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Abstract In the classical neural networks, information is presented as a set of the stable equilibrium states.
This review considers a series of papers devoted to an urgent topic of development of the neural networks
models that do not have equilibrium states. Oscillatory conditions in neural networks are interpreted as
patterns, i.e. a reflection of some information. Based on the physiological concepts, a model of a neural
environment is proposed that is capable of storing information presented in a wave form. Effective analytical
methods for the asymptotic analysis of non-linear, non-local oscillations in a system of equations with delay
describing a neuronal population are described. Theoretical studies have made it possible to effectively solve
important specific problems.

1 Introduction

All models of neural networks are based to some extent
on the ideas about the principles of information pro-
cessing by the brain. Sensory information, as shown by
Adrian [1], is transmitted as the impulses (short-term
signals ‘all or nothing’) in the form of a frequency code.
This determines our interest in the models of neurons
that generate impulses.

In accordance with the hypothesis put forward by
Hebb [2] and developed by Eccles [3], nerve cells react
(generate impulses) in response to the sequences of
incoming impulses depending on synaptic permeability,
i.e. the distribution of synaptic weights that character-
ize input efficiency. According to synaptic theory, infor-
mation is reflected in the structure of synaptic weights.
The theory underlies all neural network models.

Currently, there is no a single point of view on the
ways of presenting and storing information in the brain.
Conventionally the viewpoints (and the neural networks
models) can be divided into two classes: frequency and
phase-frequency. The first one assumes, that a neuron
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state is characterized by the firing frequency. The neu-
ronal association state reflects the distribution of the
elements firing frequencies. The phase relations are not
taken into account. A change in the state is possible
only as a result of the exposure change. Convention-
ally, this insight can be called a detecting approach. It
originates from the papers [2, 4] and developed in the
papers [3, 5–7, 9]. Different points of view within this
insight are compared in [10–12].

Currently, most researches on neural networks are
performed by means of the detecting approach. This
is the basis of the papers [13–16] about the network
models of operational amplifiers. At the input of each
element the output signals of another elements are
summed with the weights. Depending on the total input
the operational amplifier unambiguously generates the
output signal. In the process of learning (remembering)
a set of the stable equilibrium states is formed in the
corresponding phase space. In the replay mode, under
the external signal exposure the network enters the
attraction basin of one of them. Describing the network
system of equations can have the limit cycles (more
complex attractors also), in principle. However, these
objects are difficult to interpret and their presence is
tried to be avoided. For example, the assumption about
the symmetry of the connections allows to prove that all
the trajectories in the Hopfield net tend to the equilib-
rium states. Thus, the modeling the detecting approach
networks are static, as the information stored in them.
In fact, it seems that the role of the cycles and their
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planning in classic networks are insufficiently studied
and require an additional research.

According to the phase-frequency approach to the
information storage in the the brain, it is extremely
important to coordinate the operation of neurons not
only with respect to the space, but with respect to time
also. Neurons have the property of the temporal selec-
tivity. One and the same exposure may or may not lead
to the generation of impulse depending on the state.
According to Bekhtereva [17, 18] the information cod-
ing is not a static but rather a dynamic process associ-
ated with the formation of the ensembles of coherently
operating neurons. Accounting of the oscillation phases
leads to a new quality: the information encoding is per-
formed in the form of the neural activity waves. This
approach can be called wave-based.

The networks with nonstationary behavior models a
wave approach. They can be divided into two classes.
In the first case the network elements do not have their
own autorhythmicity, but the whole system can operate
under an oscillatory conditions. An example of such a
network is the Wiener net [19], which describes the exci-
tation propagation process through the heart muscle.
The oscillatory conditions in the Winer net have been
studied in [20]. The paper [21] proposes a design called
W-neuron network, which can memorize and reproduce
a sequence of binary vectors. In the replay mode a part
of the sequence is presented to network. The model of
the neural system with the stationary behavior is devel-
oped in [22, 23], for which, however, it is shown that the
periodic exposure on the common input of the associa-
tive network as a part of the system is an indispensable
condition for information remembering and reproduc-
tion.

The second case considers the nonstationary net-
works, which consist of neural oscillators. The networks
arise naturally in the simulation of the human and ani-
mal olfactory and visual systems [24–26]. The oscilla-
tory neural networks can be also divided into two classes
with respect to the element types: close and far removed
from harmonic oscillators. In the first case, a population
of interconnected close to harmonic oscillators is consid-
ered (for example, the Van der Pol oscillator [27–29]).
The distribution of the phases and amplitudes of oscil-
lations can be can be interpreted as a pattern code [24,
30, 31]. A very detailed review devoted to the networks
of close to harmonic oscillators is presented in [32].
Despite the variety of these networks studying meth-
ods, it seems to us that all of them fit into the following
scheme. The transition to slow variables is carried out:
amplitudes — phases. In terms of these variables the
assumptions about the structure of interaction (some-
times the nature of the interaction is specified within
the original variables) are made. Further, all the ampli-
tudes are often assumed to be the same, and the corre-
sponding equations are omitted. The resulting object is
called a system of the phase oscillators [33]. The prob-
lem of learning is set: the synaptic weights should be
arranged in such a way, that the system of phase oscil-
lators has a stable mode with a predetermined phase
distribution (stationary or more complicated) [34, 35].

This problem in a number of cases can be solved analyt-
ically [35]. For example, in [36] such rule of the weights
selection is specified that a predetermined part of the
oscillators operates in phase, and the other part — in
the antiphase.

Relating the above to the biological data, we note the
following. First, the close to harmonic oscillations are
not typical for the nervous system in our opinion. In the
normal state its individual elements (neurons) generate
short-term impulses called spikes. By means of pulses
transmission the communication between the neurons
occurs. Averaged with respect to the neural associa-
tions oscillations are also far from the harmonic one
after removal of the pulse component. It is reflected, for
example, in the human alpha rhythm wave dissymme-
try. Secondly, the possibility of transition to the phase
oscillators assumes ‘homogeneity’ of neural oscillators
interaction in time. We note that in the nervous system
the individual neurons as well as the neural associations
possess the property of absolute and relative refrac-
toriness (insensitivity or weak susceptibility to external
exposure at the certain time intervals). In particular, a
biological neuron at the time of spike generation and at
some interval after is incapable (or almost incapable) to
perceive the exposure. Thus, the interaction process is
highly heterogeneous in time. Refractoriness is consid-
ered in [19, 31, 37] (certainly, not within the harmonic
approximation).

The networks of far from harmonic oscillators are
insufficiently studied in our opinion. A systematic
description of the oscillatory elements types and a
review of some results on the organization of oscillations
in the corresponding networks are given in [38, 39]. The
autowave processes in the autowave environments are
reviewed and accompanied by a detailed bibliography
in [40].

According to a number of biologists (for example,
Crick [41]), oscillatory networks belong to the future.
It is more natural to explain the information process-
ing in the brain by their means. At the same time, the
development of the oscillatory networks theory provides
an opportunity to create the fundamentally new neuro-
computers.

The nonstationary network models are based on the
idea of the so-called Boltzmann machine (for exam-
ple, see [42]). The latter is a network each element of
which has a certain probability of being in one of two
states. According to the Boltzmann law this probabil-
ity depends on a variable called temperature (hence the
name of the model). In turn, the temperature of an
element is determined by the synaptic weights of the
neurons and their states. The state of the Boltzmann
machine is constantly changing. The pattern codes are
the spatial distributions of the neuron states averaged
in time. For networks with a ring topology an analogue
of the Boltzmann machine has been developed in [43].

The model of a neural network in which its state is
described by the spatial distribution of the densities
of the random binary flows generated by the neurons is
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proposed and studied in [44]. At the inputs of each neu-
ron the flows are mixed with the random flows accord-
ing to a certain rule, and act as the synaptic weights.
Depending on the total input flow, the output flow of
neuron is formed.

The papers [45, 46] are dedicated to the nonstation-
ary network models. The elements of the networks in
them are the neurons with a stochastic dynamics. It
is shown that these networks differ favorably from the
classic ones in terms of the fight with the false patterns
(unplanned states).

An equation with delay for an oscillatory neural ele-
ment, whose oscillations are far removed from har-
monic, are proposed in [47, 48]. In a series of publi-
cations by the authors of this paper it is shown, that
the equation admits the possibility of not only com-
puter, but also analytical research by means of asymp-
totic methods.

Recently, the prospects for the new approaches devel-
opment to the problem of the information processing
are increasingly associated with the ideas of the non-
linear dynamics [49, 50]. They are based on the idea
that the carrier of the information can be not a station-
ary bit value distribution, but a complex and, generally
speaking, not periodic mode of the dynamical system.
In this case, the procedures of the recording, storing and
reproducing information should be based on the con-
trol of the oscillatory processes [51]. The structuring,
scheduling and synchronization problems of the oscilla-
tory conditions for the networks from the proposed in
[47, 48] oscillators are studied analytically. This paper
is devoted to a review of the research results. A sub-
stantially more complete presentation of the results is
given in the monograph [52].

2 Neuron model based on equation
with delay

A nerve cell (neuron) consists of a central part, called
the soma, and neurodendrones. The single long nerve-
cell process is called the axon, and the shorter ones
are called the dendrites. The cell body of a neuron is
enclosed by a membrane. The state of the neuron is
characterized by the potential difference between the
inner and outer membrane surface of the neuron body
(membrane potential). The neuron functioning is asso-
ciated with the generation of the short-term high ampli-
tude impulses called spikes. They, as well as any change
in membrane potential, are caused by the ionic currents
flowing through the active membrane channels.

One of the important properties of the neural ele-
ments is their ability to spontaneous pulsing [53, 54].
The problem of the periodicity of neural activity has
long attracted researchers. The generation of spikes by
a neuron cannot be explained by external influence only.
This fact complicates the problem modeling.

Two aspects can be distinguished in the problem of
the periodicity. Firstly, a periodic activity as an expres-
sion of the nerve cells function normalcy. Secondly, the
role of periodic processes in the mechanisms of informa-
tion processing and storage in the nervous system. Even
A.A. Ukhtomsky had written that ‘a regular rhythm of
the bioelectrical activity is an important condition for
receiving the sensory information and the development
of associative processes’ (a quote from [53], p.9). From
this point of view, the periodic processes modeling, both
for the individual cell and for the neural system acquires
a special importance.

The Hodgkin-Huxley model is the best known and
generally accepted to describe the process of spike gen-
eration [55]. It is the system of four ordinary differen-
tial equations. The first of them is the balance equa-
tion for the currents flowing through the membrane.
The following are taken into consideration: capacitive,
sodium, potassium, and leakage currents. The second
and the third equations describe the processes of acti-
vation and inactivation of the sodium channels, respec-
tively. The last equation describes the potassium chan-
nels. The system of the equations is complex and is not
amenable to analytical study. In addition, it is sensi-
tive to the parameters selection. The Hodgkin-Huxley
model is substantially simplified with the preservation
of the biophysical meaning in [56]. Unfortunately, this
option allows the computer study only. The overview
of further simplifications of the Hodgkin-Huxley equa-
tion system, the FitzHugh model in particular, is given
in [38, 39]. The number of phenomenological models
are also proposed there. All of them are studied by the
computer methods.

A sufficiently simple spike generation model, which
agrees well with biological data, is proposed in [47, 48].
It allows an analytical study. This model phenomenol-
ogy is based on the analysis of the sodium and potas-
sium currents flowing through the active membrane
channels. The observed fact of the delay of the potas-
sium current with respect to the sodium current is taken
into account [55]. The value of the delay is taken as a
unit of time. For the membrane potential u(t) > 0 the
following differential-difference equation is suggested.

u̇ = λ[−1 − fNa(u) + fK(u(t − 1))]u. (1)

Here, fNa(u) and fK(u) are the positive sufficiently
smooth functions characterizing the state of the sodium
and potassium channels that transport ions through
the membrane. We assume, that fNa(u) → 0 and
fK(u) → 0 for u → ∞ faster than O(u−1). The param-
eter λ > 0 and the condition

α = fK(0) − fNa(0) − 1 > 0 (2)

holds. It is readily seen that the last inequality ensures
an instability of the zero-state equilibrium of the
Eq. (1).

The functions fNa and fK selection in the Eq. (1)
seems to be difficult problem. However, as the analysis
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shows, under a certain and very natural assumption the
specific type of these functions is not essential.

The results of the computer analysis of the Eq. (1) for
the specific type of the functions fNa = R1 exp(−u−2),
fK = R2 exp(−u−2) are presented in [47, 48]. On the
whole, it has been shown that the shape of the spikes
and the membrane potential evolution agree closely
with experimental data.

Further research was carried out analytically [57] and
was based on the following important assumption. The
parameter λ > 0 in the Eq. (1) is determined by the rate
of the electrical processes. According to the meaning of
the problem its value is great (λ � 1). This observa-
tion allows to use a special asymptotic method for the
Eq. (1) analysis.

To solve the Eq. (1), we introduce the class of initial
functions S which contains all the continuous on the
interval s ∈ [−1, 0] functions ϕ(s), for which ϕ(0) = 1
and 0 < ϕ(s) < exp(λαs/2) as s ∈ [−h, 0]. We stand
u(t, ϕ) for the Eq. (1) solution with the initial condition
u(s) = ϕ(s), where s ∈ [−1, 0] and ϕ ∈ S.

We associate the beginning and the end of the spike
(pulse) with the moments of time when u(t, ϕ) crosses
the unit value with the positive and negative speed,
respectively. Thus, the beginning of the neuron spike is
associated with the zero time. Let t1(ϕ) and t2(ϕ) be
the moments of the current spike end and the begin-
ning of the next one, respectively. Let us describe the
asymptotic behaviour of u(t, ϕ) on the time interval
t ∈ [0, t2(ϕ)] as λ → ∞.

Let the equation

fNa(u) − fK(0) − 1 = 0 (3)

has no positive roots. For this, it is sufficient to assume
that the functions fNa(u) and fK(u) monotonically
decrease by virtue of (2) as λ → ∞. We introduce the
notation

α1 = fK(0) − 1, α2 = fNa(0) + 1, (4)

T1 = 1 + α1, T2 = T1 + α2 \ α + 1, (5)

where α is defined by the formula (2). Let δ > 0 be an
arbitrarily fixed small number. We stand o(1) for the
summands, which tend to zero uniformly with respect
to varphi(s) ∈ S and with respect to the specified in
each case values of t , as λ → ∞.

Lemma 1 The asymptotic equalities

u(t, ϕ) = exp λα1(t + o(1)),
t ∈ [δ, 1 − δ], (6)

u(t, ϕ) = exp λ(α1 − (t − 1) + o(1)),
t ∈ [1 + δ, T1 − δ], (7)

u(t, ϕ) = exp [−λα2(t − T1 + o(1))],
t ∈ [T1 + δ, T1 + 1 − δ], (8)

Fig. 1 The form of the solution (1)

u(t, ϕ) = expλ(α(t − T1 − 1) − α2 + o(1)),
t ∈ [T1 + 1 + δ, t2(ϕ)], (9)

hold for u(t, ϕ) as λ → ∞. The values t1(ϕ) and t2(ϕ)
satisfy the relations

t1(ϕ) = T1 + o(1), t2(ϕ) = T2 + o(1). (10)

To prove the Lemma 1 the Eq. (1) is integrated by
the method of steps. The obtained formulas are asymp-
totically simplified as λ → ∞. The form of the solution
is shown in Fig. 1.

From a biological point of view the meaning of
Lemma 1 is very simple. The formula (6) gives an expo-
nential approximation of the spike upward phase AB ,
the duration of which is approximately equal to one.
Respectively, (7) is an approximation of the spike down-
ward phase, the section BC in Fig. 1. The formula (8)
describes the behaviour of the membrane potential on
the section CD immediately after the spike, and (9) is
the exponential approximation of the section DF of the
membrane potential slow evolution (drift). It follows
from the formula (10), that the duration of the spike
is close to the value T1, defined by the formula (5) as
λ → ∞. The points A and C are the beginning and the
end of the spike, respectively.

We especially note an important consequence of
Lemma 1. We introduce a sequence operator Π in
the set of initial conditions S according to the rule:
Πϕ(s) = u(t2 + s, ϕ) (s ∈ [−1, 0]). It follows from the
formula (9), that ΠS ⊂ S. From here, the solutions with
the belonging to ΠS initial conditions form an attrac-
tor with a wide basin of attraction, which contains the
set S . Obviously, the attractor contains the periodic
solution of the Eq. (1).

All the solutions (including periodic) belonging to the
attractor have a common asymptotic representation on
any finite time interval as λ → ∞. The asymptotic
formulas are repeated after the time T2, approximately.
Thus, it is proved that the model neurons are appeared
to be the active oscillators.
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Fig. 2 The discontinuous change of the membrane poten-
tial at the time interval between spikes. The time duration
of the ‘steps’ is approximately equal to one unit

Fig. 3 Pulse-free evolution of the detecting neuron mem-
brane potential. Stabilization intervals last for approxi-
mately one time unit

The case when the Eq. (3) has the positive roots is
studied in [57]. The conditions on the functions fNa(u)
and fK(u) are indicated, under which the spike is pre-
ceded by a sequence of discontinuous changes of the
membrane potential u(t, ϕ)

u(t, ϕ) =vj + o(1), t ∈ [j − 1 + δ, j − δ],
j = 1, . . . , m

(11)

for the belonging to the attractor solutions. Here, vj are
the constants. Further, the formulas of Lemma 1 (with
the time delay and the substitution α1 = fK(vm) − 1)
are also valid. The form of the solutions is shown in
Fig. 2.

Under certain assumptions [57] about the functions
fNa(u) and fK(u) a spike-free evolution of the mem-
brane potential is possible, as shown in Fig. 3. After the
discontinuous changes (11) the value of u(t, ϕ) returns

to the zero neighborhood. Then, the process is repeated.
Such dynamics of the membrane potential is typical for
detecting neurons [58], which are not able to generate
the impulses without any external exposure.

3 Synaptic exposure on neuron model
equation

The spike born in the body of the nerve cell spreads
along the axon (long process of the body) and its
branches, which terminate in the close proximity to the
surface of the other neurons. The domains of contact are
called synapses. Under the incoming impulse exposure,
specific chemical agents called mediators are produced
in the synapse. They have an excitatory or inhibitory
exposure on the receiving neuron. Depending on the
type of the mediator released, the synapses are divided
into excitatory and inhibitory ones. All the branches
of a neuron’s axon end with the synapses of one type,
either excitatory or inhibitory. Accordingly, the neurons
are divided into excitatory and inhibitory ones.

The number of the released mediators in the synapses
as a result of the incoming impulse rapidly arises, rel-
atively stabilizes, and then rather quickly the media-
tor is destroyed [3, 59]. At the first approximation, we
assume that the mediator is present only during the
incoming spike, and its number is constant. Let v(t)
be a membrane potential of the transmitting neuron.
Then, the function V (t) = θ(v(t)− 1) is an indicator of
the mediator presence at the synapses that terminate
the branches of its axon. Here, θ(∗) is the Heavyside
function.

The result of the mediator exposure on the neuron
depends on the state of the latter. During the spike and
for some time after the mediator, even if it is present,
has no (or almost no) exposure on the neuron. This
time interval is called the refractory period and is of
two or three spikes duration.

We accept the hypothesis that on the susceptibility
interval the mediator increases or decreases (according
to its type) the rate of the change of the membrane
potential by a proportional quantity. The coefficient of
proportionality characterizes the efficiency (weight) of
the synapse.

We note that the true picture of the mediator expo-
sure is much more complicated. A neuron is a dis-
tributed entity. The mediator exposure initially causes
the membrane potential change on the part of the adja-
cent to the synapse membrane. The so-called post-
synaptic (local) potential appears here. Postsynaptic
potentials ‘control’ the dynamics of the membrane
potential on the whole. They ‘spread out’ with attenu-
ation along the membrane and are accumulated in the
axon hillock, where the spike is actually appears.

We consider a neuron that is under the synaptic
exposure of m other neurons. To describe its dynam-
ics, we add the synaptic exposure modeling terms in
the Eq. (1). According to the the accepted hypothesis,
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we obtain the equation [57, 60, 61]

u̇ =λ[−1 − fNa(u) + fK(u(t − 1))

+ αH(u)
m∑

k=1

gkV (t − tk)]u.
(12)

Let us make the remarks. In (12), V (t) is an indica-
tor of the mediator presence: V (t) = 1 at t ∈ [0, T1]
and V (t) = 0 at t /∈ [0, T1]. Here, T1 is the asymp-
totic spike duration set by the formula (5). Further,
tk (k = 1, . . . , m) is the time of the start of the media-
tor release at the kth synapse. In its turn, αgk [α is cal-
culated by the formula (2)] are the multipliers, which
determine the contribution of the kth synapse to the
membrane potential dynamics. Let us call the numbers
gk the synaptic weights. If gk > 0, then we are talk-
ing about an excitatory synapse, if gk < 0 then we
are talking about an inhibitory one. Finally, H (u) is a
functional in (12), which ensures the refractory period
presence. It can be written out in different ways. We
dwell on the most natural (though rather cumbersome)
representation:

H(u) = θ(1 − u(t))θ(1 − u(t − (1 − ε)T1))
× θ(1 − u(t − 2(1 − ε)T1)),

(13)

where θ(∗) is the Heavyside function, and 0 < ε < 0.5.
The functional H (u) turns to zero during the spike and
over a period of time 2(1 − ε)T1 after. The duration of
the refractory period including the spike time interval
is TR = (3 − 2ε)T1. We assume, that the refractory
period is shorter than own period of neuron, i.e. TR <
T2, where T2 is set by the formula (5) and coincide
asymptotically with the period of its own activity.

Let us apply the already described above scheme of
the asymptotic study of the Eq. (12) dynamic proper-
ties. We introduce a class of the initial conditions for
the Eq. 12 solutions. Let h = 2(1 − ε)T1, and we con-
sider the set Sh which is similar to the set S . It consists
of the continuous on the interval s ∈ [−h, 0] functions
ϕ(s) for which ϕ(0) = 1 and 0 < ϕ(s) < exp(λαs/2).
Let u(t, ϕ) be the solution of the Eq. (12) with the ini-
tial condition u(s, ϕ) = ϕ(s) ∈ Sh. The beginning of
the neuron spike is associated with the zero time.

We consider the case where a neuron carries a sin-
gle synapse, i.e. m = 1 in (12). Let the mediator is
started to release at the time TR < t1 < T2, when
the refractory period is already passed, but the gen-
eration of the next spike has not yet begun. Then,
according to the condition u(t, ϕ) � 1 (before the
mediator eliminates and the next spike starts) we inte-
grate the Eq. (12) asymptotically and obtain u(t, ϕ) =
u(t1, ϕ) exp λα(1+g1+o(1))(t−t1) over the time inter-
val t1 < t < t1 +T1. A comparison with the formula (9)
of Lemma 1 shows, that the presence of the mediator
changes the exponent, which approximates u(t, ϕ). For
an excitatory synapse (g1 > 0) the exponent increases
and the next spike starts earlier, and for an inhibitory

one (g1 < 0) the exponent decreases and the time of
the next spike is getting further away.

Let g1 > 0, i.e. the synapse is of an excitatory type.
Let us say that a neuron directly responds to the expo-
sure if its spike starts at the time tSp, when the media-
tor released in the synapse has not yet eliminated, i.e.
t1 < tSp < t1+T1. We stand Q = tSp−t1 for the delay of
the spike start with respect to the moment of the media-
tor releasing. A direct response means that 0 < Q < T1

(the spikes of the transmitting and receiving neurons
overlap in time). We note, that the spike form is deter-
mined by the asymptotical Eqs. (6) and (7).

Lemma 2 Let the neuron directly responds to the
exposure of a single excitatory synapse. Then, the
asymptotic formula

Q = (T2 − t1)/(1 + g1) + o(1) (14)

holds as λ → ∞. Herewith, u(tSp + s, ϕ) ∈ Sh for s ∈
[−h, 0].

The formula obtained can be used to predict the
exposure result for t1 > tSp, if t1 is replaced by t1−tSp.
In this connection, we consider the problem of a peri-
odic exposure on a neuron coming through a single exci-
tatory synapse. Let the exposure period T satisfies the
inequality: T2−g1T1 < T < T2. By means of Lemma 2 it
can be proved [61], that the periodic exposure imposes
its frequency to the neuron. The neuron spike is delayed
by the value (T2−T )/g1+o(1) with respect to the next
moment of the mediator release at a single excitatory
synapse as λ → ∞ and t → ∞.

4 Dynamics of closed in ring neurons

We consider a ring of the N identical neurons, in which
the i th neuron (i = 1, . . . , N) is coupled with the
neighbor i − 1th and i + 1th neurons by the excita-
tory synapses. The neuron number N + 1 is identified
with the first one, and the precursor of the first neuron
is considered to be the N th neuron. By virtue of the
modeling the synaptic exposure Eq. (12), we obtain the
system of equations for the neural formation description
[60, 62, 63]:

u̇i = λ[−1 − fNa(ui) + fK(ui(t − 1))]ui

+ αλH(ui) × [gi,i−1θ(ui,i−1 − 1)
+ gi,i+1θ(ui,i+1 − 1)]ui, (i = 1, . . . , N),
uN+1 = u1, u0 = uN .

(15)

Here, the functional H (u) is determined by the expres-
sion (13), θ(ui,i−1 − 1) and θ(ui,i+1 − 1) are the indi-
cators of the mediator release in the corresponding
synapses of the ith neuron as a result of i − 1th and
i + 1th neuron spikes. The weights gi,i−1 and gi,i+1 of
these synapses we determine as follows. Let us consider
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two vectors (ξ01 , . . . , ξ
0
N ) and (ξ001 , . . . , ξ00N ). Let

T 0
s =

N∑

i=1

ξ0i , T 00
s =

N∑

i=1

ξ00i .

According to the biological meaning of all the parame-
ters, it is necessary to consider that

T 0
s < T2, T 00

s < T2,

0 < ξ0i < T1, 0 < ξ00i < T1, (16)

and also

T 0
s − ξ0i > TR, T 00

s − ξ00i > TR (17)

for all i = 1, . . . , N . Now we determine the synaptic
coefficients by the formulas

gi,i−1 =
(
T2 − T 0

s )
)
/ξ0i ,

gi,i+1 =
(
T2 − T 00

s )
)
/ξ00i (i = 1, . . . , N),

(18)

where the indexes i and i ± N are equated.
Let us turn to the initial conditions setting. To apply

the asymptotic method, the information about the neu-
rons behavior on the time interval h is necessary. When
considering an individual neuron, such information is
the moment of the spike onset and the prehistory of
the process on the time interval of h duration. In the
case of the several neurons system, it is also known how
does the membrane potential of each of them behave at
a similar interval before the spike onset. Unfortunately,
the moments of the spike onset are different. In this
regard, a special technique is proposed [62, 63], which
allows to construct the asymptotics of the system (15)
solutions, whose initial conditions of each of the com-
ponents are set at the different moments of time.

Let us introduce the vector τ = (t1, . . . , tN )
which consists of time moments of the neurons spikes
onset, and the vector of the initial functions ϕ =
(ϕ1(s), . . . , ϕN (s)), where ϕi(s) ∈ Sh (i = 1, . . . , N).
We are interested in the solution ui(t, ϕ, τ) (i =
1, . . . , N) of the system (15) for which ui(ti + s, ϕ, τ) =
ϕi(s) ∈ Sh), where s ∈ [−h, 0], ? i = 1, . . . , N . Let us
explain its construction algorithm. We assume that

t1 = 0, ti−1 < ti < ti−1 + T1

(i = 2, . . . , N), TR < tN < T2.
(19)

Let also

TR > 2T1. (20)

We arbitrarily redefine the function uN (t, ϕ, τ) on the
interval t ∈ [0, tN − h] observing the condition 0 <
uN (t, ϕ, τ) < 1.

We note, that H(u) = 0 for u > 1, and each of the
Eq. (15) may be integrated (independently from the
others) in the time interval t ∈ [ti, tci ], where tci is the
moment of the end of spike. By means of Lemma 1,
tci − ti = T1 + o(1). Due to (19) and (20) we obtain
t2 + T1 < TR. Since H(u1) = 0 for t < TR, then the
Eq. (15) does not depend on u2 for i = 1. It can be
integrated independently of the other equations over
the interval t ∈ [0, tN ]. For t > tN the Eq. (15) at i = 1
represents a problem about the N th neuron exposure
on a neuron. In this case, we make an a priori assump-
tion that the conditions of Lemma 2 are met (the first
neuron directly reacts on the exposure of the N th neu-
ron). It is obvious, that within this assumption the first
neuron does not affect on the N th neuron (over the
corresponding time interval in the Eq. (15) H(uN ) = 0
for i = N). This reasoning is repeated for the further
equation pairs. As a result we obtain the new moments
of the spikes onset τ ′ = (t′1, . . . , t

′
N ) and the new initial

functions

ϕ′ =(u1(t′1+s, ϕ, τ),. . ., uN (t′N +s, ϕ, τ))∈Sh.
(21)

Herewith, the functions u1(t, ϕ, τ), . . . , uN (t, ϕ, τ) sat-
isfy the system (15) as t ∈ (tN , t′1). Continuing with the
algorithm, it is possible to construct a solution of the
system (15) on any finite time interval.

It follows from the algorithm that the most impor-
tant parameters of the problem are the time intervals
between the spikes onsets of the neighboring neurons.
The process of the system (15) solution construction on
time interval, starting with the spike of the first neuron
and ending with the spike of the last neuron, we call
the cycle of the algorithm. From Lemmas 1, 2 and from
the algorithm it follows

Lemma 3 Let ξi be time intervals between the spikes
onsets of the i− 1th and i th neurons obtained at some
cycle of the algorithm, and ξ′

i be the new values ??of
these quantities in the subsequent single application of
the algorithm. Let each neuron reacts directly to the
exposure of the previous neuron (spikes of the neurons
overlap in time). Then, the asymptotic formulas

ξ′
1 =

⎛

⎝T2 −
N∑

j=2

ξj

⎞

⎠/(1 + g1,N ), (22)

ξ′
i =

⎛

⎝T2 −
N∑

j=i+1

ξj −
i−1∑

j=1

ξ′
j

⎞

⎠/(1 + gi,i−1)

(i = 2, . . . , N), (23)

ξ′
N

⎛

⎝T2 −
N−1∑

j=1

ξ′
j

⎞

⎠/(1 + gN,N−1) (24)

hold as λ → ∞ to within o(1).
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The result is a linear iterative process with a posi-
tive definite symmetric matrix. From the last property
the convergence of this process follows. As is easy to
see, that the introduced above vector ξ0 is the limit
point. Thus, from the inclusion (21) and from the limi-
tations (16), (17) on the vector components ξ0 the next
statement follows.

Theorem 1 The system (15) has an attractor, the
spikes of the neighboring neurons i − 1th and i th (i =
1, . . . , N) of which start after the time interval xi0i +o(1)
as λ → ∞, and the shape of spikes is given by the
asymptotic expressions (6), (7) (with an appropriate
time shift).

The solutions, the attractor in the theorem consists
of, we call the excitation waves which propagate in the
direction of increasing the neurons numbers. The peri-
odic solution with the period T 0

s + o(1) belongs to this
attractor too. The forming the attractor solutions have
a common asymptotic behavior on any finite time inter-
val. The attractor has a wide basin of attraction. By the
cycle of the wave propagation we call the process of a
sequential generation of the spikes, from the first neu-
ron to the last one.

The scheme of the cyclic propagation of the excita-
tion wave over the ring of four neurons is illustrated
in Fig. 4. The graphs of the membrane potentials of
the neurons from 1 to 4 are shown below one after
another. The lines with arrows show the moments when
the i − 1th neuron starts affect on the i th neuron.
The spike of the first neuron starts the cycle at zero
time. After the time ξ02 the second neuron generates an
impulse, under whose exposure the spike of the third
neuron starts at time ξ02 + ξ03 . The spike of the fourth

Fig. 4 Excitation wave propagation over ring of four neu-
rons diagram

neuron is induced by the third one with an additional
delay ξ04 . Finally, the fourth neuron after the time ξ01 ,
i.e. at the moment of time Ts = ξ02 + ξ03 + ξ04 + ξ01 causes
spike of the first neuron. Then the second cycle of the
excitation wave propagation begins. According to the
inequality (16), the time intervals between the spikes
of the neighboring neurons are shorter than the spikes
duration. The time interval between the neighbor wave
cycles is shorter than the period of the neurons own
activity. It is important, that the moment when the
fourth neuron begins to affect on the first neuron (as
for the other pairs) occurs after the end of the refrac-
tory period [see the inequality (17)]. It is pointed on
the first graph with the dot TR.

At the same time, the attractor consisting of the
waves, propagating in the direction of the neurons num-
bers decreasing, exists. For them, the intervals between
the spikes onset of the i th and i − 1th neurons are
asymptotically close to the numbers ξ00i , and a period
of the corresponding periodic solution is not much dif-
ferent from T 00

s .
If the number N of the neurons included in the ring

structure is large, then the described waves do not
exhaust the sets of all the attractors of the system (15).
In this case, there are the oscillatory conditions, called
the multiple waves [63]. Let us explain the phenomenon
in a particular case, when gi−1,i = 0 (i = 1, . . . , N) and
gi,i−1 = g (i = 1, . . . , N) in the system (15), i.e. each
neuron in the ring affects only the following one, and
all the synaptic coefficients are equal.

In such a situation the system of the Eq. (15) has an
attractor consisting of the excitation waves, which prop-
agates in the direction of the neurons numbers increas-
ing. The time intervals between the spikes onsets of the
neighboring neurons are asymptotically similar and are
close to the number

ξ0 = T2/(N + g) (25)

as λ → ∞. From (16) and (17), the condition for this
attractor existence follows:

0 < (T2 − NT1)/T1 < g

< [T2(N − 1) − NTR]/TR.
(26)

Under certain correlations between the parameters, the
other attractor is present along with the first one. It
corresponds to the following situation. Suppose that a
spike of the first neuron started at the zero time, which
generates an excitation wave propagating in the direc-
tion of the neurons numbers increasing. Then, we sup-
pose that at the moment of time, when the first wave
has not yet reached the N th neuron, a new spike of
the first neuron started (for example, the spontaneous
spike due to the self-oscillating properties of neurons).
As a result, the secondary wave of excitation propagates
along the ring structure after the first one. This mode of
the excitation conducting is called a double wave [63].
Obviously, the propagation of the double wave has a
certain feature, because each of the waves propagates
through an already ‘organized’ environment.
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Let the spike of the first neuron starts at zero time.
We stand ξi (i = 2, . . . , N) for the time intervals
between the spike onsets of the neighboring neurons
for the first wave in the initial excitation propagating
cycle. In turn, let ηi (i = 1, . . . , N) be the delay of the
secondary spike of the ith neuron in the same cycle.
Then, the quantities

ξ1 = 0,

i∑

j=2

ξj (i = 2, . . . , N),

η1,

i∑

j=2

ξj + ηi (i = 2, . . . , N)

are the spike onsets for the first and second waves in the
initial cycle. We introduce the numbers ξ′

i and η′
i (i =

1, . . . , N), which have the same meaning for the next
cycle of the excitation wave propagation.

We make a priori assumptions similar to the previous
ones. Firstly, we assume that at the moment when any
neuron starts spiking, the next numbered neuron has
already left the refractory state. Secondly, we assume
that the spikes of the neighboring by number neurons
overlap in time (neurons directly respond to the expo-
sure). Let ξN+i = ξ′

i, ηN+i = η′
i (i = 1, . . . , N). To meet

the conditions, the inequations

ηi >TR (i = 2, . . . , N),
N−1∑

j=1

ξi+j − ηi > TR (i = 2, . . . , N + 1)
(27)

and

0 <ξi < T1, 0 < ξi + ηi − ηi−1 < T1

(i = 2, . . . , 2N)
(28)

have to be valid, respectively.
Under the a priori assumptions we obtain the rela-

tions

ξi+N =

⎡

⎣T2 −
i+N−1∑

j=i+1

ξj + ηi

⎤

⎦/(1 + g), (29)

ηi+N = [T2 + g(ηi+N−1 − ξi+N ]/(1 + g),
(i = 1, 2, . . .) (30)

to within o(1). The system of difference Eqs. (29), (30)
has the stationary solution

ξi =ξ00 ≡ 2T2/(N + 2g),

ηi =η00 ≡ T2N/(N + 2g).
(31)

For the asymptotic stability the roots of the character-
istic polynomial of the homogeneous problem must be

located on the complex plane inside the unit circle. The
polynomial P (μ) is written out easily:

P (μ) ≡ (1 + g)2μN−1

+(1 − g2)μN−2 +
N−3∑

j=0

μj .
(32)

The polynomial roots P (μ) satisfy the inequality |μ|<
1. So, the stationary solution (31) of the difference equa-
tions system (29), (30) is asymptotically stable.

The a priori conditions, under which the asymptotics
of the spikes onset moments mismatch in the attractor
of the double waves of the system (15) is constructed,
mean that the stationary solution ξ00, η00 of the differ-
ence system (29), (30) must satisfy the relations

0 < ξ00 < T1, (N − 1)ξ00 < η00 + TR.

The first inequality means that the spikes of neighbor-
ing neurons overlap in time for each of the waves. The
second inequality means that at the moment when the
first wave approaches any of the neurons, that neuron
has already left the refractory state after the generation
of the second spike. It follows from these inequalities
that the synaptic coefficients gi,i−1 = g in the system
of the Eq. (15) satisfy the inequality

(2T2−NT1)/2T1<g < [(N−2)T2−NTR]/2TR.
(33)

For compatibility, the condition 2TR < (N − 2)T1

must be valid. From this we obtain an evaluation on
the number N of the neurons in the ring structure:
N > 2TR/T1+2. Considering the relation (20), we con-
clude that the ring structure must contain more than
six neurons.

So, if the conditions (33) on the synaptic weights g
are met, then the system of Eq. (15) has an attractor
consisting of two waves, running one after another, for
the case under consideration. The intervals between the
spikes of the neighboring neurons for each of them are
close to ξ00 as λ → ∞. Therewith, the second wave
delays with respect to the first wave by the asymptoti-
cally close to η00 time.

We note, that if the quantity g satisfies the inequal-
ity (33), then it satisfies (26) too. Hence, the second
attractor coexists along with the first. Thus, one could
talk about triple waves of excitation and etc.

5 Organized in double ring neurons
dynamics

We consider a ring structure consisting of N similar
neurons, each of them affects on two neurons following
after it. Therewith, it is considered that the first neuron
follows the N th neuron. Such a network is called a
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double ring [63]. The system of equations for the neural
population looks like

u̇i =λ[−1 − fNa(ui) + fK(ui(t − 1))]ui

+ αλH(ui) × [gi,i−2θ(ui,i−2 − 1)
+ gi,i−1θ(ui,i−1 − 1)]ui, (i = 1, . . . , N),
uN+1 = u1, u0 = uN ,

(34)

where, just as before, the functional H (u) is defined by
the expression (13), and gi,j are the synaptic weights.
Let the number of the neurons be odd: N = 2m +
1 (N ≥ 5). The system (34) can have a sufficiently
rich array of the attractors. Two of them are worth
mentioning.

The first attractor consists of the waves, in which
the excitation is transmitted through one neuron, i.e.
from the i th to the i + 2th neuron. This is possible if
during the spike of the i th neuron, the i + 1th neuron
is in the refractory state. Due to the odd number of the
neurons, the wave path is closed. Starting with the spike
of the first neuron, it sequentially causes the spikes of
odd numbered neurons overlapping in time. After the
spike of the N th neuron, the spikes of the even neurons
are induced sequentially. Finally, the wave reaches the
N − 2th neuron, which generates a spike of the first
one. This case does not differ from the one analyzed in
the previous section. If the expected in the stationary
state time intervals between the spikes onsets of the
i − 2th and i th neurons are the numbers ξ0i , then the
synaptic weights gi,i−2 are determined according to the
formulas (18) (the values of the weights gi,i−1 are not
essential). In addition, it is necessary to ensure that
during the spike of the i th neuron the i+1th neuron is
in a refractory state for the stationary mode. This can
be achieved by controlling the refractory period TR.

The second attractor corresponds to the case when
the spikes occur in the natural order of neuron numbers
increasing. The wave propagation is specific because
there is an anticipatory synaptic connection. Both, the
i − 1th and i − 2th neurons participate in the i th
neuron excitation process. Generally speaking, depend-
ing on the values of the synaptic weights there can
be several such of attractors. Let us consider one of
them. For the included in the attractor solutions, the
spikes of the neighboring in numbers neurons overlap in
time, but the spikes of the neurons following through
one number do not have this property. Let ξ00i be the
expected time intervals between the spikes onsets of
the i − 1th and i th neurons in the stationary mode.
We determine the synaptic weights gi,i−1 by the formu-
las

gi,i−1 =

⎛

⎝T2 − gi,i−2T1 −
N∑

j=1

ξ00j

⎞

⎠/ξ00i

.
Then the system of Eq. (34) has an attractor, in

which time intervals between the spikes of the i − 1th

and i th neurons are close to the numbers ξ00i as λ → ∞.
This attractor coexists along with the described above.
All calculations and strict justification of the corre-
sponding statements are carried out according to the
scheme above.

6 Adaptation model of individual neurons

The problem of the synaptic weights selection in the
neural systems is called the learning problem. There
are two fundamentally different approaches to its solu-
tion. According to one of them, the weights are com-
puted outside the neural network, and then imported
into synapses (external learning). In the previous sec-
tions, the problem of external learning of the ring struc-
ture has already been solved.

According to the second approach to the learning
problem, the synaptic weights are adjusted in the pro-
cess of the neural network operation. This approach
goes back to the paper by D. Hebb [2], it was devel-
oped by F. Rosenblblatt [5]. Some authors [7, 8, 10]
consider the presence of the adaptation mechanism as
an inherent feature of the neural system.

The adaptation problem as applied to dynamical sys-
tems does not appear to be simple. However, it can be
solved for the ring neuronal entities [64].

This section discusses the uptake mechanism by the
neurons ring of other elements not belonging to it. In
the next section, an algorithm of ring structure adap-
tation is proposed based on this mechanism.

We consider the ring of N neurons which is described
by the system of the Eq. (15), where the synaptic
weights are set by the formulas (18). We call it a refer-
ence ring, as well as the neurons belonging to it.

Along with the reference ring neurons we consider
another N neurons, called adaptive. Each i th adaptive
neuron is exposed by the i th and i−1th reference neu-
rons. The synaptic weight of the i th reference neuron
exposure on the i th adaptive neuron is equally fixed.
In turn, the synaptic weight of the i−1th reference neu-
ron exposure on the i th adaptive neuron is changing
in the operation process of the network. The purpose
of adaptation is to achieve the operating synchroniza-
tion of the i th reference neuron and the i th adaptive
neuron.

The problem can be interpreted as follows. The spike
of an individual reference neuron is a relatively weak
signal, which can be masked in the neural noise. The
uptake of the adaptive neuron by the reference one leads
to the signal amplification. It is obvious, that the i th
reference neuron can uptake several (many) adaptive
neurons. This leads to the further signals amplification.

We stand wi for the membrane potentials of the adap-
tive neurons. The system (15) for the ring of the refer-
ence neurons is supplemented by the adaptive neurons
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equations

ẇi = λ[−1 − fNa(wi) + fK(wi(t − 1))]wi

+ λαH(wi) × [Giθ(ui−1 − 1)
+ gθ(ui − 1)]wi, (i = 1, . . . , N),
uN+1 = u1, u0 = uN ,

(35)

where g is a common fixed value of the synaptic weight
of the i th reference neuron exposure on the i th adap-
tive neuron. The synaptic weights Gi of the i − 1th
reference neuron exposure on the i th adaptive neuron
are changing in the operation process of the network.

Along the reference ring the excitation wave is prop-
agated independently of the adaptive neurons, in which
the spike of the i th neuron delays with respect to the
spike of the i − 1th neuron by the value ξ0i + o(1).

Each i th adaptive neuron is exposed by the spikes
of the i − 1th and i th reference neurons. The exposure
on each neuron is periodically repeated at the inter-
val of time Tv =

∑N
j=1 ξ0j + o(1). The problem of such

exposure is solved by the asymptotic methods in [61].
The following is established. If the synaptic weight g is
not small, and the weight Gi is not much large, then
the spike onset of the i th adaptive neuron delays with
respect to the spike onset of the i th reference neu-
ron. Herewith, the spike of the i th adaptive neuron
occurs before the spike of the i − 1th reference neuron
completes. Such a reaction is called direct. The synap-
tic weight Gi increase leads to a decrease of the spike
onset delay of the i th adaptive neuron with respect to
the spike onset of the i th reference neuron. The idea
of adapting is based on this fact.

The modification of the synaptic weight Gi is per-
formed at the time interval TAd < T1 after the spike
onset of the i th adaptive neuron under the condition
of the spike of the i th reference neuron observation
(at this time interval the synaptic contact is not used,
because the neuron is refractory).

The functional

Hv(wi, ui) = θ(wi(t) − 1) ×
θ(wi(t − TAd) − 1)θ(ui(t) − 1)

at time t takes on the unit value only when the fol-
lowing events coincide. The spike of the i th adaptive
neuron is already started and no later than the moment
of time t − TAd. At the same time, the spike of the i th
reference neuron is observed. Under other conditions,
the functional H takes on the zero value. The synap-
tic weight Gi modification occurs at the time intervals,
where the functional Hv = 1.

Further, we introduce a functional

HSp(u) =
∫ t

t−T1

θ(u(τ) − 1)dτθ(u(t) − 1).

At the time interval when the spikes of the ith reference
neuron and the ith adaptive neuron are simultaneously

observed, the value of the difference HSp(wi)−HSp(ui)
coincides with the mismatch of the spike onsets of these
neurons. We consider, that the rate of synaptic weight
Gi change (where this change is possible) is propor-
tional to the indicated difference. We obtain the equa-
tion, which describes the modification of the synaptic
weight.

Ġi = q∗(HSp(wi) − HSp(ui))Hv(wi, ui), (36)

where q∗ > 0. The system of Eqs. (15), (35) and (33)
describes the adaptation process.

Let at the initial cycle of the excitation wave propaga-
tion along the reference ring the numbers ηi (0 < ηi <
T1 − TAd) be the mismatches of the spikes onset of the
ith adaptive neuron and the ith reference neuron, and
let Gi be the values of the synaptic weights after initial
adaptation. The Eqs. (15), (35) are asymptotically inte-
grated. The new delays of the adaptive neurons spikes
onset at the next cycle of the wave propagation η′

i and
the new values of the synaptic weights G

′
i are deter-

mined. The formulas look like:

η′
i =

⎛

⎝T2 −
N∑

j=1

ξ0j + ηi − Giξ
0
i

⎞

⎠/(1 + Gi + g),

(37)

G′
i = Gi + qη′

i (q = q∗TAd) (38)

to within o(1). They are derived under the assumption,
that the adaptive neurons respond directly to the expo-
sure. The condition is satisfied if the inequality

g > 1 +

⎛

⎝T2 −
N∑

j=1

ξ0j

⎞

⎠/(T1 − ξ0i ) (39)

holds.
The formulas (37), (38) determine an iterative pro-

cess, which reflects the sequential adaptation cycles. Let

0 < q <
[
(T1 − ξ0i )/gi,i−1 + ξ0i

]−1
. (40)

In the domain 0 ≤ Gi ≤ gi,i−1, 0 ≤ ηi < T1 − ξ0i
the process converges to the point ηi = 0, Gi = gi,i−1,
where the numbers gi,i−1 are the synaptic weights in
the reference ring calculated by the formulas (18).

An important addition needs to be made. The map-
ping (37), (38) is obtained under the a priori condition
ηi ≥ 0 and the terms of the order o(1) are not taken
into account. Since ηi tends to zero during the adapta-
tion process, the a priori condition may be violated. The
system (15), (35) asymptotic analysis allows to find the
value η′

i under the condition ηi < 0. The corresponding
expression can be joined with the formula (37). It is
proved that the resulting mapping has the stable sta-
tionary point ηi = 0, Gi = gi,i−1.
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7 Ring neural structure adaptation model

We suppose that a sequence of spikes is generated as
a result of some processes. Duration of each of them is
close to T1. Let ξ0i < T1 be the time intervals between
the spikes onsets of the i − 1th and ith impulses. The
spikes overlap in time: ξ0i < T1. We assume, that the
sequence is repeated periodically: ξ0i+N ≡ ξ0i , where
N > 4. The spikes sequence is called reference one.

We consider an oriented ring of N neurons, where the
i th element is affected by i − 1th neuron and by the
spikes of the reference sequence. During the ring struc-
ture operation the synaptic weights of the i−1th neuron
exposure on the i th neuron is modified. After discon-
necting the external signals the ring structure must gen-
erate spike sequence identical to the reference sequence.
The belonging to this ring neurons are called adaptive.

Let the spikes sequence with the intervals ξ0i between
them generates a reference ring, which consists of N
neurons. In biological systems, there are synaptic con-
tacts of a special kind. Via each of them, a neuron can
be affected quite equally by two other neurons. Such
a contact is conventionally called a common synapse.
We assume, that the i th adaptive neuron is affected
via common synapse by the i − 1th reference and the
i − 1th adaptive neurons. Along with this, let the i th
adaptive neuron is also affected by the i th reference
neuron, the exposure synaptic weight of which we con-
sider to be equal for all pairs of neurons, for simplicity.

We stand ui and wi (i = 1, . . . , N) for the mem-
brane potentials of the reference and adaptive neurons,
respectively. The reference ring is determined by the
system (15), and the adaptive one is determined by the
equations

ẇi = λ[ − 1 − fNa(wi) + fK(wi(t − 1)) + αH(wi) ×
[Giθ(ui−1 + wi−1 − 1) + gθ(ui − 1)]]wi, (41)

where i = 1, . . . , N (i = 0 is identified with i = N).
The function θ(ui−1 +wi−1 − 1) indicates the exposure
to the i th adaptive neuron via the common synapse of
the i − 1th reference and the i − 1th adaptive neurons.
It goes to the unit value only if there is a spike in one of
these neurons. The synaptic weight Gi characterizes the
exposure of common synapse, and the weight g reflects
the exposure strength of the i th reference neuron. The
functional H(∗) is given by the formula (13).

In the adaptation process the synaptic weights Gi

change. The idea of modification is based on the follow-
ing considerations. We imagine that the spikes of each
adaptive neuron are delayed with respect to the spikes
of the corresponding reference neuron. Then, the i th
adaptive neuron is actually affected only by the i − 1th
and i th reference neurons. It follows from the proper-
ties of the common synapse. We start the weights Gi

synaptic modification mechanism considered in the pre-
vious section. Over time, the values of Gi tend to the
numbers gi,i−1. After modification the reference ring
can be disconnected. The oscillatory mode is kept in
the adaptive ring, in which the spike of the i th neuron

is delayed with respect to the spike of the i−1th neuron
by the value of ξ0i + o(1). This is due to the fact, that
now the i th adaptive neuron is affected via common
synapse by the adaptive i − 1th neuron equivalently
instead of the reference one.

Let the weights Gi satisfy the Eq. (36). We agree
that each cycle of the wave propagation through the
reference ring opens with the spike of the first neuron,
and ends with the pulse of the N th neuron. Let us
consider some cycle of the wave propagation. We stand
ηi (i = 1, . . . , N) for the difference of the moments of
the i th adaptive neuron and the reference i th neuron
spikes onset at this cycle. Let Gi be the value of synap-
tic weights after the modification that occurred on it.
We stand η′

i and G′
i for the similar values for the next

cycle of the wave propagation.
The asymptotic analysis of the system of

Eqs. (15), (41) for λ → ∞ allows to get the rela-
tions for η′

i and G′
i

η′
i =

[
T2 −

N∑

j=1

ξ0j + ηi − Gi(ξ0i + | η′
i−1 | θ(−η′

i−1))
]

×
[
1 + Gi + gθ(T2 −

N∑

j=1

ξ0j + ηi − Giξ
0
i )

]−1

, (42)

G′
i = Gi + qη′

i (43)

to within o(1). Here, i = 1, . . . , N , η′
0 = ηN , q = q∗TAd,

where q∗ > 0 is the coefficient from (36).
The given by formulas (43), (42) mapping has a fixed

point ηi = 0, Gi = gi,i−1. Let the inequalities (39)
and (40) hold. Then, the weight g > 0 of the ith ref-
erence neuron exposure on the ith adaptive neuron is
not small, and the parameter q > 0 is not large. In the
domain 0 ≤ Gi ≤ gi,i−1, 0 ≤ ηi < T1 − ξ0i the rela-
tions (43), (42) turn into the formulas (37), (38). It is
shown earlier that the adaptation process converges.

A computer analysis of the mapping (43), (42) con-
vergence on the whole was performed (without assum-
ing about the original signs of the values ηi and gi,i−1−
Gi). It turns out that the mapping converges in a
wide range of the parameters and initial conditions. No
examples of divergence are found.

The described adaptation process is essentially sup-
plemented by the insights into the properties of ring
neural systems. It turned out, that they can not only
store the wave packets, but also remember them by
adjusting. Herewith, it does not matter at all the nature
of the reference sequence of the spikes. It can be gen-
erated by sensory structures. Thus, it is acceptable to
consider the adaptation scheme as a model for remem-
bering of information presented in the wave form.

123

Eur. Phys. J. Spec. Top. (2023) 232:509–527520



8 Synchronizing oscillations in ring neural
structures system model

The problem of the identification of two phase-
differentiated similar excitation waves, which propagate
over the two ring neural structures, is arisen. A system,
which performs the synchronization of the oscillatory
conditions, is developed below. The assumption about
the existence of such synchronization mechanisms in
the human brain is the basis of the hypothesis of the
memory wave nature [65, 66]. According to [66], exci-
tation waves can serve as the codes of information in
the brain. According to [66], the waves that are not too
different in phase represent the same code. If the waves
are synchronized over time, it means the identification
of the codes.

The theory of the wave coding is developed in [66]
just empirically. We set the problem of developing a
neural network, which synchronizes identical excitation
waves with different phases.

Mathematically, the problem arises of local dynamics
study of two coupled active oscillators in neighborhood
of a set of attractors, the trajectories of which have
rather complex structure, but asymptotically close to
the cycles. In the considered problem, the method of
normal forms applies effectively, with the help of which
it is possible to determine the structure of the attractor
at different couplings between the systems.

We consider two similar neural rings, which are
described by the system of Eq. (15). We need to con-
struct the connections between the rings so that the
spikes of the neurons of the different rings were synchro-
nized. The connections must be addressless, because
the true numbering of neurons in the rings is unknown.
The interaction model is based on the synapse, which
is called a correlation synapse. Its idea is mentioned in
[67].

Correlation synapse is the communication channel
with two inputs. The first input is activating, it turns
the synapse in the state of readiness. If a spike arrives
at the second input of the synapse in the active state,
then the correlation synapse affects the evolution of
the membrane potential of the neuron on which it is
located. The time during which the correlation synapse
is activated coincides with the spike duration T1. We
denote by hs the time of its exposure.

For definiteness, let us choose the first neural ring.
The connections architecture for the second one is sym-
metric. A wave of spikes propagates over the ring,
caused by the fact that the i − 1th neuron affects the i
th neuron. It is reasonable to adjust the phases at the
exposure interval. To implement the no-address prin-
ciple, all neurons of the second ring must have equal
access to the second input of the correlation synapse.
We assume, that they affect additively with the equal
weights g . To keep synchronization (if it is observed),
the time delay h0 of the activating channel must be
introduced and the inequality hs < h0 must be valid.

We stand ui and vi (i = 1, . . . , N) for the membrane
potentials of the neurons of the first and second rings,

respectively. For simplicity, we assume that the i th
neuron can not affect on the i − 1th neuron in any ring
(in (18) gi−1,i = 0). By virtue of the above, we obtain
the system of equations

u̇i =λ[−1 − fNa(ui) + fK(ui(t − 1))
+ αH(ui)[gi,i−1θ(ui−1(t) − 1)
+ gθ(ui−1(t − h0) − 1)S(v)]]ui,

(44)

v̇i =λ[−1 − fNa(vi) + fK(vi(t − 1))
+ αH(vi)[gi,i−1θ(vi−1(t) − 1)
+ gθ(vi−1(t − h0) − 1)S(u)]]vi,

(45)

where i = 1, . . . , N , uN+1 = u1, u0 = uN , vN+1 = v1,
v0 = vN . In (44), (45) g is the common value of the
synaptic weights of the neurons exposure of one ring on
another, the synaptic weights gi,i−1 (i = 1, . . . , N) are
set by the formula (18), the functional H(∗) is set by
the formula (13). Further, in (44)

S(v) =
N∑

k=1

θ(vk(t) − 1)θ(1 − vk(t − hs))

are the sum synaptic signals accepted by the first ring
from the neurons of the second one. In (45), S (u) has
a similar meaning. Each of the single signals is called a
sync pulse. Their duration is equal to hs. At the same
time hs < h0, where h0 in (44), (45) is the activation
delay of the correlation synapse. We consider that h0 +
hs < min(ξ0i ). It is appropriate to remind, that for g = 0
due to the weights gi,i−1 (i = 1, . . . , N) selection each of
the Eqs. (44) and (45) has an attractor which consists
of the solutions, where the spike of the i th neuron is
delayed with respect to the spike of the i − 1th neuron
by the close to ξ0i value.

For asymptotic integration of the system (44), (45)
the described in Sect. 4 method is used. At the initial
cycle of the excitation waves propagation the moments
of the neuron spikes onsets are set a priori. Let these
be the numbers ti,j (i = 1, . . . , N ; j = 1, 2) for the ith

neuron of the jth ring, respectively. We assume that
0 ≤ t1,j < t2,j < . . . < tN,j < T2 (j = 1, 2). The initial
conditions of the system of equations (44), (45) are set
individually: ui(ti,1 + s) = ϕi,1(s) ∈ Sh, vi(ti,1 + s) =
ϕi,2(s) ∈ Sh (i = 1, . . . , N), for which the set of func-
tions Sh is described in Sect. 3. The system (44), (45)
is integrated recursively. The formulas are asymptoti-
cally simplified, if we consider λ → ∞. There are the
moments t′i,j (i = 1, . . . , N ; j = 1, 2) of the spike onsets
of the neurons on the new wave propagation cycle. At
the same time ui(t′i,1 + s) ∈ Sh, vi(t′i,2 + s) ∈ Sh, which
allows to continue the algorithm.

We stand ξi (i = 2, . . . , N) for the time between the
spikes onset of the i−1th and ith neurons of the first ring
on the initial wave propagation cycle. Let ηi = ti,2 −
ti,1 (i = 1, . . . , N) be the spikes onset mismatch of the
ith neurons of the first and the second ring on the initial
cycle. We stand ξ′

1 for the time interval between the
spikes onset of the N th and the first neurons of the first
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ring (it is calculated). The quantities ξ′
i (i = 2, . . . , N),

ηi′ (i = 1, . . . , N) have the same meaning, but relate to
the next wave propagation cycle.

Theorem 2 There is such a positive value δ0 that for
|ξi − ξ0i |< δ0 (i = 2, . . . , N), |ηi|< δ0 (i = 1, . . . , N) the
asymptotic formulas

η′
1 = (g1,NηN + η1)/(1 + g1,N + g) + o(1), (46)

ξ′
1 =

(
T2 −

N∑

m=2

ξm)/(1 + g1,N

)
+

θ(−η′
1)gη′

1/(1 + g1,N ) + o(1), (47)

η′
k = (gk,k−1η

′
k−1 + ηk)/(1 + gk,k−1 + g) + o(1)

(k = 2, . . . , N), (48)

ξ′
k =

(
T2 −

N∑

m=k+1

ξm +
k+1∑

m=1

ξ′
m

)
/(1 + gk,k−1)

+ θ(−η′
k)gη′

k/(1 + gk,k−1) + o(1)
(k = 2, . . . , N − 1), (49)

ξ′
N =

(
T2 −

N−1∑

m=1

ξ′
m)/(1 + gN,N−1

)
+

θ(−η′
N )gη′

N/(1 + gN,N−1) + o(1) (50)

hold as λ → ∞.

By means of Theorem 2 it is possible to study the
sequential cycles of excitation wave propagation. Let
ξ
(j)
k , and let η

(j)
k (k = 1, . . . , N) be the values of the

described at the jth cycle variables. It follows from the
formulas (46) and (48) that η

(j)
k → o(1) as j → ∞. If

we omit the terms which contain η′
k and the summands

o(1) in the formulas (47), (49) and (50), we obtain the
convergent iterative process (22), (23), (24) (see Sect. 4)
with the limit point (ξ01 , . . . , ξN ).

Theorem 3 There is such a positive value δ0 that for
|ξi−ξ0i |< δ0 (i = 2, . . . , N), |ηi|< δ0 (i = 1, . . . , N) with
the number j of the propagation wave cycle increase,
the time intervals ξ

(j)
i (i = 1, . . . , N) between the spikes

onset of the i−1th and ith neurons of the first ring tend
to ξ0i + o(1), and the mismatches η

(j)
i (i = 1, . . . , N) of

the spikes onset of the ith neurons of the first and second
rings tend to o(1) as λ → ∞.

Thus, the described by the system of Eqs. (44), (45)
neural network really implements the synchronization
of identical, but phase-differing excitation waves. The
problem of synchronization is important in many prob-
lems, and it is of particular importance for neural net-
works. A waves synchronization can be interpreted [65,
66] as matching of patterns whose codes they are.

9 Wave structures in ring systems
of homogeneous neural modules

Some time is needed for synapse modification during
neurons ring adaptation, and wave packets are the vari-
able formations. Adapting the properties of the neural
environment requires at least a few cycles of the wave
packet repeating. So, the wave coding hypothesis, in
our opinion, assumes the existence of a special mem-
ory for the temporary packing of the wave packets. We
call it short-term memory, though storage time can be
long. In our opinion, there are no synaptic changes in
the neural environment that temporarily preserves wave
packets. Remembering is performed by adjusting the
oscillation phases, i.e. through their self-organization.
We note, that short-term and long-term memory do
not differ in the models of classical neural networks [5,
13, 14]. On the contrary, biologists and psychologists
classify them [68].

The model [52, 69] of a neural population that is
capable to store for an infinitely long time quite diverse
wave packets is considered below. The model is a ring
and oriented structure of neural modules, which con-
tain excitatory and inhibitory elements. It appears that
within each module, a part of the excitatory elements
synchronizes the generation of spikes, and the rest are
inhibited (do not generate impulses). Between groups
of neural spikes of neighboring modules temporal mis-
matches arise that are uniquely determined by the num-
ber of uninhibited neurons. The structure and the size
of groups of synchronously functioning neurons in the
modules depend on the initial conditions.

Thereby, the network is a ‘flexible’ system, which
allows to store a variety of periodic sequences. Such
the environments can be used, for example, in the sys-
tems of identification or partial mapping of periodic
sequences. When configuring adaptive systems for clas-
sification or forecasting the need for multiple periodic
repeating of the learning sample appears.

If we interpret the spatial distribution of spikes in
a module as a pattern, the network can store a given
sequence of patterns for an infinitely long time. Both
the patterns themselves and their temporal distribution
can be informative.

We presuppose a number of important constructions
to the description of the network. We return to the
Eq. (12) of the neuron which is under a synaptic expo-
sure of m other neurons. We consider its solution u(t, ϕ)
with the initial condition u(s, ϕ) = ϕ(s) ∈ Sh, i.e. the
neuron spike onset is associated with the zero time.

Let all the synapses be excitatory and all the synaptic
weights are equal: gk = g > 0 (k = 1, . . . , m). We
consider the situation, when TR < t1 ≤ t2 ≤ . . . ≤
tm < T2 and tm < t1 + T1. This means that a group of
spikes (burst) arrived to the neuron which is come out
of the refractory state. Herewith, the last spike in the
burst began before the first one ended. Such exposure
is called bursting. The arrived at the synapses spikes
cause the release of a mediator, what approximates the
next spike onset tSp of the neuron (tSp < T2). Let us say
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that a neuron directly responds to a burst of impulses,
if tm < tSp < t1 + T1, i.e. its spike is started before the
first impulse is ended. Let us introduce the quantities
Q = tSp − tm and ξk = tk − tk−1, k = 2, . . . , m.

Lemma 4 Let the neuron directly responds to the
burst exposure. Then the inclusion u(tSp + s, ϕ) ∈ Sh

and the asymptotic equality

Q =

(
T2 − tm − g

m∑

k=2

(k − 1)ξk

)
/(1 + mg) + o(1)

hold as λ → ∞.

The obtained formula can be used to predict the
results of exposure for tSp < tk (k = 1, . . . , m), if we
replace tk by tk − tSp (k = 1, . . . , m). It can be shown
that periodic burst exposure imposes its frequency to
the neuron.

A burst of spikes may alternatively affect on the neu-
ron, if it has both excitatory and inhibitory synapses.
Let m1 and m2, m1 + m2 = m, their number and all
the synaptic weights are equal modulo (|gk|= g). Let P γ

be the class of the continuous for s ∈ [−h, 0] functions
ψ(s), for which 0 < ψ(s) < exp(−λγ) as γ > 0.

Lemma 5 Let tm + T1 + h < t∗ < T∗, β = gT1(m2 −
m1) − T∗ > 0 and u(t, ϕ) be the solution of the
Eq. (12) with the initial condition u(s, ϕ) ∈ P γ , where
γ > α(T∗ + gm1T1). Then, for the sufficiently large
λ and t ∈ [0, t∗] the inequality 0 < u(t, ϕ) < 1 and
the inclusion u(t∗ + s, ϕ) ∈ P γ∗ ⊂ P γ hold, where
γ∗ = γ + αβ.

It follows from Lemma 5 that a periodic inhibitory
(m2 > m1) exposure is able to completely suppress the
generation of the impulses (inhibit the neuron).

We consider a system of two neurons that are affected
by the same burst of m spikes. In addition, the first
neuron affects on the second one. We consider all the
synapses to be excitatory and equal in weight. The neu-
ral formation is described by the equations

u̇1 =λ[−1 − fNa(u1) + fK(u1(t − 1))+

αgH(u1)
m∑

k=1

V (t − tk)]u1, (51)

u̇2 =λ

[
− 1 − fNa(u2) + fK(u2(t − 1)) + αgH(u2) ×

(
m∑

k=1

V (t − tk) + θ(u1(t) − 1)

)]
u2. (52)

Here, u1 and u2 are the membrane potentials of the first
and second neurons, the summand θ(u1(t)−1) indicates
the presence of the released as a result of the first neu-
ron spike mediator, g > 0 are the synaptic weights.

Let the spike of the first neuron is started at the
zero time, and the second one is started at the moment
ξ ∈ (0, T1), and u1(s, ϕ), u2(ξ + s, ϕ) ∈ Sh. We stand

tSp
1 , tSp

2 for the moments of the following neuron spikes
onsets, and we set ξ′ = tSp

2 − tSp
1 .

Lemma 6 Let the neurons respond directly to the
burst exposure. Then, for sufficiently large λ the inclu-
sions u1(t

Sp
1 +s) ∈ Sh, u2(t

Sp
2 +s) ∈ Sh and the asymp-

totic representation:

ξ′ = ξ/(1 + g(m + 1)) + o(1)

hold.

We describe the following neural network with mod-
ular organization. It consists of N neural associations
(modules). Each module contains n neurons with exci-
tatory and q neurons with inhibitory synapses (exci-
tatory and inhibitory neurons). Within a module each
excitatory neuron affects on every other neuron, but
each inhibitory one affects only on the excitatory ele-
ments.

The neural modules form an oriented ring structure.
Each excitatory element of the ith module affects on any
excitatory neuron of the i + 1th module, but it has no
access to the inhibitory neurons of this module. Asso-
ciations with the numbers i + kN , k = 0,±1, . . . are
identified. Absolute values of the synaptic weights are
considered to be similar.

We number the excitatory and inhibitory elements
separately by a pair of indices (i , j ), where i is the
module number, and j is the neuron number. We stand
ui,j and vi,m for the membrane potential values of the
(i, j)th excitatory and the (i,m)th inhibitory neurons,
respectively. These values satisfy the system of equa-
tions

u̇i,j = λ

[
− 1 − fNa(ui,j) + fK(ui,j(t − 1)) +

αgH(ui,j)

[
n∑

k=1

(θ(ui−1,k − 1) + θ(ui,k − 1)) −

q∑

k=1

θ(vi,k − 1)

]]
ui,j , (53)

v̇i,m = λ

[
− 1 − fNa(vi,m) + fK(vi,m(t − 1)) +

αgH(vi,m)
n∑

k=1

θ(ui,k − 1)

]
vi,m, (54)

where i = 1, . . . , N ; j = 1, . . . , n; m = 1, . . . , q, the
functional H(∗) is given by the formula (13), and g > 0
is common in magnitude the synaptic weights value. We
consider that the number of inhibitory neurons in the
modules satisfies the condition β0 = gT1(q−2n)−T2 >
0, i.e. it is sufficiently large.

The initial moments of time for different equations
are selected separately with asymptotic integration of
the system (53), (54). Usually, they coincide with the
moments of the corresponding neurons spikes onset.
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Let ti,j be the moments of spikes onsets of the first
ni excitatory neurons of the ith module. We consider,
that ti,j+1 ≥ ti,j , ti+1,1 > ti,ni

, ti,ni
− ti−1,1 < T1,

tN,nN
− ti,1 < T2. We assume, that ui,j(ti,j + s) ∈ Sh

for j = 1, . . . , ni, and ui,j(ti,1 + s) ∈ P γ0 , where
γ0 = α(T2 + 2nT1) for j = ni + 1, . . . , n. Let τi,j be
the moments of spikes onsets of the (i, j)th inhibitory
neurons, herewith τi,j > ti,ni

, τi,j − ti,1 < T1 and
vi,j(τi,j + s) ∈ Sh. The functional H(∗) is such, that
each of the equations (53), (54) can be integrated inde-
pendently of the other ones during the spike of the
corresponding neuron and on the time interval of the
h duration after it is ended. Because of this and the
selection of the moments of the spikes onset, the equa-
tion for the first excitatory neuron of the first module
is the problem of the nN excitatory elements of the
N th module exposure. The starting moment t′1,1 of a
new impulse can be got, herewith u1,1(t1,1 + s) ∈ Sh

(Lemma 4). For the second excitatory neuron of the first
module we obtain the problem of external exposure, to
which the first neuron is also connected (Lemma 6).
Similarly, the equations for the (1, j ) neurons are con-
sidered for j = 3, . . . , n1. Then the equations for the
inhibitory neurons of the first module are analyzed.
The last n − n1 excitatory neurons of the first mod-
ule do not generate spikes on the interval t ∈ [t1,1, t

′
1,1],

and u1,j(t′1,1 + s) ∈ P γ0+αβ0 (Lemma 6). Further, the
equations for the next modules are considered in the
system (53), (54). Applying the algorithm we can con-
struct its solution at any finite time interval.

It follows from the algorithm, that the sys-
tem (53), (54) has the solutions of the following struc-
ture. In the ith module the burst of spikes of ni exci-
tatory neurons induces the spikes of inhibitory ones,
which suppress the firing of the remaining excitatory
elements of the module. The spikes of excitatory neu-
rons of the ith module induce the burst of spikes of
ni+1 excitatory elements of the i + 1th module. As a
result, a wave of spike groups propagates through the
ring structure.

The most important parameters of the described
solutions are the time intervals between the spikes
onsets. Let us select some module with the number
i . We stand ξk,1 > 0, k = i + 1, . . . , i + N − 1 for
the intervals between the onsets of neighboring in time
spikes of the (k−1, nk−1)th and (k, 1)th excitatory neu-
rons. Let ξk,j > 0, j = 2, ..., nk be the similar inter-
vals for the (k, j − 1)th and (k, j)th excitatory neu-
rons, ηk,j > 0 be the spikes onset mismatch of the
(k, nk)th excitatory and the (k, j)th inhibitory neurons.
By means of these quantities we can calculate time
interval ξi,1 between the spikes onset of the excitatory
(i + N − 1, ni+N−1) ≡ (i − 1, ni−1)th and (i, 1)th neu-
rons and get a new values of ξ′

i,j , j = 1, . . . , ni, η′
i,j ,

j = 2, . . . , q. We obtain the equalities

ξi,1 =

[
T2 −

ni∑

j=2

ξi,j −
i+N−1∑

k=i+1

nk∑

j=1

ξk,j−

g

ni−1−1∑

j=1

jξi−1,j+1

]/
(1 + gni−1), (55)

ξ′
i,m = ξi,m/(1 + g(nni−1 + m − 1)),

m = 2, . . . , ni, (56)

η′
i,m =

[
ηi,m + T2 −

i+N−1∑

k=i+1

nk∑

j=1

ξk,j − ξi,1 −

ni∑

j=2

ξ′
i,j − g

ni−1∑

j=1

jξ′
i,j+1

]/
(1 + gni),

m = 1, . . . , q (57)

as λ → ∞ to within o(1). From (55)– (57) follows, that
as t → ∞ the mismatches of the impulses onset have the
following properties: ξi,j → 0, j = 2, . . . , n, ξi,1 → ξ0i
and ηi,j → ξ0i . Here,

ξ0i =T2

/
⎛

⎝ni−1

⎛

⎝g +
N∑

j=1

n−1
j

⎞

⎠

⎞

⎠,

i = 1, . . . , N.

(58)

The Lemmas 4– 6 are used to derive the rela-
tions (55)– (57). Thus, the inequalities ξ0i < T1, TR <∑N

j=1 ξ0j − ξ0i , i = 1, . . . , N are necessary to hold.

Theorem 4 We distinguish ni excitatory neurons in
each module so that for i = 1, . . . , N the inequalities

⎛

⎝T2

∑

j �=i

n−1
j

⎞

⎠
/⎛

⎝g +
N∑

j=1

n−1
j

⎞

⎠ > TR,

T2

/
⎛

⎝ni

⎛

⎝g +
N∑

j=1

n−1
j

⎞

⎠

⎞

⎠ < T1

hold. We consider the number q of the inhibitory neu-
rons in each module to be sufficiently large: β0 =
gT1(q − 2n) − T2 > 0. Then, for sufficiently large λ
the system (53), (54) has an attractor, consisting of
the solutions with the following properties. The time
intervals between the spikes onsets of the distinguished
excitatory neurons inside each module differ by the
amount o(1). The intervals between the spikes onsets
of the excitatory neurons of the i − 1th and ith mod-
ules are close to the numbers ξ0i , which are given by the
formula (58). Within the ith module the spikes of the
inhibitory neurons are delayed with respect to excita-
tory impulses by the close to ξ0i+1 value. The remaining
excitatory elements do not generate the spikes.

The described spike waves do not exhaust all the
attractors of the system (53), (54). For example, several
waves can propagate through a ring modular system
one after another.
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In the statement above a neural system is proposed
through which, depending on the initial state (it can
be set by the external exposure), the waves of a given
structure propagate. Choosing the number of active
excitatory neurons in the modules, It is possible to regu-
late the time intervals between the bursts of spike onsets
in neighboring modules. At the same time, the spatial
structure of the active excitatory elements inside the
modules can be informative. These problems are impor-
tant and related to the short-term memory modeling
[65, 66].

10 Closing remarks

The information is reflected as a set of stable equi-
librium states in classic neural networks. The present
review considers a series of papers devoted to the actual
problem: the development of neural networks models
without the equilibrium states. Oscillatory conditions
in neural networks are interpreted as patterns, i.e. the
reflection of some information. On the basis of physio-
logical insights, a model of capable to store information
neural environment is suggested in a wave form. The
effective analytical methods of asymptotic analysis of
nonlinear nonlocal oscillations in system of the equa-
tions with delay, which describe the neural population,
are described.

Theoretical research has made it possible to solve the
important specific problems effectively. The following
statements are of the greatest interest among them.

1. A new model of a generating short-term, high-
amplitude impulses neuron, based on the equation
with delay, is developed and studied. It is shown
that under certain natural assumptions the con-
crete form of the included in the equation functions
fNa and fK is not essential. A model of neurons
interaction and, thus, of a neural network is pro-
posed.

2. New mathematical methods for studying the sys-
tems of equations for a neural population are devel-
oped. By their means, it is analytically proved that
the ring system of the model neurons is capable
to store the predetermined periodic sequences of
impulses (the ability to store information).

3. It is proved that the adaptation of the neurons
interaction force in the model forms a population
which generates a set periodic sequence of impulses
(the ability to record information).

4. The model of neural structures synchronization is
constructed, which allows to establish the identity
of the impulse sequences.

5. It is shown that impulse sequences can be tem-
porarily stored in a ring population of neural mod-
ules without weights adjusting (model of short-term
wave memory).

Let us discuss the ways of possible development of the
model. They are based on a detailed scheme of biologi-
cal neurons interaction. It is considered [59], that during
the neuron spike the mediators on the adjacent synapses
are destroyed, and later the mechanism of the medi-
ators release is suppressed for some time. We accept
the hypothesis that during the refractory period the
mediator is not released in the synapses of the receiv-
ing neuron. Let u and v be the membrane potentials
of the transmitting and the receiving neurons, respec-
tively. In the model discussed above, the functional
θ(v(t) − 1) serves as an indicator of the mediator pres-
ence. It can be modified so, that the new indicator func-
tional M (u, v) satisfies the formulated hypothesis.

This idea is used in [70] in conformity to the networks
of neural-like elements, the operation scheme of which
simulates impulse neurons. The homogeneous fully con-
nected networks are considered. The following state-
ment is proved. The neurons are numbered arbitrary. It
is considered, that the first neuron follows the last one.
There are the stable oscillatory conditions of the net-
work operation in which the spikes occur in ascending
order of the neuron numbers. Further, the set of neu-
rons can be divided into a system of disjoint subsets,
which are randomly numbered (in the cycle the last one
is followed by the first subset). There is an attractor in
which neural spikes occur in ascending order of subset
numbers. Within each subset, the neurons operate syn-
chronously. So, the network [70] is a flexible system for
the impulse sequences storage.

The results above can be applied to the networks of
impulse neurons.

Another aspect is of interest. Previously, it was
believed that the mediator is present during the spike
of the transmitting neuron. For biological neurons, the
time interval during which the exposure of the media-
tor is noticeable is long. The mentioned above indica-
tor functional M (u, v) can be modified for this phe-
nomenon account.

Finally, we note that there is another type of contacts
between its elements in the nervous system. These are
the electrical synapses. The model of a neural network
with electrical interaction is considered in [71]. It is of
some interest to consider neural networks with com-
bined interaction of the elements (both electrical and
chemical synapses are present).
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