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Abstract Liquid crystals are assemblies of rod-like molecules which self-organize to form mesophases, in
between ordinary liquids and anisotropic crystals. At each point, the molecules collectively orient themselves
along a privileged direction, which locally defines an orientational order. Sometimes, this order is broken,
and singularities appear in the form of topological defects. This tutorial article is dedicated to the geometry,
topology, and physics of these defects. We introduce the main models used to describe the nematic phase
and discuss the isotropic–nematic phase transition. Then, we present the different families of defects in
nematics and examine some of their physical outcomes. Finally, we show that topological defects are
universal patterns of nature, appearing not only in soft matter, but also in biology, cosmology, geology,
and even particle physics.

1 Introduction

Sometimes the deepest physics occurs just before our
eyes, without really being noticed for decades except
as a meaningless and minor accident of nature. Open
your hand and look closer at your fingerprints: most
of the folds extend regularly, but sometimes, at the tip
of the fingers or in the palm of the hand, they engage
in strange circumvolutions serving no purpose, apart
from fortunetellers and forensics. In fact, these seem-
ingly innocent-looking patterns are some of the most
fascinating objects in nature: topological defects. They
are at the crossroads of mathematics (topology, geome-
try) and physics (statistical physics but also cosmology
or mechanical engineering for example) [1].

The present tutorial is primarily intended for stu-
dents and researchers from the condensed matter
physics community, but it may also be a useful resource
to any theoretical physicist interested in the many
bridges connecting different areas of physics. It is aimed
as a self-contained introduction to topological defects in
physics, and it is split into three parts. The first section
is designed as a primer on nematic liquid crystals. After
noting some historical milestones, we review the main
models that can be used to describe the nematic order
(Frank–Oseen, Maier–Saupe, Landau–de Gennes, and
Lebwohl–Lasher). Then, we discuss the topology of the
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isotropic—nematic phase transition in connection with
the formation of topological defects.

In the second section, we present the basics of nema-
toelasticity and establish a classification of the differ-
ent linear defects that can be observed in liquid crys-
tals. The geometric description of defect lines in terms
of Riemann manifolds is introduced, and the general
metric of a disclination is derived from a variational
principle. Some outcomes on transport phenomena are
discussed, in particular the possibility to generate Berry
phases.

The last section is a survey of different problems
where the same linear defects occurring in liquid crys-
tals have been recognized as the key factor. A particu-
lar emphasis will be put on biology, as tissues display
an orientational order similar to the nematic order. We
will see that defects play a pivotal role in morphogenesis
and oncology. Particular attention will also be paid to
cosmology, since singularities called cosmic strings seem
to be in perfect correspondence (formation, geometry,
dynamics) with the defect lines in nematics.

2 A crash course on liquid crystals

2.1 A story of carrots and sticks

Liquid crystals have invaded our everyday lives, from
flat screens (liquid crystal displays or LCDs) to anti-
counterfeiting technologies used in banknotes. The tale
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Fig. 1 Patterns in human fingerprints. The values m =
±1/2 indicated there are explained later in this article

of liquid crystals is a fascinating story (for comprehen-
sive accounts see [2–6]), and as is often the case in
the history of science, their discovery started from a
considerably less utilitarian premise. The first observa-
tions of what is now understood as liquid crystalline
behavior were reported on myelin, a lipidic substance
surrounding nerve cores, by Rudolf Virchow in 1850
(the discoverer of white blood cells) and Carl von Met-
tenheimer (the personal physicist of Arthur Schopen-
hauer) in 1857. In 1888, an Austrian botanist, Friedrich
Reinitzer, was investigating the role played by choles-
terol compounds contained in carrots. He successfully
extracted crystals of cholesteryl benzoate and started to
put them through a series of experimental tests. One of
them consisted in measuring their melting point, which
was expected to be precisely and uniquely defined for
pure crystals. Reinitzer observed a melting point at
about 145.5◦ C, at which cholesteryl benzoate crys-
tals turn into a milky liquid that displays both dou-
ble refraction and optical activity, properties usually
assumed to belong to solid crystals. But against all
odds, he found a second point at 178.5◦ C, at which
the turbid liquid becomes transparent [7].

The perspective of a pure chemical compound hav-
ing two melting points really bothered Reinitzer, and
on March 14 of the same year, he wrote a letter to ask
a renowned crystallographer, Otto Lehmann, about his
observations. At that time, Lehmann had a position at
the technical high school in Aachen and he was famous
for inventing the “crystallization microscope,” an appa-
ratus coupling a regular optical microscope with two
crossed optical polarizers and a thermal deck. From
samples provided by Reinitzer, Lehmann found that the
turbid phase can indeed flow like a liquid but behaved
optically like an anisotropic crystal [2]. He eventually
launched an extensive program of experiments to dis-
cover other substances behaving like the turbid liquid.
In 1904, Lehmann summed up his discoveries in a mono-
graph entitled “Flüssige Krystalle” (“flowing crystals”)
[8], a term which later evolved into “liquid crystals.”

An important breakthrough was performed in 1907
by chemist Daniel Vorländer, from the University of
Halle. Vorländer realized that the optical and mechan-
ical properties of the milky liquid originate from the
elongated structure of the molecules comprising it
[5]. He used his knowledge of molecular structure to
become the first chemist to systematically synthe-
size liquid crystals (more than 2000 compounds were
designed in his group). Despite these advances, liquid
crystals were still not recognized as a noble research
topic, partly because of the vivid opposition of leading
chemists such as Gustav Tammann, Walther Nernst,
Georg Quincke, and Tadeusz Rotarski, partly because
of Lehmann’s personality, a mix of priggishness and
mysticism (mostly the result of his bounds with Ernst
Haeckel).

The gravity center of liquid crystal research shifted
from Germany to France after a set of lectures given
by Lehmann at the faculty of Sorbonne in 1909 [4, 5].
Lehmann personally invited the mineralogist Frédédric
Wallerant and his assistant Charles Mauguin, both from
Sorbonne, but his works also raised the interest of Paul
Gaubert, then heading the mineralogy laboratory of the
Museum of Natural History in Paris, and that of two
geologists from the Ecole des Mines in Saint-Etienne,
George Friedel and his assistant François Grandjean.
In 1922, Friedel made the most significant landmark
discovery in the development of liquid crystal. Being
assemblies of microscopic sticks, liquid crystals display
physical properties that prevent them from being either
isotropic fluids or crystalline solids. In a seminal paper
[9], Friedel argued that liquid crystals were new inter-
mediate phases of matter, or mesophases, and he clas-
sified these mesophases into three main families, known
as nematic, smectic, and cholesteric phases.

Nowadays, these classifications have been enriched
with many newcomers such as the elusive blue phases
I, II, and III [10, 11], the columnar phases [12], the hex-
atic phases, originally foreseen by John Kosterlitz and
David Thouless [12–14], and the cubatic phases [15].
It is now understood that these different mesophases
are intimately related to the chemical structure of
the mesogenic molecules comprising them. Amphiphilic
molecules have their head and tail displaying oppo-
site chemical affinities. When dissolved in water, the
hydrophobic and the hydrophilic groups organize into
membranes and micelles, which give rise to lyotropic
mesophases (blue phases, cubic phases, hexagonal
phases, or lamellar phases) driven by the molecular con-
centration. Nematogenic molecules are partially rigid,
generally because of phenyl groups, and bear electric
dipoles (a carbonitrile group for 5CB, Schiff’s base
for N -(4-methoxybenzylidene)-4-butylaniline [MBBA],
etc.). They form temperature-driven or thermotropic
mesophases where the Van der Waals interactions are
of the order of the thermal agitation. There also exist
amphotropic mesophase, which share both lyotropic
and thermotropic properties.

123



Eur. Phys. J. Spec. Top. (2023) 232:1813–1833 1815

2.2 Mathematical theories of the nematic phase

For thermotropic nematics, on which we will focus here-
after, the molecules of liquid crystals may be described
by long, neutral rigid rods, which interact through
electrostatic dipolar or higher-order multipolar inter-
actions. Maximization of entropy at high temperatures
leads to a disordered phase in which all the molecule
orientations are equally probable, independently of the
directions taken by neighboring molecules: this is the
isotropic phase. At low temperatures, a privileged ori-
entation becomes favorable to minimize the molecu-
lar interactions, and various ordered structures may
emerge spontaneously [16, 17]. The nematic phase is
thus a compromise between the attractive van der
Waals interactions that align rigid cores on average
along the same direction (anisotropy) and the thermal
agitation of the aliphatic chains increasing the mean
steric hindrance (fluidity).

When order occurs along one space dimension only,
the system is said to be uniaxial. The preferential direc-
tion which emerges after averaging at the mesoscopic
scales, defines a unit vector, �n, called the director field.
The dipole–dipole interactions tend to align molecules
head-to-tail, which was confirmed by X-ray diffraction
in the cyanobiphenyls 5CB and 7CB [18]. Therefore,
there is statistically no preferential arrangement of the
molecule ends and �n ≡ −�n: this is called Z2 symme-
try. This dictates that the order parameter should be a
function of cos2 θ, with θ the angle between a molecule
and the director field, rather than of cos θ as in ordi-
nary magnets (Zeeman interaction). Ideally, the order
parameter should be normalized and mark a clear dif-
ference between a narrow distribution about ±�n and a
random one. A choice fulfilling all these criteria is the
scalar parameter proposed by Tsvetkov [19]:

S = 〈P2(cos θ)〉 =
1
2
(
3
〈
cos2 θ

〉 − 1
)

(1)

where P2(x) is the second-order Legendre polynomial1
and 〈.〉 is the ensemble average performed over all
molecules in the nematic.

The simplest way to describe the nematic phase is to
rely on a mean-field theory, for which the microscopic
details are blurred into a larger-scale continuous field.
The main continuum theories describing nematic liquid
crystals are the Oseen–Frank theory, the Maier–Saupe
theory, and the Landau–de Gennes theory.

The Frank–Oseen model is based on minimizing
the free elastic energy [20, 21]: it is probably the
simplest one to get the essential features of the
nematic phase, even it fails at describing accurately
the isotropic–nematic phase transition or the internal
structure of defects (they have infinite energy). We will
present it in more details in Sect. 3 to determine the
outer structures of disclinations.

1Note that the choice of the second Legendre polynomial
here implicitly assumes three-component �n vectors. For two-
component vectors, a different choice is needed [74].

In the Maier–Saupe theory [22–24], each molecule
experiences a mean field due to long-range attractive
pairwise interactions. Properties of the nematic phase
can surprisingly be reproduced from an effective ori-
entational potential that ignores short-range repulsive
forces (for a discussion see [25]):

V (cos θ) = −K〈P2(cos θ)〉P2(cos θ) (2)

where K is the average strength of molecular interac-
tion, 〈P2(cos θ)〉 is the order parameter, and P2(cos θ)
encompasses the angular dependance of the potential.
In the canonical ensemble, the order parameter is thus
given by an integral equation involving the orientational
distribution function f(cos θ) [26]:

〈P2(cos θ)〉 =
∫ 1

0

P2(cos θ)f(cos θ)d(cos θ) (3)

f(cos θ) =
exp(−βV (cos θ))

Z
=

exp(−βV (cos θ))
∫ 1
0 exp(−βV (cos θ))d(cos θ)

(4)

with β = 1/kBT . Numerical resolution gives a phase
diagram for 〈P2(cos θ)〉 with respect to T in good
agreement with experimental data [26]: in particu-
lar, the transition temperature is found to be Tc =
0.00019kBT/K, and the order parameter displays a
small discontinuity at the transition.

In mathematical models, one often considers the
stronger approximation in which the molecules have a
center of symmetry. Therefore, even though a molecule
at space location r is idealized as a unit vector �u(r),
an order parameter cannot be described by an ordinary
vector like in ferromagnets, and following De Gennes
[27, 28], one should instead consider a second-rank ten-
sor order parameter (for a detailed discussion on order
tensor theories for nematics, see Chapter 4 of [29])

Qαβ(r) =
1
N

∑

r′∈Ω

(uα(r′ − r)uβ(r′ − r) − 1
3δαβ)

(5)

The sum over the r′’s extends inside a ball Ω around r,
of size small, but large compared to microscopic scales.

The �u(r)’s live in a three-dimensional space attached
to each real space site, and the uα(r)’s are their Carte-
sian components. The r’s which locate molecules are
ordinary space vectors. Two types of vectors are used,
since both r’s and �u’s need not have the same dimen-
sionality (e.g., a film of liquid crystal is naturally
described by two-component vectors r’s, which spec-
ify the location of three-component �u’s). The tensor
Qαβ(r) has useful properties. It is symmetric and trace-
less, which reduces the number of its independent com-
ponents from nine to five. It vanishes in the isotropic
phase, and in the nematic phase, it is generally written
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Fig. 2 The definition of the order parameter at the meso-
scopic scale

as

Qαβ = Q(T )
(

nαnβ − 1
3
δαβ

)
(6)

where Q(T ) is a quadrupolar scalar order parame-
ter that identifies with S for rigid rod-like molecules
but that can encompass more general nematogens. For
prolate and oblate molecules, it respectively takes the
forms

[Qαβ ] =

⎛

⎜
⎝

−1/3 0 0

0 − 1/3 0

0 0 2/3

⎞

⎟
⎠ and [Qαβ ] =

⎛

⎜
⎝

1/6 0 0

0 1/6 0

0 0 − 1/3

⎞

⎟
⎠

(7)

in the principal axes basis.
Being a local order parameter, the object Qαβ(r)

allows for a mean-field description in terms of an expan-
sion of the free energy density known as Landau–de
Gennes theory. The approach is based on the assump-
tion that in the vicinity of the phase transition where
the order parameter vanishes, it is a small parame-
ter, and the free energy density can thus be expanded
in powers of the order parameter. Since there are
three independent invariants made from the tensor Qαβ

(these are Tr (Q), Tr (Q2), and det (Q)), the expansion
is built from three leading terms [11, 17, 30]

F =F0 +
∫

d3r
(

1
2A(T )Qαβ(r)Qβα(r)

+ 1
3B(T )Qαβ(r)Qβγ(r)Qγα(r)

+ 1
4C(T )(Qαβ(r)Qβα(r))2

)
. (8)

The first coefficient changes its sign at a temperature
called T ∗, A(T ) = A0(T −T ∗), and B and C are essen-
tially independent of the temperature, and their values
can be approximated by those taken at T ∗. The small
elastic constant limit of Landau–de Gennes theory con-
verges to Frank–Oseen theory [31]. Additional terms
are not required if the coefficient of the higher-order
term, C > 0, which ensures stability of the ordered
phase. Further analysis shows that a first-order transi-
tion takes place at a temperature Tc slightly above T ∗.
This phenomenological theory is thus consistent with
experimental evidence of a weak first-order transition
(in three-dimensional systems).

In real systems, the order parameter is slowly vary-
ing in space, and additional terms in the expan-
sion are required, which involve gradients of the
order parameter. This is then usually referred to as
Ginzburg–Landau theory. This is particularly impor-
tant in the presence of topological defects which impose
specific spatial variations of the molecular orientations
in the ordered phase.

The description of the nematic phase has also been
extended to non-mean-field approaches. In this perspec-
tive, let us mention lattice model studies. As discussed
above for the order parameter, in the nematic phase,
one can measure the deviation of molecules’ individual
orientations with respect to the director by the scalar
product �ui · �n = cos θi—where the i ’s are now lattice
sites (they play the role of the r’s previously)—but due
to the additional local Z2 symmetry which identifies
“heads” and “tails,” one cannot distinguish between
opposite directions. As a consequence, cos(θi) vanishes
on average while cos(θi)2 does not and is thus more
appropriate for a possible local interaction term. In the
disordered phase, the angles are furthermore measured
with respect to any arbitrary direction, and the ther-
mal average leads to cos θi = 0 and cos(θi)2 = 1/3.
The quantity cos(θi)2 − 1/3 thus represents a conve-
nient scalar nearest-neighbor interaction energy. In the
literature on liquid crystals, one usually defines this by
the second Legendre polynomial, φi = P2(cos θi), like
for the order parameter. This definition suggests con-
sidering lattice Hamiltonians to describe the nematic
transition, such as the so-called Lebwohl–Lasher model
[32, 33]:

− H

kBT
=

J

kBT

∑

(i,j)

P2(�ui · �uj) (9)

where the sum is usually restricted to nearest-neighbors
in the spirit of studies of critical phenomena. The con-
stant J is an empirical interaction parameter. This
model, which is also called the RP 2 model, can be seen
as a discrete version of the Maier–Saupe model. It has
been (and is still) extensively investigated from Monte
Carlo simulations [34–38]. Except for the cos(θi)2, it
looks very similar to the Heisenberg model. Neverthe-
less, the latter model exhibits a second-order transition
in three dimensions, while the Lebwohl–Lasher model
displays a first-order transition [32, 39].
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Let us stress that the situation sketched above does
not apply directly in two-dimensional liquid crystals.
The question of the nature of the transition of the Leb-
wohl–Lasher model is still debated nowadays [40–42],
but the role of topological defects there is not under
discussion. The situation is either similar to the Koster-
litz–Thouless phase transition [14, 43] which is governed
by unbinding of topological defects pairs, or to that of
the Heisenberg model for which there is no transition at
all, due to the instability of these defects. In all cases,
two- or three-dimensional systems, the presence of topo-
logical defects is of paramount importance.

2.3 The isotropic–nematic phase transition
for pedestrians

The isotropic–nematic phase transition has been a long-
standing stumbling block in statistical physics, and
since the 1970s, abundant literature has been produced
to understand its key mechanisms and its generic prop-
erties [17, 30, 44–50]. To grasp the essential features
of the isotropic–nematic phase transition, we stick to
the Maier–Saupe model and compare the thermal agi-
tation of the aliphatic chains (increasing the mean steric
hindrance, e.g., fluidity) to the interaction potential
(2) that aligns rigid cores on average along the direc-
tor field (anisotropy). Maier–Saupe’s model leads to
similar results as Landau–de Gennes theory, but from
rather simpler premises. The nematics in consideration
hereafter are thermotropic; for example, the external
parameter driving the transition is temperature.2

At low temperatures, thermal agitation is weak. Due
to the low steric hindrance, nematogens are closer, and
van der Waals interactions prevail: the phase is that of
a molecular solid (with sometimes a smectic phase in
between). The corresponding symmetry groups are dis-
crete. At high temperatures, thermal agitation prevails
over molecular interactions: the nematogens are dis-
tant from each other, and they form an isotropic fluid.
The rotational symmetry group of the phase is SO(3),
the group of rotation in three dimensions. Within the
intermediate range of temperatures, with a symme-
try axis given by �n, its symmetry group is therefore
SO(2) × Z2 = O(2) (Fig. 3). Therefore, the transition
from isotropic to nematic phase involves a spontaneous
symmetry breaking.

A thorough inspection of this transition reveals
that it is a three-step nucleation mechanism involving
[51–53]: (1) the formation of small spherulites where an
orientational order arises without correlation with each
other, (2) the growth of the ordered domains, and (3)
the formation of threads when spherulites have min-
gled. We also saw that Maier–Saupe theory and the
Lebwohl–Lasher model predict a weak discontinuity of
the order parameter at Tc. Measurements on differ-
ent nematic samples also showed the existence of low

2Other possibilities include lyotropic nematics: the
external parameter is the concentration of nematogens in
a solvent, and the most adequate description is Onsager’s
model.

latent heat, which suggests a first-order transition, but
as pre-transitional effects (decay of the dielectric con-
stant with T close to Tc) have also been reported [54],
the isotropic–nematic phase transition is in fact weakly
first order. Yet having cleared up the nature of the tran-
sition does not explain the presence of the threads. This
is the object of the next section.

2.4 Topology of the isotropic–nematic transition

Topology is the branch of mathematics focusing on the
properties that remain unchanged when a topological
space is “continuously deformed” (neither torn apart
nor punctured). When a topological property changes,
it occurs by integer steps, not gradually. Algebraic
topology (Poincaré’ s former analysis situs) seeks alge-
braic invariants (numbers, abelian groups, rings, etc.)
to study and classify topological spaces into equivalence
classes. These objects may characterize properties such
as the connectedness, the number of holes, and the exis-
tence of boundaries. Two manifolds are topologically
equivalent or homeomorphic if there exists a bijective
and continuous map between them. These two mani-
folds have to be of the same dimension, as required by
Brouwer’s invariance of domain theorem. Intuitively, it
corresponds to a continuous deformation with no glu-
ing or tearing. Putting it colloquially, for an algebraic
topologist, a doughnut is the same thing as a teacup
(an object with one hole), but a doughnut is different
from a French pretzel (three holes).

Homotopy provides a weaker notion of equivalence
between topological spaces than homeomorphism, and
it has been used to investigate the properties of sin-
gularities in ordered systems such as liquid crystals
[55–63], superfluids [55, 64], and the universe [65, 66].
Homotopy corresponds to a continuous deformation
where bijectivity is not preserved, i.e., gluing, shrink-
ing, or flattening the space is allowed. For instance,
in R

2, a loop (dimension 1) is homotopic to a point
(dimension 0). The first homotopy group (or Poincaré
group, or fundamental group) is denoted as π1(M), and
it tests whether all closed curves (loops) on a mani-
fold M are homotopic to a point. If this is the case,
the fundamental group is trivial, π1(M) = 0. When
does this fail? When there are holes! In the aforemen-
tioned example, π1(R2) = 0 but π1(R2 − {0}) �= 0:
removing the origin creates a zero-dimensional (0D)
hole in the 2D manifold. Technically, we just used the
first homotopy group to test the simple connectedness
of R

2 − {0}. When π1(M) �= 0, there are equiva-
lence classes of homotopic loops sharing the same wind-
ing number (Whitney–Graustein theorem). The wind-
ing number of a regular curve is the number of times
the tangent vector fully rotates counterclockwise when
going once around the curve. Two closed loops can be
attached together to form a new closed loop, which
defines the binary operation underlying the group struc-
ture [58]. For M = R

2 − {0}, π1(M) = Z: the equiv-
alence classes consist of loops turning n times around
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Fig. 3 Phase transitions with 5CB

Fig. 4 Left: Trivial closed loops around a 0D hole (white region, spatial extent is for convenience). Right: Some equivalence
classes around a 1D hole (white region, spatial extent is for convenience)

the origin (clockwise for n < 0, counterclockwise for
n > 0).

They are many other topological properties than can
be tested from homotopy groups: for instance, π0 tests
whether the topological space is path-wise-connected,
i.e., if for any pair of points, one can find a path between
them that remains in the topological space. Intuitively,
it corresponds to the notion of a space that is in one
whole piece. In that respect, π0(R2 − {0}) = 0 but
π0(R2 − {x + y = 0}) �= 0: thus, π0 tests the existence
of 1D hole in the 2D manifold. It has to be empha-
sized that the content of the homotopy group is strongly
dependent on the dimension of the manifold: indeed, a
0D hole (or point defect) in a 3D manifold can never be
lassoed (see 4), and its fundamental group homotopy is
trivial. For π1(M) to be nontrivial, the hole has to be
1D, e.g., a line defect (see Fig. 4). As a rule, we will
bear in mind that in dimension p, if the kth homotopy
group πk(M) is nontrivial, then topological defects of
dimension p − 1 − k appear.

Now, what is the connection of homotopy with phase
transitions? This idea is simple: homotopy can predict

the kind of order parameter singularities (or topologi-
cal defects) that can appear after the phase transition
from its symmetry-breaking pattern. During a phase
transition with a symmetry breaking pattern G −→ H,
defects arise according to the topology of the order
parameter space defined as the coset M = G/H. The
coset notation means that two elements of G can be
identified if they differ by an element of H . Intuitively,
the coset space G/H corresponds to the information left
after noising the elements of G by those of H . For the
isotropic–nematic phase, M = SO(3)/O(2) = S2/Z2:
the order parameter space consists in a 2D sphere hav-
ing its antipodal points identified. How to make sense
of this result from the intuitive view of the coset space?
To define an element of SO(3), one needs a rotation
angle and a unit vector giving the rotation axis in the
3D space. Now, O(2) = SO(2) × Z2, and to define
an element of SO(2), one needs only an angle, as the
axis is set for a rotation occurring in two dimensions.
Then, noising the elements of SO(3) by those of SO(2)
only leaves information related to the rotation axis.
As the surface swept by all possible vectors defining
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the rotation axis is the unit sphere, this means that
SO(3)/SO(2) = S2 and therefore that M = S2/Z2.
Such an object is known as the real projective plane
and can be visualized from its immersion in 3D space,
the Boy surface [67, 68]. The contents of the different
homotopy groups are ([59]) as follows:

• π0(M) = 0: one cannot observe surface defects in
nematics.

• π1(M) = Z2: one can observe line defects in nemat-
ics, and they are precisely the thread-like structures
we were trying to explain since the previous section.
Z2 is the additive group of integers modulo 2, and
in such a group, 1 + 1 = 0. This means that a
line defect is its own “antidefect”: when two identi-
cal line defects meet, they are annihilated, as we will
see in more details below. These objects are generi-
cally called disclinations, and Friedel gave its name to
the nematic phase after them (in Greek, νημα means
thread).

• π2(M) = Z: point-like defects (called hedgehogs)
appear in nematics [69]. The additive group of inte-
gers, Z, means that there is an infinite class of point
defects. Each defect is characterized by an integer,
called the topological charge, which represents the
strength of the defect. Similarly to the electric charge
in electrostatics, there are positive and negative point
defects that are annihilated when they meet.

• π3(M) = Z: textures such as skyrmions and hop-
fions appear in nematics [70, 71]. There is also an
infinite class of textures, the topological charge of
which counts the integer number of times the field
configuration wraps around itself [72, 73].

In the remainder of this work, we will narrow our focus
to line defects, mostly because of the specific role they
play in different branches of physics.

3 Topological defects, a common pattern
of nematics

3.1 Typology of disclinations

Let us look closer at the homotopy content of the first
fundamental group. The two equivalence classes for the
addition law are π1(M) = Z2 = {0, 1}. The equiv-
alence class associated to the neutral element 0 corre-
sponds to ordinary closed paths on the manifold (see the
green loop in Fig. 5): as they can be shrunk to a point,
they correspond to removable singularities called wedge
disclinations. But the particular structure of the Boy
surface allows for another kind of loop: an open curve
connecting two antipodal points (see the red curve in
Fig. 5). Obviously, there is no way to shrink the curve
into a point while maintaining its closure: such a sin-
gularity is topologically stable and is called a Mœbius
disclination. These two categories of defects combine
according to the algebra of Z2: 0+0 = 0, 0+1 = 1, and

1 + 1 = 0. For instance, in the latter case, this means
that two open curves connected at the same antipodal
points form a larger loop that can be shrunk to a point.

To go further in the description of these singularities,
let us build the Frank–Oseen elastic free energy. Con-
sider a given director field �n0(r). Deformations about
that configuration are orthogonal to it as �n0.�n0 = 1,
which leads to �n0.δ�n = 0. To set things up, one consid-
ers �n0 = �e3, which then demands δ�n = (δn1, δn2, 0).
A Taylor expansion of δ�n reveals three deformation
modes:

• a splay mode in �∇.�n

• a twist mode in �n.(�∇ × �n)
• a bend mode in �n × (�∇ × �n)

Similar to the harmonic oscillator, the (simplest)
Frank–Oseen free energy density describing nematoe-
lasticity is quadratic with respect to the deformation,
and it is written as

f [�n] =
K1

2
|�∇.�n|2+K2

2
|�n.(�∇ × �n)|2+K3

2
|�n × (�∇ × �n)|2

(10)

with Ki the corresponding elastic constants.
In the one-constant approximation, K1 ≈ K2 ≈

K3 = K = E0/L. Typically, one has E0 ≈ 0.1 eV,
L ≈ 1 nm, which gives K ≈ 10−11 N (verified for 5CB).
Moreover, for planar configurations of the director field,
�n = cos ψ �e1 + sinψ �e2. The Frank–Oseen free energy
density thus simplifies as

f [�n] =
K

2
|�∇ψ|2 (11)

Minimizing f and retaining the director field configu-
rations which do not depend on the radius finally gives
d2ψ/dθ2 = 0, that is,

ψ(θ) = mθ + ψ0 (12)

where m and ψ0 are real constants. As the direction
of �n must be well defined at each point, one has the
constraint

∮

θ

dψ = 2πm = kπ k ∈ Z. (13)

The constraint k ∈ Z is a result of Z2 symmetry. This
means that (1) m is a winding number and (2) its val-
ues are restricted to m = ±1/2,±1,±3/2,±2.... Sub-
stituting into (11), the free energy is now in m2, which
means that in practice, only distortions with the lowest
winding numbers are observed.

In Fig. 6, several disclinations are plotted for differ-
ent values of m and ψ0. The vortex and the aster con-
figurations are topologically equivalent, as they can be
transformed into each other by a continuous rotation of
the director field from 0 to π/2: this means they belong

123



1820 Eur. Phys. J. Spec. Top. (2023) 232:1813–1833

Fig. 5 The two equivalence classes of π1 on the Boy surface

Fig. 6 Examples of director field distributions for several planar line defects. The black continuous curves are the director
field lines tangent at each point to �n = (cos ψ, sin ψ), and the core singularity is in red. The antiaster and antivortex
configurations are identical up to a +π

4
rotation. Adapted from [11]

to the same equivalence class. In fact, the director
field of these defects can even deform continuously to
relax into a non-singular configuration (escape into the
third dimension): these defects are topologically unsta-
ble (this would not be true for two-component order
parameter �n [74]). As the same goes for m = −1 defects,
one infers that disclinations of integer strengths belong
to the trivial equivalence class (denoted as N = 0) of π1.
On the contrary, disclinations of half-integer strengths
are not topologically removable, and they belong to the
other equivalence class (denoted as N = 1). Although m
is sometimes called the topological charge of the defect,

it is the absolute value of m that really matters for
topology.3

3The sign of m can be distinguished by the rotation of
the crossed polarizers. Indeed, polarizing microscopy reveals
Schlieren patterns, for which the number of dark brushes is
4|m|0. Dark brushes from a positive (negative) defect rotate
in the direction the same as (opposite to) that of the polar-
izers.
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3.2 Geometry of line defects

From the standpoint of optics, nematics behave as uni-
axial media. Their permittivity is ε‖ in the direction of
�n and ε⊥ in perpendicular planes. Seeking solutions in
terms of plane waves shows that such media support
two optical modes: the ordinary wave, corresponding
to a regular dispersion relation with refractive index
n0 =

√
ε⊥, and the extraordinary wave, for which the

ray index is anisotropic:

Ne(r) =
√

ε⊥ cos2 β(r) + ε‖ sin2 β(r) (14)

with β(r) the angle between the director and the tan-
gent vector to the ray. Propagation of the extraordinary
light is ruled by the Fermat–Grandjean principle estab-
lished in 1919 [11]: as �n varies from point to point, so
does Ne, and light is expected to follow curved paths.

There is another well-known area in physics where
light paths are curved: general relativity (for a mod-
ern textbook, see the excellent [75]). Gravity is noth-
ing more that the effect of spacetime curvature on the
dynamics of massive and massless objects. For instance,
in the vicinity of a massive star, light undergoes a
gravitational lensing which bends its trajectory (this
property was the first prediction of general relativ-
ity that was tested by Eddington in the same year,
1919). The mathematical tool used to study curved
spacetimes is differential geometry, most notably devel-
oped by Riemann. In the presence of curvature, all
known laws of Euclidean geometry are shaken up. For
instance, Pythagoras’ theorem, usually written as ds2 =
dx2+dy2+dz2 for infinitesimal triangles, is now written
as4

(15)

ds2 = g11dx2 + g22dy2 + g33dz2 + 2g12dxdy

+ 2g13dxdz + 2g23dydz =
∑

i,j=1,3

gijdxidxj

The weighting coefficients gij are the components of a
second-order tensor, called the metric, which can be
seen as the multiplication table of the basis vectors
chosen to describe the problem. In gravity, the metric
is four-dimensional and is a solution of Einstein’s field
equations that relate the geometry to the mass-energy
content.

How to extract a metric description for liquid
crystals? This question was successfully addressed in
[76–78], and we will sum up here the recipe to be fol-
lowed:

1. Consider a light path parameterized by 
 and
express the tangent vector in the Cartesian basis

4For the sake of simplicity, we omitted the time compo-
nent, but in relativity, one must bear in mind that time and
space are put on an equal footing, and the real interval must
involve quadratic terms in cdt , with c the speed of light.

�r =r cos θ �ex + r sin θ �ey (16)

�T =
d�r

d�
=

(
ṙ cos θ − rθ̇ sin θ

)
�ex +

(
ṙ sin θ + rθ̇ cos θ

)
�ey

(17)

Here the dot is a shorthand notation for d/d
.
2. Compute the components of �n = cos ψ�ex + sin ψ�ey

with respect to �T :

�T .�n =ṙ cos(ψ − θ) + rθ̇ sin(ψ − θ) (18)

|�T × �n|= − ṙ sin(ψ + θ) + rθ̇ cos(ψ − θ) (19)

3. Replace in the Fermat–Grandjean line element and
see the defect metric appear (to spare lengthy cal-
culations, one will consider the aster defect for
which cos β = ṙ and sinβ = rθ̇):

(20)

ds2 = N2
e (�r)d
2

=
(
ε⊥ṙ2 + ε‖r2θ̇2

)
d
2

= ε⊥dr2 + ε‖r2dθ2

Adding the z term and performing a simple rescaling of
the radial coordinate finally leads to the 3D line element

ds2 = dr2 + α2r2dθ2 + dz2 (21)

where α =
√

ε‖
ε⊥

.
What kind of geometry does this represent? A first

hint is obtained by computing the Ricci scalar

R(r) =
1 − α

αr
δ(r) (22)

The geometry is therefore flat everywhere but on the z -
axis. Moreover, considering a circle of unit radius about
the z -axis, the perimeter is given by p =

∮
ds = 2πα.

These two elements indicate that when α < 1, the
geometry is conical, as described by a Volterra cut-and-
glue process (see Fig. 7).

For the sake of completeness, we also report the line
element corresponding to a general (m,ψ0)-disclination
line [76]:

ds2 =
(
cos2[(m − 1)θ + ψ0] + α2 sin2[(m − 1)θ + ψ0]

)

+
(
sin2[(m − 1)θ + ψ0] + α2 cos2[(m − 1)θ + ψ0]

)

− (
α2 − 1

)
sin[2(m − 1)θ + 2ψ0] + dz2 (23)
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Fig. 7 Two-dimensional view of the Volterra process for generating a wedge disclination with α < 1

3.3 Anholonomy

Topological defects generate curved geometries, and
therefore, one may expect many physical outcomes of
incoming fields, the most natural being lensing effects
[76, 77] and scattering [78, 79]. This can be easily
understood from the geodesic equations, which provide
the shortest and autoparallel paths in a purely curved
geometry (no torsion5 ). Writing the parallel transport
of the tangent vector along a curve gives

d2xi

dt2
+ Γi

jk

dxj

dt

dxk

dt
= 0 (24)

where Γi
jk are the Christoffel symbols of the second

kind:

Γi
jk =

1
2
gil(∂jgkl + ∂kgjl − ∂lgjk) (25)

Geodesics correspond to the actual light paths, and for
the background metric (21), integration leads to

r(θ) =
C

α
√

E

√

1 +
tan2(αθ − F )

2
(26)

where C , E , and F are integration constants (for graph-
ical representations, see for instance [76, 80]).

More subtle but yet related to parallel transport is
the emergence of anholonomy effects, on which we will
now focus our attention. Let us consider first a practical
problem (see Fig. 8): a world traveler living in France
(point A) wants to explore the north pole. He can either

5Like curvature, torsion is a property of the connection
(actually this is the antisymmetric part of the connection
and it vanishes in the case of a Levi–Civita connection,
this is why general relativity does not deal with torsion).
When torsion vanishes, geodesic (“shortest”) lines are also
autoparallel (“straightest,” i.e., lines along which the tan-
gent vector is parallel-transported via the connection).

go directly to the north by following the prime meridian
up to point C, or he can detour via Québec (point B)
and head north to C along the 70◦ W parallel. If he com-
pares his compass needle in the two trips, he will dis-
cover a strange result: even if he parallel-transported in
each circuit from the same starting and ending points,
the direction vector at C is not the same. Stated other-
wise: after a closed loop, a parallel-transported vector
fails to recover its initial direction by a mismatch angle
ĥ. This phenomenon is called anholonomy.

Intuitively, anholonomy can be understood as a topo-
logical effect. Girard’s formula establishes the connec-
tion between the surface Σ enclosed by circuit ABC and
the Gauss curvature of the 2-sphere F = 1/R2:

Σ = R2Ω =
Â + B̂ + Ĉ − π

F
(27)

In the case depicted in Fig. 8, this simplifies into FΣ =
Ĉ, which also turns out to be the mismatch angle ĥ: this
latter is thus a measure of the Gaussian curvature F of
the surface Σ bounded by the closed circuit. Such result
is an basic outcome of the Ambrose–Singer theorem: for
a given connection on a vector bundle6, the curvature
corresponds to the surface density of holonomy. Now,
Gaussian curvature is also related to the topology of
the surface via the Gauss–Bonnet theorem:

¨
Σ

FdS +
∮

∂Σ

κgds = 2πχ (28)

Here, χ is the Euler–Poincaré characteristic (topology),
and κg is the geodesic curvature. For the lost traveler

6Vectors at a point x of a manifold live in the tangent
space at x . The tangent spaces at neighboring points are
different vector spaces, and the vector bundle is understood
as the collection of them. The connection is the object which
allows us to transport or compare vectors at different points
[161].
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Fig. 8 Left: The world
traveler problem. Right:
Difference between Gauss
curvature (top) and
geodesic curvature (bottom)
on Earth (2-sphere). Even if
a traveler follows the
straightest paths (roads of
zero geodesic curvature),
they will always experience
the Earth’s Gaussian
curvature along them (red
paths or geodesics of the
2-sphere)

problem, this simplifies into ĥ = 2πχ, which establishes
the topological origin of anholonomy.

A more formal and general expression of anholonomy
has been obtained by Elie Cartan from the definition of
parallel transport and is summed up in a modern form
in [75]. Let there be a path parameterized by λ along
which a vector V is parallel-transported. The parallel
propagator Π is defined as

V μ(λ) = Πμ
ρ(λ)V ρ(0) (29)

The parallel transport condition applied to V is written
as

d

dλ
V ν(λ) = −Γν

σμ

dxσ

dλ
V μ(λ) = Aν

μ(λ)V μ(λ) (30)

where Γ are Christoffel’s connection symbols. This leads
to the following equation for the propagator

d

dλ
Πν

ρ(λ) = Aν
μ(λ)Πμ

ρ(λ) (31)

This formally integrates into

Πμ
ρ(λ) = δμ

ρ +
∫ λ

0

Aμ
σ(η)Πσ

ρ(η)dη (32)

and can be solved iteratively. Instead of integrating over
n-simplices, one integrates over n-cubes while keeping
the product in the right order, to get the simpler expres-
sion:

Πμ
ν(λ) = P exp

∫ λ

0

Aμ
ν(η)dη (33)

where P is the ordering operator. On a loop γ about a
point M , the anholonomy is written explicitly as

Πμ
ν [γ] = P exp

(

−
∮

γ(M)

Γμ
σνdxσ

)

(34)

As expected from the Ambrose–Singer theorem, to
know the holonomy at every point of the manifold is
equivalent to knowing the curvature at every point of
the manifold: this property is heavily used in quantum
loop gravity.

Now, let us establish the anholonomy due to a discli-
nation [81]. For a loop about the origin in a z = Cst

plane, only the polar connection symbol is retained:

(35)

Γθ =
m

α

(
α2 cos2 [(m − 1)θ + ψ0]

+ sin2 [(m − 1)θ + ψ0]
)
(

0 1
−1 0

)

For instance, for the aster disclination, this reduces to

Γθ =
(

0 α
−α 0

)
, and the parallel propagator becomes

Πμ
ν [γ] =

(
cos(2πα) − sin(2πα)
sin(2πα) cos(2πα)

)
(36)

When parallel-transporting a vector around it, the
disclination causes an active rotation of angle −2πα.
All in all, the global mismatch angle when a vector
describes a loop around the defect is ĥ = 2π − 2πα.
This means that disclinations generate a classical ana-
log of the Aharonov–Bohm effect. Indeed, the curva-
ture is confined within the disclination line and vanishes
everywhere else, but it has measurable effects affecting
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the phase of neighboring objects. This is one among
many examples of what is generically called geometric
or Berry phases, that is, “phases are not attributed to
the forces applied onto the [quantum] system. Instead,
they are associated with the connection of space itself”
[82].

4 Topological defects, a universal pattern
of nature?

4.1 Biology

a. A tentative definition To begin with, we will dis-
cuss how a statistical physicist may describe biological
systems. To do so, we will first need to address one
question: what does it mean for a system to be at equi-
librium? Figuring out what equilibrium means is not
as simple as it appears at first glance. For instance,
is the glass of my window at equilibrium or not? In
his lectures on statistical physics, RP Feynman defined
equilibrium as the situation when “all the fast things
have happened but the slow things have not” [83]. As
handy as it sounds, this definition is yet incomplete as
it blurs the demarcation between an equilibrium state
and a nonequilibrium steady state. A better criterion to
discriminate equilibrium from out-of-equilibrium situa-
tions is for a system to be crossed by fluxes, for exam-
ple, of matter or energy, exchanged with its surround-
ing. The glass of a window is nowadays understood as
a metastable super-cooled liquid that flows because of
gravity, but with relaxation times averaging τ ≈ 109

years (for water, τ is of the order of milliseconds). The
glass of my window is therefore crossed by fluxes of
matter, and it is in a nonequilibrium steady state.

Living biological systems are out of equilibrium as
well. For instance, a living cell consumes energy to
maintain homeostasis (a nonequilibrium steady state)
and perform mechanical work such as cellular divi-
sion, membrane transport (water molecules sneak out
the membrane as the phospholipid bilayer flexes and
bends), and motility (motion of flagella). From the
standpoint of statistical mechanics, to be dead means
to be at thermodynamic equilibrium. But contrary to
the aforementioned nonliving examples, the nonequi-
librium steady state is not driven by external macro-
scopic fields, but by its internal components: animals
in a flock, molecular motors, and microtubules for cells
[84–86]. For the statistical physicist, biology is the
study of active matter, for example, nonequilibrium
self-organized systems which do not couple trivially to
the energy input from their environment [87]. Examples
of active matter include colonies of bacteria, assemblies
of myocyte cells, flocks of sheep, schools of fish. Most
of the time, the basic bricks comprising active matter
are strongly anisotropic, such that the whole system
displays a nematic order. Hence, at places where the
average orientation of these bricks is ill-defined, topo-
logical defects arise.

b. Active turbulence as a defect factory Let us now
investigate additional peculiarities of active matter by
examining how it evolves in time. Usually, ordinary
isotropic liquids obey the famous Navier–Stokes equa-
tions7

ρ
DV
Dt

= ρg + ∇.¯̄σ (37)

where the left-hand-side inertial terms include D/Dt ,
the material derivative, and ρ, the mass density. The
right-hand side includes g, the gravitational acceler-
ation at Earth’s surface, and ¯̄σ = −p¯̄I + 2η ¯̄D, the
Cauchy stress tensor, which encompasses contributions
due to the pressure p and to the fluid viscosity η ( ¯̄D
stands for the strain rate tensor). The ratio between
inertial terms and viscous forces defines a dimension-
less quantity, the Reynolds number (originally intro-
duced by George Stokes [88]): at low Reynolds num-
bers, flows are laminar (regular and reversible), but at
high Reynolds numbers, flows become turbulent (chaos
and non-reversibility) [89].

In anisotropic liquids such as nematics, the fluid flow
is furthermore coupled to the orientational order, which
imparts them with unusual rheological features, such
as the dewetting behavior of thin films, the presence
of topological defects, or backflow. Under the effect
of an entering mass flow, the velocity field inside a
nematic generates shear stresses that rotate the rod-
like molecules and hence the director field. This mech-
anism is called advection [11]. Conversely, let us sub-
mit a nematic at rest to an external electric field. For
steric reasons, a rotation of the director exerts a shear
stress on neighboring molecules which puts them into
motion: this is called backflow [11]. The complete set of
equations governing nematohydrodynamics (including
advection and backflow terms) form the Beris–Edwards
model8:

ρ
DV
Dt

= ρg + ∇.¯̄σ (38)

D ¯̄Q
Dt

= Γ ¯̄H + ¯̄S + λ ¯̄Q (39)

where Γ is the rotational diffusion constant, ¯̄Q is the
Landau–de Gennes order parameter tensor, ¯̄H is the
molecular field (driving relaxation towards a minimum
of free energy), and ¯̄S is the advection term. Com-
pared to Newtonian hydrodynamics, the Cauchy tensor
in (39) includes an extra term corresponding to back-
flow. Passive nematics can relax to configurations where
the elastic energy is minimal: the medium then reaches
a rest state after the decay of topological defects.

7Finding general regular solutions of these equations is
still one of the Millennium open problems listed by the Clay
Institute.

8There is also another set forming the Ericksen–Leslie
equations, which are simpler but limited to uniaxial media
and to smooth variations of the nematic ordering.
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A nematic becomes active as a result of many cou-
plings with its environment (for a review see [91]).
For instance, the complex motions of a school of sar-
dines occur because each fish draws energy from marine
plankton it ingested (energy couplings), but they can
also respond to the presence of natural predators, local
modifications of the sea properties, etc. Every time,
the energy fed at the individual scale (bacteria, cell,
sheep, fish, etc.) is transformed into organized motion
at large scales. In many ways, this can be under-
stood as a reverse Richardson cascade: contrary to ordi-
nary turbulence where energy is transferred from large
kinetic scales to small dissipative scales [89], the energy
transfer occurs bottom-up. Active nematohydrodynam-
ics is thus about the collective dynamics of energy-
transducing anisotropic units [84], and the changes in
Beris–Edwards equations consist in adding two extra
terms: (1) a linear source term λ ¯̄Q in (38) and (2) a new
activity term −ζ ¯̄Q in the Cauchy tensor [92]. These new
terms result in a cyclic process: hydrodynamic instabil-
ities generate surface singularities that fluctuate and
decay into linear topological defects (mostly comets
and trefoils, see Fig. 6), then defect–antidefect pairs
are annihilated (according to the algebra of Z2), which
in turn generates hydrodynamics instabilities, etc. The
proliferation of both line defects and vortices corre-
sponds to a chaotic nonequilibrium steady state for low
Reynolds numbers [84, 93–96]. We will next discuss sev-
eral biological mechanisms in which disclinations play
a crucial part.
c. Ethology, morphogenesis, and oncology Comet- and
trefoil-like defects behave quite differently from the
standpoint of elasticity. Doostmohammadi et al. [91]
both computed and measured the stress distribution in
the vicinity of these two kinds of defects (see Fig 9).
The directions where gradients are maximum corre-
spond to the symmetry axis of the director field dis-
tributions. Averaging the stress contributions in the
plane shows that there is a large net force associated
to the comet which is oriented towards the head of the
comet. On the contrary, for the trefoil, the resulting net
force is very low (theoretically, it vanishes if the sample
is axisymmetric). In recent decades, our understand-
ing of the delicate mechanisms involved in the func-
tioning of organs has made substantial progress. Cells
are now understood as highly sensitive mechanotrans-
ductive units, displaying an orientational order due to
the elongated structures (actin and intermediate fila-
ments, microtubules) forming the cytoskeleton. It must
be remarked that actin and microtubules may also form
polar organic materials [97], in which the formation of
±1 wedge disclinations is energetically favored. Hence,
a topological defect causing a singularity in the orien-
tational order, i.e., in the stress distribution, is likely to
trigger several biological responses, driving processes
such as the dynamics of animal groups, morphogenesis,
or disease initiation [97].

Colonies of bacteria, insect swarms, and schools of
fish all behave as active nematics, as they are essen-
tially assemblies of anisotropic motile units. The effect

of Mœbius defects on bacteria populations seems well
captured. References [98, 99] found that in a lyotropic
liquid crystal (disodium cromoglycate), the popula-
tions of Bacillus subtilis—a common plant growth-
promoting rhizobacteria from the soil—swim from
trefoil-like defect cores to comet-like defect cores. Sim-
ilarly, [100] showed that colonies of Myxococcus xan-
thus, another common rod-like bacteria living in the
soil, may form new cell layers at +1/2 defects and holes
at −1/2 defects (competition between different colonies
also showed that +1/2 defects help a colony in pre-
vailing over another [101]). For larger animals such as
insects, fish, and birds, the role attributed to defects
is not as clear because of nonlinear processes [102].
A recent work dealing with a colloidal liquid suggests
that the remarkable flow stability of flocking matter
could come from the self-advection and density gradi-
ent around −1 topological defects [103].

Morphogenesis and vesicle growth have recently been
understood as processes driven by topological defects
[104, 105]. The reason for this is at the interplay
between mechanics, soft matter physics, and topology.
Many living systems have an outer layer rich in actin
filaments and microtubules, which provides them with
an orientational order. Due to the Poincaré–Brouwer
theorem (sometimes called the “hairy ball theorem”),
lines covering any closed curved surface present at least
one singular point, where tangent vectors are ill-defined
(the global topological charge in a spheroid is set at
+2): this explains the presence of cyclonic vortices at
the Earth’s surface or rebellious cowlicks on someone’s
head. For a biological organism topologically equiva-
lent to a 2-sphere, the hairy ball theorem states that
topological defects are unavoidable on its surface. Keber
et al. [106] showed that defect sites on a spherical vesi-
cle rich in microtubules were precursors for the growth
of protrusions. Cell differentiation and swirling protru-
sions have recently been reported to be driven by inte-
ger defects (spirals and asters) in myoblast monolayers
[105, 107], known to be rich in actin and myosin. Refer-
ence [108] investigated the biophysics of hydra, a small
freshwater predatory animal that is almost immortal as
it can regenerate each organ (head, foot, mouth, tenta-
cles). After being cut into pieces, each part folds into a
spheroid that supports topological defects. Due to the
nematic actin organization, differentiation and regen-
eration occur at protrusions growing from defect sites,
the topological charge being associated to one and only
kind of organ (+1 for mouth, foot, and tentacle, −1/2
for the base).

Mœbius defects may also play a important part
in oncology. The transcription coactivator called YAP
(yes-associated protein) is known to promote tumori-
genesis, metastasis, and even chemotherapy resistance
[109–114]. YAP is also critical in cell death mechanisms
(such as apoptosis and ferroptosis) and cell extrusion
from biological tissues (see [115] for a recent review).
Hence, in principle, it should be possible to use YAP
to trigger cancer cell death. And this is precisely where
topological defects come into play: high levels of com-
pressive stresses at the head of comet-like defects are
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Fig. 9 Upper left: Director
field for a comet-like
disclination (one symmetry
axis in the red dotted line).
Lower left: Stress field
around the comet
(normalized units). Large
net resulting force in white
as a result of stress
gradients (adapted from
[91]). Upper right: Director
field for a trefoil-like
disclination (three
symmetry axis in the red
dotted line). Lower right:
Stress field around the
trefoil (normalized units).
Small net resulting force in
white as a result of stress
gradients (adapted from
[91])

known to translocate YAP from the nucleus to the cyto-
plasm and to trigger cellular death and extrusion [97,
116]. However, the journey to defect-engineered thera-
pies based on YAP deactivation promises to be long,
as competing mechanisms involving defect-induced cell
motions have recently been reported to impede malig-
nant cell clearance [117].

4.2 Cosmology and cosmic strings

a. Phase transitions in cosmology According to the
Standard Hot Big Bang Model, about 13.8 billion years
ago, our universe was in an extremely hot dense state,
consisting in a quark-gluon plasma. In the framework of
grand unified theory, the four fundamental interactions
were supposed to be unified, the corresponding “super-
force” being invariant under the element of a grand
unified gauge symmetry group G . Then, the universe
expansion played the role of a gigantic Joule–Thomson
expansion, which caused large temperature drops likely
to give rise to cosmological phase transitions with spon-
taneous gauge symmetry breaking (SSB). After the
last of these transitions occurred (electroweak phase
transition) at about 102 GeV, the electroweak force
split up into the electromagnetic force and the weak
nuclear force, which corresponds to the gauge symmetry
SU(3)c × U(1)em. As in condensed matter, the topol-
ogy associated to the symmetry-breaking pattern pro-
vides information on the possible topological defects
that may appear. Only the terminology is changing:
instead of the order parameter space, one speaks of the
vacuum manifold, which is the set of Higgs field config-
urations minimizing energy modulo gauge transforma-
tions. Jeannerot et al. [118] determined the homotopy
content corresponding to all eligible groups G likely to
decay below 1016GeV into SU(3)c × SU(2)L × U(1)Y .

Their conclusion leaves no doubt concerning the forma-
tion of cosmic strings: “among the SSB schemes which
are compatible with high energy physics and cosmol-
ogy, we did not find any without strings after inflation”
[118].

Of prime importance is the phase of cosmic inflation
that presumably happened at the very beginning of the
universe [120]. It consists in an extremely rapid expan-
sion (typically a factor 1026 within 10−32 seconds) likely
to solve cosmological riddles such the horizon and flat-
ness problems [121]. From the point of view of statisti-
cal physics, inflation is nothing more than a tremen-
dous quench, and it is likely to promote the forma-
tion of topological defects. Kibble [122] and later Zurek
[123] proposed a mechanism now known as the Kib-
ble–Zurek scenario (KZS) describing the different steps
of this quench. It starts with a nucleation process, sim-
ilarly to what happens at the isotropic–nematic phase
transition, but the orientational order comes from the
phase choice of a complex scalar field generically called
a Higgs field. The fast temperature drop due to inflation
causes the Higgs field to locally take a non-vanishing
vacuum expectation value and hence to make a phase
choice (see Fig. 10). This leads to an ordered region
called a protodomain (analog to a nematic spherulite).
Then the protodomains grow in size and eventually
coalesce, but as they were not causally connected,
the choices for the Higgs phases do not necessarily
match. Singularities of the Higgs phase appear where
the boundaries of protodomains finally meet, giving rise
to line-like singularities called cosmic strings.
b. Statistical physics of a cosmic string network Kib-

ble and Zurek remarked that these phase transitions
involves two competing velocity scales: (1) the veloc-
ity vf at which the field fluctuations propagate and
(2) the velocity vp at which the parameter ruling the
phase transition (here, the temperature) varies. When
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Fig. 10 A toy model from
thermal field theory: the
abelian Higgs model. At
high temperatures, the
parabolic potential gives a
vanishing Higgs field φ, and
the gauge symmetry is
U (1). At low temperatures,
the parabolic potential
gives a vanishing Higgs field
φ, and the gauge symmetry
is broken into I . Adapted
from [119]

vp > vf , the system is quenched, and the parameters
describing the resulting distribution of cosmic defects
depend on the quench time τq in the form of scaling
laws. For instance, the correlation length, the relaxation
time, the average density of defects, and the variance
of the net winding number σ are respectively given by

ξ(t) ∼
∣
∣
∣
∣
t − tc

τq

∣
∣
∣
∣

−ν

τ(t) ∼
∣
∣
∣
∣
t − tc

τq

∣
∣
∣
∣

−μ

ρ(t) ∼
(

t

τq

)−α

σ ∼ N
1/4

(40)

where tc is the time when the transition occurs [124],
and N is the total number of defects in the region under
investigation.

In the 1990s, several works [51, 52, 125–128] showed
that the KZS, originally developed for cosmology, was
also accurately describing disclinations in nematics with
the very same scaling coefficients. For instance, this
model predicts that the density of strings scales as
ρ ∼ (t/τq)

α with a critical exponent αth = 0.5, and
measurements performed by [51] with 5CB indeed gave
αth = 0.51±0.04. The exponent characterizing the cor-
relation between defects and antidefects is expected to
be 1/4 and was measured at 0.26 ± 0.11 [125]. From
the standpoint of statistical physics, phase transitions
in cosmology and in liquid crystals seem to belong to
the same universality class. But the family resemblance
goes further. Networks of cosmic strings and networks
of disclinations also share the same intersection pro-
cesses: (1) when two line defects intertwine, they can
reconnect the other way as they cross (intercommu-
tation) [51, 129], and (2) when one line defect self-
intersects, it generates a loop [130, 131].
c. Spacetime near a Nambu–Goto string The anal-

ogy between disclinations and cosmic strings goes even
deeper. The simplest cosmic defects one may expect in
the universe are called Nambu–Goto strings: they con-
sist of delta-distributed concentrations of mass-energy

and they can be pictured as infinitely straight and thin
objects (the thickness of a realistic cosmic string is
estimated at 10−28 cm). As required by thermal field
theory and general relativity, the geometry around a
Nambu–Goto string (in units where c = 1) is described
by the Vilenkin’s line element [129]:

ds2 = −dt2 + dr2 + (1 − 4Gμ)2r2dθ2 + dz2 (41)

where μ is the string mass-energy density estimated
at about 10 million billion tons per meter! The space
part of this element is identical to (21), and it corre-
sponds to a conical geometry with a removed Frank
angle (typically, for a grand unified scale string, this
angle is a few seconds of arc). As curvature is confined
to the string axis, spacetime is locally flat away from
the string, which exerts no gravitational pulling onto
neighboring objects. Such object may of course generate
a Berry phase in a similar fashion to their soft-matter
cousin [132].

From the standpoint of the soft-matter physicist,
Nambu–Goto strings can be understood as the cos-
mic counterparts of wedge disclinations. How to make
sense of such incredible similarity? For the most part,
this question is still open, but a noticeable attempt
to address it was done in [133]. In essence, the rea-
son is that equations of nematoelasticity have the form
as the spatial sector of Einstein’s field equations, with
the elastic-stress tensor playing the role of the energy
momentum tensor [75].

As the analogy between gravity and nematoelastic-
ity does not concern time components, the dynamics of
a cosmic defect cannot be directly mapped with those
of a disclination. The motion of disclinations is classical
(typically a few μm per second) and friction-dominated,
whereas cosmic strings are ultra-relativistic, and dissi-
pation mechanisms are due to radiation of gravitational
waves. As noted in [51], this is intimately connected to
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the nature of the broken symmetries: in particle physics,
these latter are gauged (or internal), whereas in liquid
crystals, broken symmetries are geometrical.9

4.3 Miscellanea

As a final bouquet, we will now discuss other fields
in science where the key role played defects has been
identified. Let us start with the wonder material of
solid-state physics: graphene. This material was iden-
tified in 2004 by Geim and Novoselov, and since then,
its amazing chemical and physical (electrical, mechani-
cal, thermal) properties have propelled it to the scien-
tific forefront. In fact, the perfect flatness of graphene
plays a crucial role in its unusual behavior as local cur-
vature modifies the local density of electronic states
[134]. As graphene supports whole-integer disclination
dipoles (pentagon–heptagon configurations known as
Stone–Wales defects), one may expect to tailor the
physical properties of graphene from distributions of
topological defects: this is the emerging field of defect
engineering. Tailoring graphene curvature with defects
may even be relevant for medical sciences, as the
curvature dependence of biomolecular adsorption may
help discriminating between different molecules and
removing harmful molecules in disease treatments [135].
Recently, tailoring transport in low-dimensional sys-
tems has been refined to the scale of quasi-particles, and
immobile gauge modes known as fractons were shown
to be intimately connected to disclinations [136].

Line defects also provide the answer to some fun-
damental questions in geology: as Earth’s mantle is a
solid layer made of rocks, how can it slip and move?
Indeed, plasticity usually comes from the mobility of
screw dislocations, but they are not sufficient to account
for the rheology of the mantle. The main constituent
of the upper mantle is olivine, at about 60–70%. In
[137], it was shown that this layer was extremely rich
in disclinations. Any applied shear on olivine-rich rocks
induces grain-boundary migration mediated by discli-
nation motions, explaining the motions of the Earth’s
mantle. This was confirmed by high-resolution electron
backscattering diffraction.

Last but not least surprising is the central situa-
tion of line defects in high-energy physics. In [138],
Deser, Jackiw, and ’t Hooft proposed a model in 2+1
dimensions, where particles interacting gravitationally
are described by a gas of conical defects, the mismatch
angle being proportional to the particle’s mass. This
model was later extended to 3+1 dimensions by ’t Hooft
[139], but this time, matter particles are represented by
a gas of piecewise straight string segments. An impor-
tant feature of this model is that particles can have pos-
itive or negative masses, i.e., α < 1 and α > 1 Frank
angles. This suggests that nematics could be used to
perform high-energy physics experiments, in the spirit

9Still, this difference is also the reason why we have used
two different notations for vectors, r for the ordinary space
vectors and �n for the order parameter degrees of freedom.

of the analog gravity game plan [140, 141]. The last
word will be on quark physics. Topological insulators
are currently garnering considerable attention because
of their unusual electrical properties. The main differ-
ence between ordinary insulators and topological insu-
lators (such as Chern, Kane-Mele) is the band inversion:
spin–orbit couplings link valence and conduction bands.
As a result of this connectivity, the surface states are
topologically protected from local perturbations. Topo-
logical insulators may support disclinations in the bulk,
which disrupt the lattice structure. This is responsi-
ble for the emergence of (quasi)particles of fractional
charge, trapped at the defect location [142, 143]. This
is likely to be of interest to simulate the elusive quarks,
which have charge −1/3e or 2/3e.

5 Conclusion

Topological defects consist of regions of ordered systems
where the order has broken down locally (for instance,
after a phase transition), and as such they are among
the most widespread structures in science. They carry
generic topological and geometrical properties likely
to impact a wide variety of physical processes, there-
fore enabling mutual cross-fertilization between differ-
ent domains. For instance, the Kibble mechanism, ini-
tially designed for cosmology, was firstly tested with
5CB, a standard liquid crystal. Conversely, the exis-
tence of Mœbius defects in nematics suggests the search
for more general cosmic defects in our universe (such as
Alice strings which carry non-localized charges [144]).

Future prospects on topological defects look promis-
ing, both on the fundamental front and on the techno-
logical front. On the fundamental front, the search for
cosmic strings is still in wait of a first robust obser-
vational evidence: so far, the NANOGrav collabora-
tion have only reported stochastic gravitational-wave
background signals compatible with, among others, net-
works of cosmic strings with a string parameter Gμ in
the range

[
10−10.0, 10−10.7

]
[145]. Investigations on the

role of defects in biology are still running at full tilt,
and a recent review on open problems can be found in
[146, 147]. One of the most challenging questions may
be in understanding how the mechanical stresses due to
defects couple to biochemical signaling.

Another booming field of research is the emerging
field of defect engineering [148–150]. On the one hand,
defects induce a change in the background geometry
experienced by low-energy excitations. On the other
hand, soft-matter systems, in particular liquid crys-
tals, are indeed well-renowned contenders to build func-
tionalized devices [151–153]. With advances in surface
treatments, this has come to the point where it is now
possible to prepare well-organized assemblies of topo-
logical defects from photo-patterning [154] or micro-
well structures [155] (see [149] for a review). There-
fore, curvature/torsion can be taken advantage of to
tailor the outgoing fluxes for applications in mechan-
ical engineering (acoustics, electronics, thermotronics,
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optics; see e.g. [156–159]). Such perspectives are also
under investigation in biology, where the possibility to
control the dynamics of defects pairs was shown for
tissues pre-patterned from photo-aligned liquid crystal
elastomer [160]. Whatever the field of application, it
leaves no doubt that taming topological defects is only
at its first steps.
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Skyrmions in nematic liquid crystals. Phys. Rev. E
67(1), 016602 (2003)

73. J.-S.B. Tai, I.I. Smalyukh et al., Surface anchoring as
a control parameter for stabilizing torons, skyrmions,
twisted walls, fingers, and their hybrids in chiral nemat-
ics. Phys. Rev. E 101(4), 042702 (2020)

123



Eur. Phys. J. Spec. Top. (2023) 232:1813–1833 1831

74. A.I.F. Sánchez, R. Paredes, B. Berche, Topological
transition in a two-dimensional model of liquid crys-
tal. Phys. Rev. E 72, 031711 (2005)

75. S.M. Carroll, Spacetime and geometry (Cambridge Uni-
versity Press, Cambridge, 2019)
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