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Abstract Fractal analogue of Newton, Lagrange, Hamilton, and Appell’s mechanics are suggested. The
fractal α-velocity and α-acceleration are defined in order to obtain the Langevin equation on fractal curves.
Using the Legendre transformation, Hamilton’s mechanics on fractal curves is derived for modeling a
non-conservative system on fractal curves with fractional dimensions. Fractal differential equations have
solutions that are non-differentiable in the sense of ordinary derivatives and explain space and time with
fractional dimensions. The illustrated examples with graphs present the details.

1 Introduction

Fractals are shapes whose fractal dimension exceed
topological dimension i.e. Romanesco broccoli, clouds,
lightning, leaves, rivers, the neurons in your brain, and
snow flakes [1–3]. Some fractals that can be shown as
mathematical equations that are everywhere continu-
ous but nowhere differentiable such as the Weierstrass
function and Koch curves. This is because of fractals
cannot be measured in traditional ways used in ordi-
nary calculus i.e. length and area and volume. For fur-
ther explanation, to measure a non-fractal curve, its
length can be measured by reducing the scale and tan-
gent it. On the other hand, they consist of a pattern
that repeats on a finer and finer scale. But this is not
possible in the case of fractals since the jagged pattern
appears again at an arbitrarily small scale and one can
not tangent scale to them. By shrinking the scale, the
length of the fractal curve increases. As a result, with
this way, the length of the curve becomes infinite i.e.
the fractal Koch curve has an infinite perimeter. Can-
tor set which is a set of points lying on a single line
segment, built by iteratively deleting the open middle-
ε from a set of line segments [4]. The Cantor set does
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not have any interval of non-zero length but contains an
uncountably infinite number of points, closed, not dense
in any interval, self-similar, since it is equal to enlarge
copies of itself. The Cantor sets have fractional dimen-
sion i.e. dimension of Cantor ternary set (ε = 1/3)
is d = log(2)/ log(3) [5]. Thin Cantor ternary sets
have Lebesgue measures zero. Therefore, functions on
the Cantor ternary set are not differential and inte-
grable in the sense of ordinary calculus. Due to the
fact that the length of the Koch curve and the Can-
tor sets became infinite and zero, respectively, other
measures have been defined for fractals such as Haus-
dorff measure which is a generalization of length, area
and volume to non-integer dimensions [6]. Fractals have
complex dimension and discrete symmetry [7]. Dirac
operators and spectral triples fractal sets were built on
curves [8]. Generalized fractal comb model and Lévy
processes were considered, and exact solutions for the
probability distribution functions obtained in terms of
the Fox H -function for a variety of the memory kernels,
and the rate of the superdiffusive spreading was studied
by calculating the fractional moments [9]. Optimal con-
trol theory and necessary and sufficient conditions were
extended to fractal sets [10]. The asymptotic motion of
a random walker on Sierpinski lattice was investigated
and distribution function of the diffusion on the Sier-
pinski gasket was worked out [11]. Highly oscillatory
behaviours of the distribution function the eigenvalues
and the spectrum of the Laplacian on the finite Sierpin-
ski gasket were described [12]. Brownian motion with
Sierpinski gasket support was constructed its properties
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were given and corresponding diffusion process charac-
terized by local isotropy and homogeneity properties
[13]. Random walks on fractals have paths are them-
selves fractal and interesting kinds of behavior form
of scaling laws [14]. Laplace operator, Gauss-Green’s
formula on Sierpinski space with fractional Hausdorff
dimension were reconstructed using the harmonic func-
tions [15, 16]. The eigenvalues of the discrete Lapla-
cian on pre-gaskets under the Dirichlet and Neumann
boundary conditions have been completely determined
applying the decimation [17].

Fractal analysis was formulated fractional space,
fractional calculus, probably and measure theory and
applied in physics and engineering [13, 18–27]. One of
the basic equations of physics is geodesic equations in
a fractal space-time framework. In this framework, the
quantum feature is consequence of the fractal geom-
etry of space-time [28]. The local and global in time
solutions of multidimensional generalized Burgers-type
equations with a fractional power of the Laplacian in
the principal part were obtained and presented self-
similar solutions in the Cauchy problems [29]. In the
last decade, fractal calculus or Fα-calculus which is a
generalization of ordinary calculus to involve function
with fractal support was formulated [30–32]. A Fokker-
Planck equation on fractal curves were obtained by
using Chapmann–Kolmogorov equation. The diffusion
equation on fractal curves for a suitable transition prob-
ability was derived. An exact solution of this equation
with the localized initial condition was obtained and
shown underlying the fractal space manifests a subd-
iffusive behavior [33]. The random motion of a parti-
cle on a fractal curve was investigated using Langevin
equation. A Langevin equation with a noise was solved
using techniques of the Fα-calculus [34]. The unbiased
random walk on a fractal curve was considered and the
corresponding probability distribution was found out
which is gaussian-like, but shows deviation from the
standard behaviour. Moments were calculated in terms
of Euclidean distance for a von Koch curve. Analysis on
Levy distributions demonstrate that the dimension of
the fractal curve shows significant contribution to the
distribution law by modifying the nature of moments
[35].

Fractal calculus was used to characterize the sub-
and super diffusion on fractals [32, 36, 37]. The Frac-
tal Henstock-Kurzweil integral was formulated in order
to find Fα-integral of singular functions on the Can-
tor sets [32]. Random variable and stochastic differen-
tial equation on the Cantor sets are defined to model
random process on fractals [38, 39]. Stability of fractal
differential equations were studied [40]. Fractal calcu-
lus was used to model physical phenomena in fractal
time, space and temperature [32, 41, 42]. The nonlo-
cal fractal calculus-based Lagrange and Hamilton equa-
tions have been derived [43] and the nonlocal fractal
integro-differential equations were used to describe the
RL, RC, LC and RLC circuits [44].

Fractal time was described by starting from scratch
with a philosophical and perceptual puzzle. The com-
plexity of temporal perspective depends on the number

of nestings performed. This temporal contextualization
is described against the background of the notion of
fractal time [45, 46]. According to the application of
fractal space and time, which has given us new results,
therefore, in the continuation of these researches, we
develop physical equations and classical mechanics in
fractal space and time. Newton’s and Hamilton’s equa-
tions play an important role in the study of motion and
its laws in nature, therefore, in this article, their for-
mulations are expressed in fractal space with fractional
dimensions.

The outline of the paper is as follows:
In Sect. 2 we summarized the fractal calculus. Gen-

eralized classical mechanics was suggested in Sect. 3
which includes Newton, Lagrange, Hamilton, and
Appell’s mechanics. Section 4 is devoted to conclusion.

2 Preliminaries

In this section we summarize the fractal calculus on
fractal curve [30–32, 47].

Definition 1 A fractal curve F subset of Rn is called
parameterizable if there exists a function w : [a, b] → F
which is continuous, one-to-one and onto F . For exam-
ple, the Weierstrass function is defined by w : R → R2

as

w(u) =
(

u,

∞∑
k =1

λ(s−2)k sin(λku)
)

, (1)

where 1 < s < 2 and λ > 1 and s is the box-dimension
[32].

Definition 2 For a fractal curve F and a subdivision
P[a,b], [a, b] ∈ [a0, b0] ∈ R, the mass function is defined
by

γα(F, a, b) = lim
δ→0

inf
|P |≤δ

n−1∑
i=0

|w(ti+1) − w(ti)|α
Γ(α + 1)

,

(2)

where |·| denotes the Euclidean norm on R
n, 1 ≤

α ≤ n, P[a,b] = {a = t0, ..., tn = b}, |P |=
max0≤i≤n−1(ti+1 − ti) for a subdivision P and Γ(.) is
gamma function.

Definition 3 The γ-dimension of F is defined by

dimγ(F ) = inf{α : γα(F, a, b) = 0}
= sup{α : γα(F, a, b) = ∞}. (3)

Definition 4 The rise function of fractal curve F is
defined by

Sα
F (u) =

{
γα(F, p0, u), u ≥ p0;
−γα(F, u, p0), u < p0,

(4)
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Fig. 1 The graph of J(θ) (in red) for a fractal curve F (in
blue)

where u ∈ [a0, b0], p0 = a0 is arbitrary and fixed num-
ber and Sα

F (u) = J(θ), θ ∈ F gives the mass of the
fractal curve F upto point u. In Fig. 1, we have plot-
ted the fractal curve (in blue) and corresponding rise
function J(θ) (in red).

Remark 1 As γα is a monotonic function of δ. The limit
exists, but could be finite or +∞. [31, 32, 47].

Definition 5 Let be a function f : F → R. Then F -
limit of f as θ′ → θ through points of F is l , if for given
ε there exists δ > such that

θ′ ∈ F and |θ′ − θ|< δ ⇒ |f(θ′) − l|< ε (5)

or

F−lim
θ′→θ

f(θ′) = l. (6)

Remark 2 We note that if we choose F = R, then one
can recover the standard definition in usual calculus
[31, 32, 47].

Definition 6 A function f : F → R is said to be F -
continuous at θ if

F−lim
θ′→θ

f(θ′) = f(θ). (7)

Definition 7 The fractal derivative Fα-derivative is
defined by

Dα
F f(θ) = F−lim

θ′→θ

f(θ′) − f(θ)
J(θ′) − J(θ)

, (8)

where F−lim indicates the fractal limit (see in [31]),
and let for a point on the curve w(u) = θ and Sα

F (u) =
J(θ) (see for more details in [31, 32, 47]).

Remark 3 We note that the Euclidean distance from
origin upto a point θ = w(u) is given by L(θ) =
L(w(u)) = |w(u)|.
Definition 8 The fractal integral or Fα-integral is
defined by

∫
C(a,b)

f(θ)dα
F θ = sup

P [a,b]

n−1∑
i =0

inf
θ∈C(ti,ti+1)

f(θ)(J(θi+1) − J(θi))

= inf
P [a,b]

n−1∑
i =0

sup
θ∈C(ti,ti+1)

f(θ)(J(θi+1) − J(θi))

= FR(f, {θi}), (9)

where ti = w−1(θi), FR (fractal Riemann sum), and
C (a, b) is the section of the curve lying between points
w(a) and w(b) on the fractal curve F [31].

3 Classical mechanics on fractal spaces

Classical mechanics [48, 49] is one of the important
branches of physics that explains the laws of motion in
nature. which has different formulations such as New-
ton’s, Lagrangian’s, Hamilton’s and Appell’s approach
[50], which we generalize in these sections for spaces
with fractional dimensions.

3.1 Newton’s second law on Koch-like curves

Let us consider a von Koch-like curve. We can construct
it by begin with a straight line, and following the given
steps in below:

1. Divide it into three equal segments, then replace the
middle segment by the two sides of an equilateral
triangle of the same length as the segment being
removed.

2. Repeat, taking each of the four resulting seg-
ments, and dividing them into three equal parts
and replacing each of the middle segments by two
sides of an equilateral triangle.

3. Continue step (2) upto infinity.

The Koch-like curves are the limiting curves obtained
by applying this construction as an infinite number of
times. In the following we give Newton’s equation on
fractal space and time.

3.2 Newton’s second law on fractal space

The α-velocity on the Koch-like curves is defined by
[34]

vα(t) = lim
t→t′

Sα
F (u(t)) − Sα

F (u(t′))
t − t′

=
d

dt
Sα

F (u(t))
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=
d

dt
J(θ(t)). (10)

Consider the nth iteration of constructing of the Koch-
like curves. If the particle moves along straight line in
this stage, then in the limiting case the α-acceleration
of the particle is defined by

aα(t) =
d
dt

vα(t) = lim
t→t′

vα(t) − vα(t′)
t − t′

=
d2

dt2
Sα

F (u(t))

=
d2

dt2
J(θ(t)). (11)

Let fα be the component of force applied on a par-
ticle along straight line in nth iteration of the Koch-
like curves. The second Newton’s law on the Koch-like
curves is

fα = mF aα, (12)

where mF = mκ and [κ] = Length/Massα

The work energy theorem on the Koch-like curves is

wα =
∫

C(a,b)

fαdα
F θ

=
1
2
mF vα

2 − 1
2
mF vα

1 , (13)

where vα
1 and vα

2 are fractal speed of particle in point
a and b, respectively.

Example 1 Consider a body of mass m that oscillates
on a fractal curve so its equation of the motion is

mF
d2

dt2
J(θ(t)) = −kF J(θ(t)). (14)

The solution of Eq. (14) is

J(θ(t)) = A cos(ωF t) + B sin(ωF t). (15)

If J(0) = 1, then B = 0. In Fig. 2, we have sketched
Eq. (15) for case of A = 2, B = 1 and ωF = 1.

3.3 Newton’s second law on fractal time and space

The α, β-velocity of particle moving on fractal space F
with fractal time H is defined by

vα,β(t) = lim
t→t′

Sα
F (u(t)) − Sα

F (u(t′))

Sβ
H(t) − Sβ

H(t′)

= Dβ
H,tS

α
H(u(t))

= Dβ
H,tJ(θ(t)), t ∈ H (16)
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Fig. 2 The graph of Eq. (15)

where α is fractal dimension space and β is fractal
dimension time. The acceleration of moving on fractal
space and time is defined by

aα,β(t) = lim
t→t′

vα,β(t) − vα,β(t′)

Sβ
F (t) − Sβ

F (t′)

= D2β
F,tS

α
F (u(t))

= D2β
F,tJ(θ(t)). (17)

The Newton’s second law on fractal space and time is
defined by

fα,β = mF,HD2β
F,tS

α
F (u(t)), (18)

where mF,H = mκζ, and [ζ] = Timeβ−1.

Example 2 The equation of damped harmonic oscillator
involving fractal time is

mHD2β
F,ty(t) + cHDβ

F,ty(t) + kHy(t) = 0. (19)

Suppose Eq. (19) has a solution of the form

x(t) = eλβSβ
F (t). (20)

Substituting Eq. (20) into Eq. (19), so we have

mH(λβ)2 + cHλβ + k = 0. (21)

The roots of the quadratic auxiliary equation are

λβ =
−cH ± √

c2H − 4mHkH

2mH
. (22)

The solution of Eq. (19) is

x(t) = Ae−γ1Sβ
F (t) + Be−γ2Sβ

F (t),
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Fig. 3 Graph of Eq. (23) for the case of fractal time with
dimension β = 0.63 and Overdamped, Critically damped,
and Underdamped

c2H − 4mHkH > 0, Overdamped,

x(t) = (ASβ
F (t) + B)e−γSβ

F (t),

c2H − 4mHkH = 0, Critically damped,

x(t) = e−ρβSβ
F (t)A cos

(
ω1S

β
F (t) − φ

)
,

c2H − 4mHkH < 0, Underdamped. (23)

By using Sβ
F (t) ≤ tβ we can rewrite Eq. (23) as The

solution of Eq. (19) is

x(t) ∝ Ae−γ1tβ

+ Be−γ2tβ), c2H − 4mHkH > 0,

Overdamped,

x(t) ∝ (Atβ + B)e−γtβ

, c2H − 4mHkH = 0,

Critically damped,

x(t) ∝ e−ρβtβ A cos
(
ω1t

β − φ
)
,

c2H − 4mHkH < 0, Underdamped (24)

where ρ = cH/2mH , ω1 =
√

ω2
0 − ρ2 and ω0 =√

kH/mH are constants. In Figs. 3 and 4, we have plot-
ted Eqs. (23) and (24).

3.4 Fractal Langevin and fractal Fokker-Planck’s
equations

Consider a particle moves on Koch-like curves so that
its fractal Langevin’s equation is

vα(t) =
d

dt
J(θ(t)) = −A1J(θ(t)) +

√
2A2η(t), (25)
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Fig. 4 Graph of Eq. (24) for different value of dimension
and Overdamped, Critically damped, and Underdamped

where η(t) is a Gaussian random noise and A1, A2 are
constants. The associated fractal Fokker-Planck’s equa-
tion is given by

∂

∂t
P (θ, t) = A1D

α
F,θ(J(θ)P (θ, t)) +

A2
2

2
(Dα

F,θ)
2P (θ, t),

and P (θ, t) = δ(θ − θ′). (26)

The solution of Eq. (26) is

P (θ, t|θ′, t′) =

√
A1

πA2
2(1 − e−2A1(t−t′))

exp
(

− A1

A2
2

(J(θ) − J(θ′)e−A1(t−t′))2

1 − e−2A1(t−t′)

)
,

(27)

where P (θ, t|θ′, t′) is transition probability. The station-
ary solution ∂P (θ, t)/∂t = 0 of Eq. (26) is

P (θ) =

√
A1

πA2
2

exp
(

−A1J(θ)2

A2
2

)
. (28)

3.5 Lagrange’s mechanics on Koch-like curves

Let (Zα, Lα) be a mechanical system with one degrees
of freedom, where Zα is the fractal configuration space
and Lα : Rt × TMα → R is non-relativistic fractal
Lagrangian, and TMα fractal analogue of the tangent
bundle of fractal manifold Zα. Then, for a particle mov-
ing on Koch-like curves is defined by
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Lα(t, J(θ(t)), vα) = T α − V α

=
1

2
mF (vα)2 − V α(J(θ(t)),

(29)

where Tα is the total kinetic energy and V α(θ) is the
potential energy of the particle. The fractal action func-
tional is defined by

Sα =
∫ b

a

Lα(t, J(θ(t)), vα)dt. (30)

To obtain stationary path of Eq. (30), let

J(φε(t)) = J(θ(t)) + εJ(η(t)), J(η(a)) = J(η(b)) = 0.
(31)

Thus we write

Sα
ε =

∫ b

a

Lα
ε (t, J(φε), vα

ε )dt. (32)

It follows that

dSα
ε

dε
=

∫ b

a

dLα
ε

dε
dt. (33)

Then we have

dLα
ε

dε
=

dt

dε

∂Lα
ε

∂t
+

dJ(φε)
dε

∂Lα
ε

∂J(φε)
+

dvα
ε

dε

∂Lα
ε

∂vα
ε

=
dJ(φε)

dε

∂Lα
ε

∂J(φε)
+

dvα
ε

dε

∂Lα
ε

∂vα
ε

= J(η(t))
∂Lα

ε

∂J(φε)
+

dJ(η(t))
dt

∂Lα
ε

∂vα
ε

. (34)

Sα
ε has an extremum value, so that

dSα
ε

dε

∣∣∣∣
ε =0

=

∫ b

a

[
J(η(t))

∂Lα

∂J(θ)
+

dJ(η(t))

dt

∂Lα

∂vα

]
dt = 0.

(35)

Using fractal integration by parts, Eq. (35) yields

∫ b

a

[
∂Lα

∂J(θ)
+

d

dt

∂Lα

∂vα

]
J(η(t))dt +

[
J(η(t))

∂Lα

∂vα

]b

a

= 0.

(36)

Applying the boundary conditions in Eq. (31), we get

∫ b

a

[
∂Lα

∂J(θ)
+

d
dt

∂Lα

∂vα

]
J(η(t))dt = 0. (37)

This yields the fractal Euler–Lagrange equation as fol-
lows:

∂Lα

∂J(θ)
− d

dt

∂Lα

∂vα
= 0. (38)

We can derive fractal Newton’s second law from fractal
Euler–Lagrange equation. Using Eq. (29), we have

∂Lα

∂vα
= mF vα,

d
dt

∂Lα

∂vα
= mF aα. (39)

In view of Eqs. (29), (38) and (39) we arrive at

∂Lα

∂J(θ)
=

∂V α(J(θ))

∂J(θ)
= f =

d

dt

∂Lα

∂vα
= mF aα,

(40)

which is called fractal Newton’s second law.

3.6 Hamilton’s mechanics on Koch-like curves

In this section, we suggest Hamilton’s mechanics on
Koch-like curves. Let (Zα, Lα) be a mechanical system.
Then fractal momenta is defined by

pα(t, J(θ), vα) =
∂Lα

∂vα
. (41)

The Legendre transform of convex functional Lα is
defined by

Hα(t, J(θ), pα) = pαvα − Lα(t, J(θ), vα), (42)

where Hα(t, J(θ), pα) is might called fractal Hamilto-
nian and pair (J(θ), pα) is might called fractal phase
space coordinates. Using Eq. (42) and taking fractal
total differential of Hα we have

dα
F Hα = vαdα

F pα − ∂Lα

∂J(θ)
dα

F θ − ∂Lα

∂t
dt. (43)

On the other hand, we have

dα
F Hα =

∂Hα

∂pα
dα

F pα +
∂Hα

∂J(θ)
dα

F θ +
∂Hα

∂t
dt. (44)

Comparison of Eqs. (43) and (44) we obtain

vα =
∂Hα

∂pα
, − ∂Lα

∂J(θ)
=

∂Hα

∂J(θ)
, − ∂Lα

∂t
=

∂Hα

∂t
,

(45)

which is might called fractal Hamilton’s equations.

Example 3 Consider the fractal Lagrangian function of
system as follows

Lα =
1
2
mF (vα)2 − U(x). (46)
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The Legendre transformation of Eq. (46) gives

Hα =
1
2
mF (vα)2 + U(x), (47)

which might called the fractal Hamiltonian function of
system. Since pα = mF (vα) we can rewrite Eq. (47) as

Hα =
1

2mF
(pα)2 + U(x). (48)

Utilizing Hamilton’s equation we get

d
dt

J(θ) =
∂Hα

∂pα
=

pα

mF
,

dpα

dt
= −dU

dx
,

(49)

it follows that

mF
d2

dt2
J(θ) = −dU

dx
, (50)

which might be called the fractal Newton’s equation of
motion.

3.7 Appell’s mechanics on fractal time

In this section, we generalize the Appell’s eq [50] on
Koch-like curves.

The function S for a particle is defined by

S =
1
2
mF (aα.aα), (51)

The Gibbs–Appell equation on Koch-like curves is
defined by

Qα =
∂S
∂aα

, (52)

where Qα is generalized force. If a force Qα apply to a
particle during infinitesimal displacement dα

F θ on Koch-
like curves. Then

dα
F Wα = Qαdα

F θ, (53)

where dα
F Wα is called infinitesimal work.

Example 4 For a rigid body with rotation function S is
defined by

(54)

S =
1
2

N∑
i=1

mi(aα
i .aα

i ) =
1
2

N∑
i=1

mi{(σσσα × ri)2

+ (ωωωα × vα
i )2 + 2(σσσα × ri).(ωωωα × vα

i )},

where the fractal acceleration aα
i , the fractal velocity

vα
i , and the positions vectors the particles of the rigid

body ri are defined by

aα
i = D2α

F,tri, vα
i = Dα

F,tri, ωωωα = Dα
F,tθ, σσσα = Dα

F,tωωω
α.

(55)

Taking the derivative of S with respect to σ and equat-
ing by the torque τττα = (τα

x , τα
y , τα

z ), one can obtain

Ixxσα
x − (Iyy − Izz)ωα

y ωα
z = τα

x ,

Iyyσα
y − (Izz − Ixx)ωα

z ωα
x = τα

y ,

Izzσ
α
z − (Ixx − Iyy)ωα

x ωα
y = τα

z , (56)

where I is the inertia tensor which is diagonal [48, 49].
Equation (56) might be called fractal Euler’s equations
of rigid body. Let τττα = 0 and Ixx = Iyy. Then we can
write

Ixxσα
x − (Ixx − Izz)ωα

y ωα
z = 0,

Ixxσα
y − (Izz − Ixx)ωα

z ωα
x = 0,

Izzσ
α
z = 0. (57)

It follows that ωα
z = constant. Let Ψα = ωα

z (Izz −
Ixx)/Ixx. Then Eq. (57) turns to

Dα
F,tω

α
x + Ψαωα

y = 0,

Dα
F,tω

α
y − Ψαωα

x = 0. (58)

The solution of Eq. (58) is

ωα
x = ω0 cos(ΨαSα

F (t)) ≈ ω0 cos(Ψαtα)
ωα

y = ω0 cos(ΨαSα
F (t)),≈ ω0 cos(Ψαtα), (59)

where ω0 is a constant. In Figs. 5 and 6, we have plotted
Eq. (59) for the different valves of the dimensions of the
fractal time.

Remark 4 We note that all results through the paper
gives standard results if α = β = 1, namely, S1

F (t) =
t.

Fig. 5 Graph of ωα
x and ωα

y for the case of ω0 = 5, Ψα =
1, and α = 1
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Fig. 6 Graph of ωα
x and ωα

y for the case of ω0 = 5, Ψα =
1, and α = 0.7

4 Conclusion

In this work, we have generalized the classical mechan-
ics on fractal curves such as Newton, Lagrange, Hamil-
ton and Appell’s mechanics. The fractal velocity and
acceleration have defined in order to obtain Langevin
equation on fractal curves. Hamilton’s mechanics
on fractal curves have formulated to model non-
conservative system on fractal curves. Harmonic oscil-
lator have studied on fractal time in the case of over
damping, critical damping and under damping. Sug-
gested framework can be used to model motion of par-
ticle in fractal space and time.

Data Availability Data sharing is not applicable to this
article as no datasets were generated or analyzed during the
current study.
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