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Abstract We investigated how the parameters of the spectral analysis affect standard deviation and error
of the estimation of well-known indices for the heart rate variability. We compared the nonparametric
Fourier transform to the parametric approach based on autoregressive models. We also investigated how
the precision of the indices estimation depends on the choice of the window function, parameterization
of the Bartlett’s method, and the lengths of time series. For each set of parameters, we calculated the
sensitivity and specificity of the resulting indices when diagnosing arterial hypertension. To isolate and
investigate the errors caused by inaccuracy of the spectral analysis itself, we conducted our study using
the mathematical models of heart rate variability for healthy subjects and arterial hypertension patients,
for which the correct values of the spectral indices are known. The obtained results suggest that the
analysis of 20-min signals, comparing to 5-min signals, significantly decreases the standard deviation of
the estimations and increases both their sensitivity and specificity. We found no advantages of using the
parametric approach over the Fourier transform. We have shown that application of the Hann’s window
function and normalization of the spectral indices decreases the sensitivity and specificity of the medical
diagnostics.

1 Introduction

Spectral analysis of the heart rate variability (HRV)
is used to noninvasively estimate the depth of heart
rate frequency modulation by the autonomic control of
circulation. The gold standard method for measuring
HRV is the extraction of RR intervals (RRI), which
is a sequence of time intervals of the R peaks in the
electrocardiogram (ECG) signals [1, 2]. The spectral
power in the 0.04–0.15 Hz frequency band (LF index)
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is mainly associated with the heart rate modulation by
the sympathetic part of the autonomic control, while
the spectral power in the 0.15–0.4 Hz frequency band
(HF index) is mainly associated with the parasympa-
thetic part of the autonomic control [3–5].

Low values of the LF and HF indices are associ-
ated with the coronary artery disease [6] pre-clinical
arterial hypertension [7], and higher 4-year mortality
risk among elderly patients [8] and myocardium infarc-
tion patients [9]. Decreased RRI variability is linked to
the higher risk of cardiovascular system (CVS) diseases
among diabetic patients [10–12] and healthy subjects
[13–16]. In [17], the spectral analysis was used as a more
cost-effective substitute for the polysomnography when
screening for the obstructive sleep apnea hypopnea syn-
drome.

In recent years, viability of the HRV spectral analy-
sis for early screening continues to grow [18, 19] due to
rapid development and popularization of variable com-
mercial devices that can register the photoplethysmo-
gram (PPG) signals [20]. Recent studies [21, 22] have
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shown that for relaxed, healthy subjects, the difference
between the RRI and PPI, the sequence of time inter-
vals between the systolic peaks in PPG, is not statisti-
cally significant.

Despite the aforementioned facts, spectral analysis
of the HRV is not prominent in the applied medicine
[23]. One of the main reasons for it is high variabil-
ity of the LF and HF indices due to circadian rhythms
[24] and other factors [25–28] leading to a nonstationary
behavior of HRV and individual characteristics of the
patients. In grand-scale study [20], the authors investi-
gated 8 million 24-h PPG signals, recorded using “Fit-
bit” fitness bracelets. This study has shown that the
amplitude of the circadian oscillations of the LF and
HF indices was 40% of the mean value. In 60-year-old
males, the mean value of the LF index was 66.5% lower
than in 20-year-old males. In elderly females, the LF
index was 69.3% lower than in young females. Accord-
ing to [20], the values of the HF indices decrease in
elderly males and females by 82.0% and 80.9%, respec-
tively, due to aging. Moreover, even for individuals of
the same age, the spectral indices estimated at the same
time of day shows variation of about 100% in relation
to the mean value.

Another cause of variance, which is rarely discussed,
is inaccuracy of the spectral analysis itself. However,
investigating the inaccuracy of spectral analysis using
experimental signals is a complicated task, because of
various noises and other factors that cause nonstation-
arity of the HRV and increase the standard deviation
of the estimations.

Therefore, it seems appropriate to estimate the spec-
tra of “ideal” time series, which has similar statistical
characteristics to the experimental data, but are sta-
tionary, and for which the correct values of the LF and
HF indices are known. In this case, the standard devi-
ation of the spectral indices will only be affected by
the lengths of the signals and inaccuracy of the spec-
tral analysis. We conducted this study using the model
of HRV for healthy subjects and arterial hypertension
(AH) patients. The studied signals were stationary, the
spectral profiles were qualitatively and quantitatively
similar to the experimental data, and correct values for
the LF and HF indices were known.

We estimated how the parameters of the spectral
analysis, when it is applied to the heart rate variabil-
ity data, affect the standard deviation and error of the
estimation of the LF and HF indices. We compared
the nonparametric Fourier transform to the parametric
approach based on autoregressive models (AR) models.
We also investigated how the precision of the indices
estimation depends on the choice of the window func-
tion, parameterization of the Bartlett’s method, and
the lengths of time series.

2 Model

To test the methods, we applied them to the time series
of an AR model of the HRV (1) with two sets of param-
eters. The first set corresponded to healthy subjects,

while the second set corresponded to AH patients.

Xt =
p∑

i=1

aiXt−i + σ2
εεt, (1)

where p = 300 is the order of the model, a1,...i and a are
the parameters of the AR model, εt is the zero-mean
Gaussian white noise with standard deviation equal to
1, and σ2

ε is the variance of the white noise. Using the
classical Yule–Walker approach [29, 30], the parame-
ters of the model (1) can be fitted in a way that the
model power spectra will be quantitatively similar to
any defined power spectra. In this study, the parame-
ters were fitted to achieve correspondence to the model
power spectra of the HRV for healthy subjects and AH
patients. The model power spectra were defined as (2),
with two sets of parameters. The first set corresponded
to healthy subjects, while the second set corresponded
to AH patients:
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(2)

where fVLF, fLF, and fHF are the frequencies of the
main spectral peaks, which are present in the exper-
imental data; cVLF, cLF, and cHF are the parameters
that define the widths of the peaks, σVLF, σLF, and σHF

are the parameters that define the height of the peaks,
aT and bT are the parameters of the 1/f trend under
the HRV peaks. Function (2) can quantitatively and
qualitatively simulate the HRV spectra for healthy sub-
jects and AH patients. We fitted the parameters inde-
pendently for both cases, so that the power density
in the very low frequency (VLF) (0.004–0.04 Hz), LF
(0.04–0.15 Hz) and HF (0.15–0.4 Hz) frequency bands
of the HRV was equal to the experimental data [31].
For a healthy subject, the experimental values were
VLF_norm = 710 ms2, LF_norm = 452 ms2, and HF_norm
= 552 ms2, and for a AH patient—VLF_hyp = 571
ms2, LF_hyp = 378 ms2, and HF_hyp = 419 ms2. Fitted
parameters of the function (2) are listed in Table 1,
while the functions themselves are shown in Fig. 1
alongside with power spectra, estimated from the model
time series.

From the spectra, modeled using the function (2),
we reconstructed the autocovariance functions, which
were equal to the inverse Fourier transform of the power
spectra:

ψ(τ) ≈ Re
(
FT−1

(
|S(f)|2

))
, (3)
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Table 1 Parameters of the functions that approximate the profiles of the real HRV power spectra for healthy subjects and
AH patients

Parameters fVLF, Hz fLF, Hz fHF, Hz cVLF, Hz cLF, Hz cHF, Hz

Healthy 0.05 0.1 0.3 0.011 0.022 0.042

Hypertonic 0.05 0.1 0.3 0.011 0.022 0.042

Parameters σVLF, ms Hz0.5 σLF, ms Hz0.5 σHF, ms Hz0.5 aT, Hz ms2 bT, Hz

Healthy 0.158 0.078 0.097 592df 4

Hypertonic 0.135 0.063 0.075 592df 4

Fig. 1 Black lines show the
model HRV power spectra,
simulating the data from
healthy subjects and AH
patients. The power spectra
estimated from time series
of AR models are shown by
green line for a healthy
subject (a), and by red line
for an AH patient (b)

where τ is the time delay, and FT−1 is the inverse
Fourier transform.

For the function (2), ψ(τ) dropped to zero at τ ≈ 75 s,
and we used the time step of 0.25 s when generating the
RRI. The parameters of the AR models we estimated
from the first 300 values of ψ(τ) using the Yule–Walker
approach [29, 30]. This method requires the solving the
system of linear equations:

⎡
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. . .
an

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

ψ(1)
ψ(2)
. . .

ψ(n)

⎤

⎥⎥⎦. (4)

If we to denote the quadratic Toeplitz matrix on the
left side of (4) as R, and the vector on the right as
r, then the vector of AR model parameters a can be
calculated as:

a = R
−1 × r. (5)

After calculating the vector a1,...i, the final missing
parameter σ2

ε from (1) can be calculated as:

σ2
ε = ψ(0) −

p∑

i=1

aiψ(−i). (6)

3 Methods

The algorithm for the estimation of spectral indices
from the HRV follows the recommendations of the
European Society of Cardiology and the North Amer-
ican Society of Pacing and Electrophysiology [1]. It is
recommended to analyze 5-min time series, using the
Fourier transform or parametric approach, based on AR

modeling. The order of the AR model should be 8–20.
It also advised to use a window function, such as the
Hann’s window function. When using the Hann’s win-
dow, we matched its lengths with the lengths of the
time series. Both absolute and normalized values of the
LF and HF indices can be used. The normalized indices
are calculated according to formulas (7) and (8):

LFn =
LF

LF + HF
(7)

and

HFn =
HF

LF + HF
. (8)
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Fig. 2 Panel a shows the accuracy of the LF index estimations for different orders of the AR models used in a parametric
method for estimation of the power spectra. The points show the mean values of the LF index for each order of the AR
model, and the whiskers show the standard deviation. The indices estimated for healthy subjects are shown in green, and
the indices estimated for AH patients are shown in red. We used 20-min time series. Solid lines of corresponding colors
show the correct values of the LF indices. Panel b shows the AUC’s calculated when comparing the distributions of the LF
indices estimated for the model HRV of healthy subjects and AH patients for each order of the AR model. Panels c and
d show similar data, but for the HF indices

Another factor we want to analyze is the application
of the Bartlett’s method. The method idea is to divide
the time series into separate, sometimes overlapping,
time windows, and to estimate the power spectra sep-
arately for different sections of time series. The final
power spectrum is calculated by averaging the power
spectra for different time windows. The main parameter
of this approach is, therefore, the size of time windows.

In Sect. 4, we estimated the inaccuracy of the cal-
culated spectral indices for different parameters of the
spectral analysis, including the lengths of time series,
method for estimation of the spectrum, and order of
the AR model for the parametric approach. For each
set of parameters, we estimated 1000 LF, HF, LFn and
HFn indices for the model HRV both for healthy sub-
jects and AH patients. Then, we estimated the differ-
ences between the mean values of estimated indices
and experimental values from [31], standard devia-
tions for the distributions of the estimated values, and
their specificity and sensitivity when diagnosing arte-
rial hypertension. The sensitivity was measured as a
true positive rate (TPR), which is a probability of a
positive test, conditioned on truly being positive. The
specificity was measured as 1 − FPR, where FPR is
the false positive rate, a probability of a positive test,
conditioned on truly being negative. Additionally, we
calculated the area under each of ROC curves (AUC).

4 Results

We compared the Fourier transform to the parametric
approach based on the AR modeling. On the one hand,
the parametric approach can be more accurate for short
time series. On the other hand, finding a proper order
of an AR model is not a trivial task. Therefore, it is
important to compare the methods for each particular
type of time series.

Figure 2 shows how accurately the LF and HF indices
are estimated when using the AR models of differ-
ent orders. We tested the orders from 3 to 60 with a
step of 3 orders. AR models of different orders were
used to estimate the power spectra of 1000 model
HRV for healthy subjects and 1000 model HRV for
AH patients. The duration of model realizations was
20 min. Therefore, we obtained the distributions of
spectral indices estimations for model healthy HRV
(LF_norm and HF_norm) and model AH HRV (LF_hyp
and HF_hyp). We calculated the mean values and stan-
dard deviations for each distribution, and ROC curves
and AUC for LF_norm–LF_hyp and HF_norm–HF_hyp
pairs of distributions.

Figure 2a shows that when using the model order less
than 24–30, the mean values of the estimations differ
from the correct values, especially for the LF index.
Therefore, our results suggest using AR models of order
30 and more. It is safe to assume that for a real data

123



Eur. Phys. J. Spec. Top. (2023) 232:615–624 619

Fig. 3 Distributions of the LF and HF indices, and corresponding ROC-curves, estimated for the model time series of
different lengths. We used the parametric approach based on fitting of an AR model of order 30 to estimate the power
spectra. We did not apply the window functions and did not use the Bartlett’s method. Panels a–c are for 5-min time series.
Panels d–f are for 10-min time series. Panels g–i are for 20-min time series. Distributions for healthy subjects are shown
in green and distributions for AH subjects are shown in red. Solid green and red vertical lines show the correct values of
the LF and HF indices

with even more complex spectra, the adequate order of
the AR model should not be lower.

We also applied to the data the automatic algorithm
that chooses the order of the AR models, based on cal-
culation of the final prediction error. When analyzing
the 3-min time series, the estimated orders were 17 ± 8
and 14 ± 7 (mean ± standard deviation) for the mod-
els of healthy HRV and AH HRV, respectively. When
analyzing the 10-min time series, the estimated orders
were 27 ± 8 and 23 ± 9; for 20-min signals: 32 ± 3
and 31 ± 5; for 40-min signals: 34 ± 3 and 33 ± 3 for
healthy HRV and AH HRV, respectively. The automat-
ically estimated order increases with the lengths of a
time series and achieve a plateau for 20-min time series
at a value similar to the results we obtained from Fig. 2.

Figure 3 shows the distributions of the estimated
LF and HF indices, and corresponding ROC curves,
obtained for the model healthy HRV (green histograms)
and model AH HRV (red histograms). We analyzed 5-
min time series (panels a–c), 10-min time series (panels
d–f) and 20-min time series (panels g–i) using a para-
metric approach based on AR modeling (the order of
the model was 30). We applied no window functions in
Fig. 3.

For 5-min time series, the AUC for the LF index
(AUC_LF) was 0.76, while both specificity and sensitiv-
ity were approximately 70%. AUC_HF was 0.95, with
specificity and sensitivity of 85%. Estimated values of
the spectral indices were LF′

norm = 472 ± 85; LF′
hyp =

395 ± 66; HF′
norm = 560 ± 69; and HF′

hyp = 426 ± 52
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Fig. 4 Distributions of the LF and HF indices, and corresponding ROC curves, estimated for model time series of different
lengths, when using the Fourier transform to estimate the power spectra. We did not apply the window functions and did
not use the Bartlett’s method. Panels a–c are for 5-min time series. Panels d–f are for 10-min time series. Panels g–i are
for 20-min time series. Distributions for healthy subjects are shown in green and distributions for AH subjects are shown
in red. Solid green and red vertical lines show the correct values of the LF and HF indices

(mean ± standard deviation), with correct values being
LF_norm = 451; LF_hyp = 378; HF_norm = 552; and
F_hyp = 419. For 10-min time series, the AUC_LF was
0.85, with specificity and sensitivity of approximately
80%. AUC_HF was 0.98, with specificity and sensitivity
of approximately 95%. Estimated values of the spectral
indices were LF′

norm = 469 ± 58; LF′
hyp = 387 ± 49;

HF′
norm = 556 ± 50; and HF′

hyp = 421 ± 35. For 20-min
time series, the AUC_LF was 0.93, with specificity and
sensitivity of approximately 85%. AUC_HF was 1.00,
with specificity and sensitivity of approximately 99%.
Estimated values of the spectral indices were LF′

norm =
467 ± 40; LF′

hyp = 388 ± 33; HF′
norm = 553 ± 35; and

HF′
hyp = 420 ± 25.

Therefore, Fig. 3 shows that distributions of the esti-
mated indices LF′ and HF′ are narrower for longer
time series that increases both sensitivity and speci-
ficity when using the spectral analysis to diagnose AH.
Error of estimation also decreases. The increase in the
accuracy is more prominent for the LF indices. We
think it is due to the period of the LF oscillations being
longer, which leads to a small number of full oscillations
in the 5-min time series.

Figure 4 shows the distributions of the LF and HF
indices, and corresponding ROC curves, estimated from
5-min model time series (panels a–c), 10-min time series
(panels d–f), and 20-min time series (panels g–i). For
Fig. 4, we used the Fourier transform to estimate the
power spectra, without applying the window functions
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Fig. 5 Distributions of the
LF and HF indices, and
corresponding ROC curves,
estimated for model time
series of different lengths,
when using the Fourier
transform to estimate the
power spectra. We applied
the Hann’s window
functions and did not use
the Bartlett’s method.
Panels a–c are for 5-min
time series. Panels d–f are
for 20-min time series.
Distributions for healthy
subjects are shown in green,
and distributions for AH
subjects are shown in red

Fig. 6 Distributions of the
normalized LFn and HFn
indices, and corresponding
ROC-curves, estimated for
model time series of
different lengths, when
using the Fourier transform
to estimate the power
spectra. We did not apply
the window functions and
did not use the Bartlett’s
method. Panels a–c are for
5-min time series. Panels
d–f are for 20-min time
series. Distributions for
healthy subjects are shown
in green, and distributions
for AH subjects are shown
in red

and Bartlett’s method. Figure 4 is conceptually simi-
lar to Fig. 3, with the only difference being the appli-
cation of a nonparametric approach to estimate the
spectra. The results are also quantitatively similar, and
the parametric approach shows no advantages over the
Fourier transform.

Figure 5 shows the distributions of the LF and HF
indices, and corresponding ROC curves, estimated from
5-min model time series (panels a–c) and 20-min time
series (panels d–f). For Fig. 5, we used the Fourier
transform to estimate the power spectra. We did not
use the Bartlett’s method, but we applied the Hann’s
window function. Figure 5 shows that application of this
window function decreases both sensitivity and speci-
ficity when diagnosing arterial hypertension: AUC_LF
was 0.68 and AUC_HF was 0.88 for 5-min time series.

(AUC_LF was 0.76 and AUC_HF was 0.95 for the time
series of the same lengths when we did not apply the
window function.) For 20-min time series, AUC_LF was
0.84 and AUC_HF was 0.99, comparing to the AUC_LF
= 0.93 and AUC_HF = 1.00 for the time series of the
same lengths when we did not apply the window func-
tion. Moreover, the application of the window function
decreases the absolute values of the spectral indices by
a factor 2.6–2.7: LF′

norm was 174 ± 22, LF′
hyp was 145

± 18, HF′
norm was 208 ± 17, and HF′

hyp was 157 ± 13
when analyzing 20-min time series. For the same rea-
son, the correct values of the LF and HF indices are not
shown in Fig. 5.

Figure 6 shows the distributions of the normalized
LFn and HFn indices, and corresponding ROC curves,
estimated from 5-min model time series (panels a–c)
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Fig. 7 Panel a shows the accuracy of the LF index estimations for different sizes of time windows when using the Bartlett’s
method to estimate the power spectra. To estimate the spectrum in each particular time window, we used a parametric
method, with AR model of order 30 and did not apply the window functions. The points show the mean values of the LF
index for each window size, and the whiskers show the standard deviation. The indices estimated for healthy subjects are
shown in green, and the indices estimated for AH patients are shown in red. We used 20-min time series. Solid lines of
corresponding colors show the correct values of the LF indices. Panel b shows the AUC’s calculated when comparing the
distributions of the LF indices estimated for the model HRV of healthy subjects and AH patients for each window size.
Panels c and d show similar data, but for the HF indices

and 20-min time series (panels d–f). For Fig. 6, we
used the Fourier transform to estimate the power spec-
tra. We did not use the Bartlett’s method and did not
apply the Hann’s window function. Figure 6 shows that
the distributions of the normalized indices overlap to a
much larger degree, comparing to the absolute indices,
and AUC values are lower than in Fig. 4. The nor-
malized indices show lower sensitivity and specificity
because in AH patients both absolute values of the LF
and HF indices are lower [31]. Because of that by nor-
malizing the spectral indices by a factor of (LF + HF),
we exclude important diagnostic information.

Figure 7 explores how the application of Bartlett’s
approach affects the accuracy of estimation of the LF
and HF indices, namely the mean error of estimation,
standard deviation of the estimated values, and corre-
sponding AUC’s. The bottom axis of the plots (a–d)
shows the lengths of the time windows into which we
divided the 20-min time series. For Fig. 7, we used a
parametric approach based on AR modeling (the order
of the model was 30) to estimate the power spectra,
and we applied no window functions. Figure 7 shows
that application of Bartlett’s method gives no advan-
tages in this case. When the time series is divided into
very short time windows (3–5 min), the mean error of
the LF index estimation increases, similarly to the case

of short time series (Fig. 4). Application of the win-
dow function to each time window did not improve the
sensitivity or specificity.

5 Discussion

Obtained results show that when analyzing 5-min
model time series, we cannot expect sensitivity and
specificity of over 70% when using spectral analysis
to diagnose AH. The experimental sequences of RRI
are also affected by colored noises of various origins,
circadian rhythms, nonstationarity and other factors
that will inevitably lower the sensitivity and specificity.
Based on that, we conclude that 5-min time series is
too short even for screening diagnostics. The use of 20-
min time series seems more appropriate, since the sen-
sitivity and specificity rise from 70 to 85% for the LF
index, and from 90 to 99% for the HF index. We believe
that longer time series is more appropriate for both the
screening diagnostics and estimating the dynamics of
spectral indices over 24-h period.

Figure 5 shows that application of the Hann’s win-
dow function decreases sensitivity and specificity of the
spectral indices, and, therefore, should be used with
caution. Moreover, the application of window functions
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decreases the overall power of a signal by a factor that
depends on the shapes of both a particular signal and
the window function. Therefore, we assume it is nec-
essary to indicate the window function; otherwise, the
results of the spectral analysis cannot be properly inter-
preted and compared to other data.

Figure 6 shows that in our model study, the normal-
ized indices LFn and HFn have lower sensitivity and
specificity than absolute values of LF and HF. As was
mentioned in the “Results” section, we assume that nor-
malized indices show lower sensitivity and specificity
because in AH patients, both absolute values of LF and
HF indices are lower [31], and by normalizing the spec-
tral indices by a factor of (LF + HF), we exclude impor-
tant diagnostic information. The obtained results show
that normalized and absolute indices contain different
diagnostic information, have different range of applica-
tion, and, in our opinion, should be used together.

We also would like to list the limitations of our model
and our study. The model intentionally did not take into
account nonstationarity of the real HRV [24], impact of
movement artifacts, measurement noises, and circadian
rhythms because we wanted to isolate and study the
errors caused by the inaccuracy of the spectral analysis
itself. Due to that decision, the model cannot give reli-
able estimations of the sensitivity and specificity that
are expected when analyzing real data [24–28], espe-
cially the data of long-term monitoring. Investigation
of this problem requires modification of the model.

6 Conclusion

Our study has shown that when applying the spectral
analysis to 5-min heart rate variability data to diagnose
arterial hypertension, both sensitivity and specificity
of diagnostics is limited to 70% for the LF index and
90% for the HF index, and is, likely, significantly lower
when analyzing real noisy and nonstationary data. The
analysis of 20-min data increases the sensitivity to 85%
for the LF index and 99% for the HF index. In our
opinion, the analysis of 20-min time series is preferable
for both screening and estimation of the dynamics of
spectral indices over 24-h period.

It was also shown that parametric approach to esti-
mation of the power spectra, based on AR modeling,
has no advantages over the Fourier transform for this
particular type of data. When using AR models of order
30 and higher, the results are quantitatively similar, but
when using AR models of lesser orders, the spectral
indices are estimated with significant errors.

Application of the Bartlett’s method had no effect on
the sensitivity and specificity of the diagnostics. Appli-
cation of the Hann’s window function decreases both
sensitivity and specificity, regardless of other parame-
ters of the spectral analysis.

The normalized spectral indices LFn and HFn had
much lower sensitivity and specificity than the abso-
lute indices LF and HF, because for the arterial hyper-
tension patients, the total power LF + HF contains

important diagnostic information, and normalization
loses it. The obtained results show that normalized and
absolute indices contain different diagnostic informa-
tion, have different range of application, and, in our
opinion, should be used together.
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