyl groups as a spacer in order
to show the ghost states identification in a long-range
CT process (Fig. 5, left). After converging the ground-
state density via an SCF procedure, we applied a cos2-
shaped electric pulse fulfilling the π-pulse condition,

namely µ0n · F 0

∫ +∞
−∞ s(t)dt = �π, where µ0n , F 0 and

s are the transition dipole moment, obtained by a sep-
arate Casida’s equation TD-DFT calculation, the oscil-
latory electric field associated to the HOMO–LUMO
transition and the envelop function, respectively [135].
The simulation has been done using an LDA functional
in order to magnify the presence of ghost states.

Figure 5 shows the evolution during the simulation of
the distance of the charge transfer computed with DCT

index for a time range of 10 fs. By computing the MRT
AC

index at the same timeframe and comparing it with the
transition energy predicted during the RT simulation,
we have been able to spot potential spurious density
distributions appearing during the dynamics. Indeed,
the red color identifies time frames for which RT ener-
gies are expected to be incorrectly described with the
LDA functional, while the green color is for time frames
corresponding to correctly predicted RT energies. Over-
all, one can remark that the percentage of densities
during the simulation corresponding to ghost states is
higher than the real one, a result that agrees with the
linear-response calculation that shows the presence of
a low-lying CT ghost state. In summary, the MRT

AC pro-
vides the researcher with a tool to identify those excited
states that result to be erroneously shifted in energy,
thus allowing to assess the reliability of the RT-TD-
DFT simulations. Note that the index is not able by
itself to cure the presence of unphysical/ghost states

which are caused by an inexact exchange–correlation
potential.

4 Topological analyses of time-dependent
electronic structures

Dedicated analysis tools are mandatory to extract
insights from RT-TD-DFT electron dynamics simula-
tions. deMon2k implements the calculation of atomic
charges, and more generally intrinsic atomic multipole,
up to quadrupole, moments following various parti-
tion schemes of the real space (Hirshfeld [136], Becke
[137], Voronoi. . . ). To this end, numerical integrations
of the electron density over the atoms are conducted
at regular intervals along the simulation. As this task
can become computationally intensive, the user has the
possibility to tune the quality of the integration grid,
and, more importantly, can substitute the Kohn–Sham
density with the auxiliary density to extract atomic
multipole moments, which is a very safe procedure in
most cases [67]. Another kind of analysis is to project
the time-dependent electronic structure onto the set of
ground-state MOs, providing information on the
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Fig. 5 On the right: the CT distance (Å) in the regions of the simulation corresponding to real (green) and ghost states
(red). Mean CT distance considering all data points of the simulation (dashed line in black), mean CT length values derived
from the ghost (dashed line in red) and real states (dashed line in green). On the left: the molecule under analysis and
a table showing the result of the MAC index applied on the transition energy of the CT state predicted in the TD-DFT
approach and the percentage of ghost states predicted by the MAC index in the RT-TD-DFT simulation. Reproduced with
permission from [135]

orbitals’ population fluctuations over time. deMon2k
can further generate specific files in “cube” format to
visualize various molecular fields of interest, such as
the electronic density, the spin density, the electro-
static potential, the Kohn–Sham density currents, or
the time-dependent electron localization function (TD-
ELF) [138, 139]. The cube file format can be read by
many visualization software packages including Visual
Molecular Dynamics (VMD) [140]. Finally, one can
generate “wfn” files along the simulations as input to
popular analysis packages such as Multiwfn [141] or
Topchem2 [142].

We have proposed to extend the approach relying on
the topological analysis of stationary electronic [143,
144] structures to the time-dependent regime, focus-
ing so far on the electron density and on TD-ELF
[145, 146]. Topological analyses of TD-ELF allow fol-
lowing changes in the Lewis structure under the effect
of strong perturbation. TD-ELF incorporates a wealth
of information on the time evolution of the chemical
structures which allows the qualitative and quantitative
characterization of the formation/breakage of bonds
between atoms, the migration of charge between topo-
logical basins, and the eventual attachment of electron
density to the projectile [146]. For the sake of illus-
tration, Fig. 6 shows the evolution of TD-ELF basins
of a guanine nucleobase upon collision by a 1 MeV α-
particle [146]. Just before collision (panel a), the elec-
tronic structure resembles that of the ground state with
typical ELF topological basins, some being highlighted
on the Figure. Immediately after collision (panel b), the
disruption of the C=C central double bonds (showed in
green characters) is clearly apparent, while the overall
structure is recovered 400 as after (panel c) as a result
of electronic relaxation. The analysis also reveals the
perturbation of other topological basins further away

from the collision site, for example, the double C–O
bond (V(C–O)) or nitrogen lone pairs (V(N)).

5 Mixed quantum–classical simulations

In this section, we describe two methodologies that are
useful for modeling ultrafast phenomena when nuclear
motion comes into play. Indeed, while RT-TD-DFT is
a useful methodology to simulate the physical stage,
albeit with limitations described above, nuclear motion
inevitably becomes significant after a few femtoseconds
and must be taken into account. Ehrenfest molecu-
lar dynamics (MD) is a natural extension of RT-TD-
DFT whereby atom nuclei are moving in the mean-
field potential created by the superposition of elec-
tronic states provided by RT-TD-DFT. This method-
ology finds application to simulate the physicochemical
stage. On the other hand, Born–Oppenheimer molec-
ular dynamics (BOMD) assumes electrons stick to the
ground-state potential energy surface. BOMD is there-
fore more adapted to simulate the chemical stage.
We emphasize that the ab initio MD research field is
incredibly vast. We thus do not claim any exhaustivity
here but only focus on some methods implemented in
deMon2k so far for applications to radiation chemistry
problems.

5.1 Born–Oppenheimer molecular dynamics

In theory, the exact description of a system is achieved
if the time-dependent Schrödinger equation is solved
for both nuclei and electrons. BOMD simplifies the
problem using the Born–Oppenheimer approximation
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Fig. 6 Topological analyses of TD-ELF after collision of
guanine by a 1 MeV α particle traveling along the z direc-
tion. a–c For each TD-ELF topological basin, we indicate,
in order, the volume (Å3), the electronic population, and the
intrinsic dipole moment (D , components in brackets). Colli-
sion is defined Color code: green: carbons, white: hydrogens,
blue: nitrogen, red: oxygen, yellow: helium (α particle), and
orange: off-nuclei ELF attractors. Adapted with permission
from [146]

to deal with the electrons and nuclei independently.
The electronic ground-state energy is described by DFT
while the nuclei dynamics are based on the classical
equations of Newton. As for electron dynamics simu-
lations, we introduce a time step ΔtN to propagate
nuclear motion. With BOMD, one assumes that the
relaxation of the electron cloud is instantaneous from
one nuclear propagation step to another. In deMon2k, it
is implemented [147, 148] using the leapfrog method [3],
which consists in the following steps: (1) Calculate mid-
step velocities Ṙ at t + ΔtN

2 (Eq. (19)), (2) Calculate
position vectors R at time t + ΔtN (Eq. (20)), (3) Cal-
culate forces F at time t + ΔtN (Eq. (21)), and finally

(4) Calculate velocities Ṙ at time t + ΔtN (Eq. (22))

Ṙ

(
t +

ΔtN
2

)
= Ṙ(t) +

[
F (t)
m

]
ΔtN

2
(19)

R(t + ΔtN ) = R(t) + Ṙ

(
t +

ΔtN
2

)
ΔtN (20)

F (t + ΔtN ) = −∇E[ρ(r)] + ZA

∑
B �=A

ZB
RA − RB

|RA − RB |3
(21)

Ṙ(t + ΔtN ) = Ṙ

(
t +

ΔtN
2

)
+

[
F (t + ΔtN )

m

]
ΔtN

2
(22)

In these equations, ZX stands for the nuclear charge
of atom X and m is the mass of the atom. The micro-
canonical ensemble is often used due to its ease of
implementation. However, it is easier to control tem-
perature instead of energy during experiments and the
systems are usually studied in the canonical ensemble.
Several thermostats were thus implemented in deMon2k
by Köster and collaborators to work in the canoni-
cal ensemble (Berendsen, Hoover or Nose–Hoover ther-
mostats) [147].

We now illustrate the BOMD methodology with two
applicative examples relevant to radiation chemistry. In
the first example, we consider the difficult problem of
Dissociative Electron Attachment. This is a well-known
degradation reaction of molecules [6]. However, the
mechanism is complex and remains the topic of investi-
gations using computational methods including molec-
ular dynamics [149, 150]. Kohanoff and co-workers pro-
posed to approximate that the incoming electron, which
binds to the molecule and has time to relax to form
a ground-state anion while the excess energy is trans-
ferred to a specific vibrational mode [151]. Let RA, RB

and Ṙ
(0)

A , Ṙ
(0)

b , be the initial position and velocity vec-
tors of atoms A and B, ηA, ηB , the extra velocity vec-
tors of atom A and B, and mA, mB , the masses of
the atoms. The new velocities of atoms A and B after
energy deposition are given by Eq. (23).

ṘA = Ṙ
(0)

A + ηAµ̂ ; ṘB = Ṙ
(0)

B + ηBµ̂ (23)

µ̂ =
RA − RB

|RA − RB | (24)

The extra velocities are calculated from momentum
conservation law given the gap energy ΔE between
the resonant state and the lowest unoccupied molecular
orbital:

1
2
mAη2

A+
1
2
mBη2

B +mAηAṘ
(0)

A ·µ̂+mBηBṘ
(0)

B ·µ̂= ΔE

(25)

mAηA + mBηB = 0 (26)
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Fig. 7 Dissociation of a
butyl chain of
tri-butyl-phosphate upon
the addition of an electron
bringing an excess of 2.8 eV
in the C–O bond. BOMD
simulations were carried out
with the PBE0 XC
functional and
aug-cc-pVDZ/GEN-A2*
basis sets. The bond
breaking is shown in the
upper snapshots as a dark
dotted line alongside the
distance between the
carbon and oxygen atoms

The sum of Eqs. (25) and (26) gives:

1
2
mA

(
1 +

mA

mB

)
η2

A + mA

[(
Ṙ

(0)

A − Ṙ
(0)

B

)
· µ̂

]
ηA = ΔE

(27)

with ηB = −mAηA/mB . Under the approximation that

ΔE 	 mA

[(
Ṙ

(0)

A − Ṙ
(0)

B

)
.µ̂

]
ηA, one gets the following

expression for the extra velocities:

ηA =

√√√√
2ΔE

mA

(
1 + mA

mB

) ; ηB =

√√√√
2ΔE

mB

(
1 + mB

mA

)

(28)

Using this method, Kohanoff and co-workers investi-
gated the consequences of low-energy electron attach-
ment to the thymine nucleobase. They showed, for
example, that the dissociation energy increases in the
presence of a solvent as hydrogen bonds can form
between solvent molecules and the system [151]. We
refer the reader to [151, 152] for more extensive studies
on other molecules, including solvation effects. We have
implemented this method in deMon2k and we illustrate
it here for the first time by considering DEA on tri-
butyl-phosphate. This molecule is an organic extractant
of Uranium (VI) and Plutonium (IV) used in the recy-
cling process in the nuclear industry [153, 154]. Assum-
ing that a low-energy electron can attach to the phos-
phate group, an excess of 2.8 eV was injected into one
of the three O–C bonds connected to it (Fig. 7). A butyl
radical is quickly ejected from the rest of the molecule
in a few fs. The relative total charge of the ejected

butyl chain increases by 0.32 while the one of the phos-
phate group decreases by the same quantity. The spin
charge fully localizes on the leaving butyl moiety too,
leaving a negatively charged di-butyl phosphate (data
not shown). We observe charge oscillations between the
phosphate group and the other butyl chains at longer
times. After 60 fs, the radical part is 4 Å away from
the anion and is not influenced by these atomic charge
oscillations.

We come to a second example of the application of
BOMD simulations we have reported recently [66]. In
a campaign of picosecond time-resolved radiolysis of
anionic uridine monophosphate (USP, standing for Uri-
dine, Sugar, Phosphate), it was found that 5 ps after
application of the ionizing pulse, no spectroscopic sig-
nature of the ionized nucleobase (U+) moieties could
be detected, pointing toward the existence of an ultra-
fast (< 5 ps) charge transfer mechanism that would
have reduced the ionized nucleobase (U+ → U). We
investigated two distinct nuclear-driven charge trans-
fer mechanisms. In the first one, we followed the Mar-
cus theory of electron transfers and evaluated the free
energy and free reorganization energy associated with
the charge transfer from the phosphate group to the
uracil group (Fig. 8, top). This was achieved by means
of constrained DFT BOMD simulations [155]. Despite
strong electronic coupling between the charge transfer
electronic states (0.076 ± 0.017 eV), we found that a
Marcus-theory-like electron transfer could not explain
the reduction of U+ on the sub-picosecond time scale.
On the other hand, we discovered that a non-adiabatic
relaxation could provide an explanation. Indeed, the
topology of the potential energy surfaces creates the
conditions that after ionization, the system relaxes on
the U+SP PES, crossing on the way the charge transfer
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Fig. 8 Ab initio MD simulations using constrained DFT
to explain the ultrafast reduction of ionized U+SP. Top:
Marcus theory modeling based on constrained DFT BOMD
simulations between the U+SP and USP+ charge trans-
fer states. Bottom: sketch of non-adiabatic decays follow-
ing USP ionization, which competes with a Marcus electron
transfer. Adapted with permission from [66]

USP+ state (Fig. 8, bottom). The hopping probabil-
ity is significant and strongly depends on the electronic
coupling between the states and on the electronic de-
coherence time scale. In summary, our numerical simu-
lations provided a molecular explanation for intriguing
experimental results [66, 156].

5.2 Ehrenfest molecular dynamics

The physicochemical stage of irradiation may be
described by TD-DFT-based Ehrenfest molecular
dynamics (EMD), which is a mean-field scheme belong-
ing to the so-called mixed quantum–classical method-
ologies [36, 46, 157, 158]. This means that some degrees
of freedom are treated quantum mechanically (in this
case, electrons) while others are treated in the classical
mechanics limit. As in BOMD, atom nuclei are consid-
ered classical point particles to which Newton’s equa-
tions of motion apply. However, while in BOMD, the
nuclear and electron degrees of freedom are treated in
a self-consistent manner, by relaxing the electrons for

every new nuclear configuration invoking the so-called
adiabatic approximation, EMD attempts to couple elec-
tronic to nuclear degrees of freedom.

The time-dependent solution of the coupled
equation-of-motions starts by defining the general
TD Schrödinger equations for both nuclei (29) and
electrons (30):

i
∂Ω(R, t)

∂t
= −1

2

∑

b

1

mb
∇2

Rb
Ω(R, t)

+

{∫

Ψ∗(r, t)Hr(r, R)Ψ(r, t)dR

}

Ω(R, t)

(29)
i
∂Ψ(r, t)

∂t
= −1

2

∑

a

∇2
r a

Ψ(r, t)

+

{∫

Ω∗(R, t)VrR(r, R)Ω(R, t)dR

}

Ψ(r, t)

(30)

The model introduces a feedback between the nuclear
(Ω(R, t)) and electron (Ψ(r, t)) states in the quantities
in curly brackets. Since such quantities are integrated,
the potential given by one type of particle acting on
the other type of particle is averaged. This will repre-
sent a disadvantage if the simulation traverses a region
of possible states with very different energies since one
may end up with wave functions that do not represent a
physically realistic situation for the system under study.
Thus, it is highly recommended to apply EMD in situ-
ations where electron states are relaxed in a time scale
much shorter than the time scale for nuclei or ultra-
fast processes triggered by strong intense laser fields.
There are other limitations of EMD and alternatives
have been proposed by the researchers to overcome
them [159]. Interested readers are referred for exam-
ple to the surface hopping [160] or exact factorization
[28] mixed quantum–classical approaches.

Considering the difference in the typical time scales
for electrons (attoseconds) and nuclei (femtoseconds), it
is reasonable to implement the EMD in such a way that
the nuclear equation of motion is not necessarily solved
for every electron step (Δte). An interpolation scheme
borrowed from Ref [158] is adopted: nuclear positions
are propagated every ΔtN according to Newton’s law
using the forces acting on the nuclei (Eqs. (19)–(22)),
while an intermediate time step (ΔtNe) is introduced to
interpolate nuclear positions between two nuclear steps.
In this way, the energy gradients are calculated only
every few ΔtN , reducing the overall computational cost.
On the other hand, the values for Δte, ΔtNe and ΔtN
must be chosen with care to ensure energy conserva-
tion. As usual, the time steps should be small enough
to resolve the physical phenomena to be simulated. A
strong perturbation of the electronic degrees of freedom
requires smaller time steps. The first application of our
EMD code is reported in Ref. [161] for the irradiation
of a peptide by a 100 keV proton. In this example, ΔtN
was set to 20 as and ΔtNe and Δte were both set to
0.33 as. We plan further applicative studies in the com-
ing months.
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6 Accounting for environment effects

So far, apart from the example of the USP molecule,
we have discussed molecular systems in the gas phase,
but most problems of interest in radiation chemistry
take place in the condensed phase. We describe below
the methodologies available in deMon2k to account
for environment effects. We describe here the hybrid
QM/MM methodology using either non-polarizable or
polarizable force fields.

6.1 Hybrid QM/MM

The QM/MM methodology, i.e., the combination of
quantum chemical (QM) and molecular mechanics
(MM) simulation methods, was initially formulated
in 1976 by Warshel and Levitt [162], with the aim
to extract the best of both worlds: the accuracy of
QM methods (semi-empirical [163], Kohn–Sham Den-
sity Functional Theory [40] or wavefunction methods),
and the applicability of force-field-based MM[164] to a
large number of atoms. Its continued relevance to chem-
ical, and especially biochemical, questions means that
it is still the subject of developments and implementa-
tions today (see non-exhaustively [161, 165–168]).

Indeed, for inhomogeneous atomic systems, such as
those that can be separated into a “QM region” which
requires a description of its electronic structure and
an “MM region” for which atomic positions and elec-
trostatic interactions constitute a sufficient description,
there is a need for a method bridging the gap between
the too expensive DFT/wavefunction methods and the
too inaccurate MM/MD. The crux of the problem here
is the computational cost of representing the full chem-
ical system at a quantum chemical level of accuracy,
i.e., with its electron density in the case of DFT or its
wavefunction in post-Hartree–Fock methods. A typical
strategy to treat a system with the QM/MM method-
ology would be to limit the “QM region” of interest to
the order of 100 to 103 atoms, while the “MM region”
would contain the rest of the protein or macromolecule,
and as much solvent as needed to properly reproduce
the system of interest.

The in-deMon2k QM/MM implementation [168]
follows an additive scheme or electrostatic embed-
ding [169]. It was historically implemented by A. G.
Goursot†, and later developed in our group for model-
ing complex biological systems [161]. In such a setup,
and choosing DFT as our method of choice to evaluate
the energy of the QM region, the total energy of the sys-
tem can be computed in several ways. In this scheme,
the total energy EQM/MM[ρ] expression in Eq. (31) is
composed of three terms: the energy of the QM region
EQM[ρ], the energy of the MM region EMM, and the
interaction energy between the QM and MM regions
EQM∗MM[ρ].

EQM/MM[ρ] = EQM[ρ] + EMM + EQM∗MM[ρ]
(31)

In deMon2k, the energy of the QM region is deter-
mined at the ADFT (Eq. (31)) or RT-TD-ADFT lev-
els that were explained in Sect. 2.2. As the atoms in
the MM region are described as classical particles, the
total energy is a function of the force field applied
to them. Equations (32)–(34) bring the main types of
interaction together: the bonded and non-bonded inter-
actions. On the one hand, Ebonded includes bond ener-
gies Ebond, bond-angles energies Eangle, torsion-angle
energies Etorsion, and improper dihedral-angle energies
Eimproper. On the other hand, the non-bonded energies
Enon - bonded are described by the sum of Coulomb’s law
energy Eelec and a Lennard–Jones potential ELJ for the
van der Waals interactions.

EMM = Ebonded + Enon - bonded (32)

Ebonded = Ebond + Eangle + Etorsion + Eimproper

(33)

Enon - bonded = Eelec + ELJ (34)

deMon2k implements the OPLS [170] or Amber [171]
force fields to define the explicit form of the bonded
terms. The interaction energy makes the connection
between the QM and the MM regions (Eq. (36)). It is
formed by the interaction energy between the electron
density ρ of the QM region and the atomic charges qK

of the MM region, then the Coulomb interaction energy
EZq between MM atomic charges qK and nuclei ZA

of the QM region, and the sum of the Lennard–Jones
interactions between MM and QM atoms.

EQM∗MM[ρ] = Epq + EZq + ELJ (35)

EQM*MM[ρ] = −
MM∑

K

∫
qK · ρ(r)
|r − RK |dr

+
QM∑

A

MM∑

K

[
qK · ZA

|RAK|

+εAK

[(
rmin
AK

RAK

)12

− 2
(

rmin
AK

|RAK|
)6

]]

(36)

Since EQM∗MM depends explicitly on ρ, the external
potential includes a contribution from the external MM
charges. It is often the case that the boundary between
QM and MM region cuts through a covalent bond. In
such cases, link atoms or tuned pseudo-potentials are
available with deMon2k [161].

For large solvated systems such as that shown in
Fig. 9, a convenient way to model long-range effects
in a QM/MM simulation is to enclose the MM part,
which contains mainly solvent molecules, into a polar-
izable continuum solvent medium, such as the Onsager
continuum [172]. A major development carried out
in our group has been the QIB program (QM/MM
Input Builder). QIB interfaces popular MM pack-
ages for bio-simulations (AMBER [171], CHARMM
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Fig. 9 Typical QM/MM setup in deMon2k adapted to run
MD simulations. Reproduced with permission from [66]

[173], TINKER-HP [174], GROMACS [175]. . . ) to
deMon2k [176]. It is now straightforward to pre-
pare input files for RT-TD-ADFT, BOMD, or Ehren-
fest MD with QM/MM on complex biological struc-
tures (DNA/protein complexes, proteins embedded in
a membrane . . . ).

Figure 10 illustrates some results obtained about
the physical stage of irradiation of solvated oligonu-
cleotides with fast ions [66]. We identified a mechanism
that we named “ebb-and-flow ionization” by which the
incoming projectile polarizes the electron cloud prior
to the collision, inducing an accumulation of electron
density on the collided molecules. This effect is known
experimentally as the Barkas effect [177]. Among other
results, we identified that secondary electrons tend to
attach to nucleobases and on the ribose, but also in
the first solvation shell. Variations of the irradiation
conditions, mass or kinetic energy of the projectiles,
significantly affect the ionization probabilities (Fig. 10,
bottom). More insights can be found in the original
publication [80].

6.2 Going beyond the static embedding picture

A further improvement in the description of the envi-
ronment in a QM/MM framework can be achieved by
the use of polarizable force fields [178]. A possible way
is to assign to each polarizable site within the MM
region, typically atoms, an induced dipole that depends
on the polarization state of the electron cloud in the
QM region. In the context of coupling RT-TD-DFT
simulations to polarizable MM force fields, we showed
that a point–charge–dipole model of induction whereby
each induced dipole is calculated as the product of a
static and isotropic atomic polarizability with the elec-
tric field on the MM atom is sufficient to deal with

Fig. 10 RT-TD-ADFT/MM simulations have given access
to key insights into solvated DNA irradiation by swift ions.
Top: simulated system, the entire DNA, and the first solva-
tion shell are described by DFT. Bottom: the amount of elec-
tron depletion on 7 molecular moieties encountered by the
projectiles on their path (3 water molecules in blue, thymine
in red, cytosine in orange, and two guanine–cytosine pairs
in green and violet). Different projectile properties are com-
pared. Reproduced with permission from [80]

embedded systems subjected to strong field irradiations
[179, 180]. It is not needed to involve frequency depen-
dence in atomic polarizabilities, nor to consider higher-
order terms depending on the first or second hyper-
polarizabilities [179]. In this QM/MMpol scheme, the
QM region perturbs the polarizable MM environment
in real-time, and, as a back reaction, the polarizable
MM environment affects the electron dynamics by the
inclusion of the potential created by induced dipoles
into the Kohn–Sham potential. Here again the avail-
ability of electron fitted densities helps to drastically
reduce the cost of the QM/MM interaction calculations.
We have described our methodology at length in various
publications. We refer the interested reader to previous
publications for details [61, 180]. We instead focus here
on two applicative studies.

In [180], we highlighted various regimes governing the
dynamics of electronic polarization within a solute’s sol-
vation shells as a function of the distance to the solute
(Fig. 11). The electron density residing on the solute
was perturbed by a narrow electric kick (Fmax), the
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strength of which was varied and set here to 0.01 a.u.,
and the subsequent average induced dipole’s norm (Δμ)
on water molecules was monitored in real time. The
response of the environment to the perturbation was
shown to be dependent on the distance to the molecule:
the further away, the weaker the response. Induced
dipole moment oscillations are damped over time (Mid-
dle panel of Fig. 11) as a result of energy dissipation
with the MMpol region. The induced-dipole autocorre-
lation function revealed insights into the response mech-
anisms that depend on the electric fields generated by
the electron density on the QM region and by the fluc-
tuating MM-induced dipoles on the polarizable water
molecules (Bottom). We refer the interested reader to
Ref. [180] for a detailed analysis. In a following article
[62], we introduced relativistic delays in the propaga-
tion of electric fields mediating the QM*MMpol inter-
actions. We found these effects small for the kind of
perturbation investigated (i.e., narrow electric kicks on
the QM region).

We have investigated polarizable embedding effects
in the context of large biological systems irradiation
with fast ions. First, we considered as targets the phos-
phate backbone of the DNA model shown in Fig. 10
[181], and a DNA–protein complex [61]. We found for
both systems that induction within the MM region does
not affect energy deposition, nor the ultrafast responses
of the electron cloud (charge migrations) in the follow-
ing femtoseconds. This result can be understood by the
fact that energy deposition is driven by Coulomb inter-
actions between the projectile and the electron cloud
and is a very local property.

The variations of Kohn–Sham energy, relative to the
ground state (energy deposition), over time are depicted
in (Fig. 12) in the polarizable and non-polarizable sim-
ulations. When the α-particle interacts with the elec-
tron cloud of the system, after a few attoseconds, it
deposits its energy which leads to sharp excitation and
ionization. The use of a polarizable force field has only
a small effect on energy deposition, with a tiny rise of
about 1 eV compared to our previous work with a much
larger QM region. The difference is negligible compared
to the high deposited energy of 238 eV. Since the pro-
cess of energy transition from the charged particle is
very fast, induction on MMpol region is not significant.

The environment merely has a polarization effect
on the ground-state density. In particular, for the
DNA/protein complex, no differences could be seen
in post-collision charge fluctuations (Fig. 13). Note
that in our previous simulations, the environment close
to the struck molecular moieties was included in the
QM region, pushing away the polarizable MM region
and, hence, decreasing the likelihood that induction
could have a role on the very site of irradiation. For
the present article, we thus repeat our simulations on
the DNA/protein complex, reducing the size of the
QM region from 342 to 102 atoms. The layer now
encompasses three amino acids (ASP–ARG–THR), one
nucleotide T, and four water molecules. The rest of
the system is described with the polarizable Amberff02
force field [182]. An α-particle with kinetic energy of

Fig. 11 After perturbation of the solute, a peptide
is described at the RT-TD-ADFT level, by a narrow electric
pulse, the solvation shells, described by a polarizable force
field respond in a distance-dependent manner via complex
mechanisms. Top: color code defining the solvation layers by
distance. Middle: mean variation of water dipole moments
by solvation layer with respect to the ground state. Bottom:
auto-correlation function of curves plotted in the middle
panel. Adapted with permission from [180]

0.25 MeV is initially placed 40 Å away from the center
of mass of the QM region. During the simulation, the α-
particle travels through the QM region and strikes the
backbone between the aspartate and arginine residues.

We show in Fig. 13 the charge variation on the frag-
ments along the simulation taking the electronic ground
state as a reference. Charge fluctuations start during
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Fig. 12 Energy deposition over 10 fs as a result of the col-
lision of 0.25 MeV He2+ with DNA–protein complex in a
polarizable force field (red solid line) and non-polarizable
force field (dash blue line)

the approaching of the projectile (that is, before the
impact). An ebb-and-flow mechanism of ionization is
at play as seen from the decrease/increase charge vari-
ation at the moment of collision (0.8–1.3 fs). As already
reported, this initial phase is insensitive to the incorpo-
ration of electronic induction on the MM region. For
longer time, partial holes formed on ASP and ARG
migrated to the surrounding media and delocalized over
other fragments. The introduction of MM induction
affects charge flows on ARG and THR, a few femtosec-
onds after irradiation (yellow and violet lines). This can
be understood as the side chains of ARG and THR are
more polar and directly exposed to the MM environ-
ment.

7 Conclusions and perspectives

In this article, we have reviewed recent developments
made in deMon2k to simulate the early stages of biolog-
ical matter subjected to ionizing radiations. Of course,
the road is long before having at hand all the tools
needed to tackle adequately the great challenges posed
by ionizing radiation interacting with inhomogeneous
matter. The ADFT-based methodologies have already
permitted to obtain new and encouraging results.
deMon2k now offers a range of well-integrated simula-
tion techniques including electron dynamics and molec-
ular dynamics simulations in the ground and excited
states (BOMD and Ehrenfest MD), including nuclear
quantum effects with multicomponent DFT, as well as a
coupling to polarizable force fields for hybrid QM/MM
simulations. It runs efficiently on HPC architectures
using either CPU or GPU machines. The code is avail-
able for interested users on request to the authors, keep-
ing in mind that the modules are progressively inte-
grated into the public version of deMon2k [49]. Pure
RT-TD-ADFT simulations of large biomolecules have
shed light on the physical stage of ionizing radiation,
revealing the so-called ebb-and-flow mechanism of ion-
ization by fast ions and other valuable insights into the
location of secondary electrons. We also deployed these
simulation tools in various applicative studies to help
the interpretation of pulse radiolysis studies. Appli-
cations to XUV ionization of large biological struc-
tures have been carried out and will be reported soon.
New developments are underway in our laboratories

Fig. 13 Left, charge variation of nucleoprotein complex (left) with a polarizable (solid lines) and non-polarizable (dashed
lines) force field environment over 10 fs. Right: represents the QM region irradiated by the α-particle (green line); the
green bead indicates the collision site of the α-particle with the protein backbone. The color codes refer to the fragments:
ASP, aspartate (red); ARG, arginine (yellow); THR, threonine (purple); T, thymine base (cyan); dT, thymine-sugar moiety
(brown); and WAT, water molecules (blue)

123



Eur. Phys. J. Spec. Top. (2023) 232:2167–2193 2187

either to further improve the computational perfor-
mance, improve the reliability of TD-ADFT simula-
tions, or to devise new approaches to reach more real-
istic simulations.
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73. A.M. Köster, Hermite Gaussian auxiliary functions
for the variational fitting of the Coulomb potential
in density functional methods. J. Chem. Phys. 118,
9943–9951 (2003)
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75. A.M. Köster, R. Flores-Moreno, J.U. Reveles, Effi-
cient and reliable numerical integration of exchange-
correlation energies and potentials. J. Chem. Phys.
121, 681–690 (2004)

76. S. Lehtola, C. Steigemann, M.J.T. Oliveira, M.A.L.
Marques, Recent developments in libxc—a comprehen-
sive library of functionals for density functional theory.
SoftwareX 7, 1–5 (2018)
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Smith, B. Hess, E. Lindahl, GROMACS: High perfor-
mance molecular simulations through multi-level paral-
lelism from laptops to supercomputers. SoftwareX 1–2,
19–25 (2015)

176. J.D. Samaniego-Rojas, L.-I. Hernández-Segura, L.
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