
Eur. Phys. J. Spec. Top. (2022) 231:3317–3327
https://doi.org/10.1140/epjs/s11734-022-00621-7

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

An ANFIS model-based approach to investigate
the effect of lockdown due to COVID-19 on public health
Sayani Adak1,a, Rabindranath Majumder2,3,b, Suvankar Majee1,c, Soovoojeet Jana4,d, and T. K. Kar1,e

1 Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
2 Department of Physiology, Tamralipta Mahavidyalaya, Tamluk, Purba Medinipur, West Bengal 721636, India
3 Birnagar Municipality Hospital, Birnagar, Nadia, West Bengal 741127, India
4 Department of Mathematics, Ramsaday College, Amta, Howrah 711401, India

Received 7 September 2021 / Accepted 25 May 2022 / Published online 6 July 2022
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of
Springer Nature 2022

Abstract During the first and second quarters of the year 2020, most of the countries had implemented
complete or partial lockdown policies to slow down the transmission of the COVID-19. To cultivate
the effect of lockdown due to COVID-19 on public health, we have collected the data of six primary
parameters, namely systolic blood pressure, diastolic blood pressure, fasting blood sugar, insomnia,
cholesterol, and respiratory distress of 200 randomly chosen people from a municipality region of West
Bengal, India before and after lockdown. With the help of these data and Adaptive Neuro-Fuzzy Inference
System (ANFIS), we have formulated a model that has established that lockdown due to COVID-19 has
negligible impacts on the individuals with better health condition but has significant effects on the health
conditions to those populations who have poor health.

1 Introduction

The worldwide spread of novel coronavirus disease
(COVID-19) has shattered the World and severely
affected human life. In December 2019, in Wuhan city,
capital of Hubei Province, China, many people had suf-
fered from severe respiratory illness. Towards the end of
December 2019, China had informed the World Health
Organization (WHO) about the number of patients
with symptoms of respiratory disease of unknown cause
[1], and later the disease has been renamed as COVID-
19 which is occurring due to a virus of novel corona
group known as SARS-CoV-2. India is a densely popu-
lated country with a population of more than 1.3 billion
people spread across the diverse state having wide eco-
nomic and social disparities, health inequalities, and
distinct cultures that possess significant challenges in
the period of the COVID-19 pandemic. The first case
of COVID-19 in India was reported on 30th January
2020 and up to 24th, March 2020 around 571 confirmed
COVID-19 cases had been reported [2]. On 25th March
2020, India faced a countrywide lockdown for 21 days.
Reconsidering the situation, the Government of India
had extended the lockdown till 31st May 2020, hence
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India was under complete lockdown for 67 days dur-
ing the first wave of COVID-19. A study conducted
by Kumar and Dwivedi [1] showed the impact of lock-
down on individuals’ daily habits such as sleep/getting
up, social media use, working from home, and more.
Another study (see Wang et al. [3]) shows the severe
effect of lockdown on the mental health of humans.
On the other hand, during the lockdown period, many
daily workers have lost their earnings due to closing
the respective workstations. Thus, except for families
of monthly salary-based employees of governmental or
established non-governmental organizations, all other
families have been affected significantly during the lock-
down period. From the aspects of severity and expan-
sion, the pandemic holds an exceptional situation that
the World had not seen in a century. But, due to climate
change, globalization, encroachment on wildlife habi-
tats, the world population may face such a pandemic
in the future [4, 5]. Hence, an investigation is required
to study the effect of lockdown on the commoner’s
lifestyle and health status. Till now many experimen-
tal, as well as theoretical research papers on COVID-19
have already been published (see, for example, Acuna-
Zegarraetal et al. [6], Mandal et al. [7–9], Gowrisankar
et al. [10], Easwaramoorthy et al. [11], Das et al. [12],
Adam et al. [13], Zandvoort et al. [14], Sornette et al.
[15], Lalmuanawma et al. [16], Zhao et al. [17], Adak
et al. [18, 19] etc.). A study on mental health due to
the lockdown has been done by Hirematha et al. [20].
Analysis of lockdown perception in the United States
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during the COVID-19 pandemic has also been done by
Surano et al. [21]. But, to date, there are not so many
significant works that have analyzed the effect of lock-
down on public health.

In our present study, we want to create a model
and examine it to visualize how the lockdown has
affected the health condition of common people. To do
so, we intend to use some soft computing-based tools.
At present, soft computing-based tools have been used
effectively to study the behavior of a disease (Yang
et al. [22], Adak and Jana [23, 24], etc). To study the
impact of lockdown on public health, we have collected
six different parameters (namely systolic pressure (SP),
diastolic pressure (DP), respiratory distress (RD), fast-
ing blood sugar (FBS), cholesterol (Chl) and insomnia
(INS)) related to health conditions of 200 people before
and after lockdown from Birnagar municipality region
of Nadia District of West Bengal, India, and applied
adaptive neuro-fuzzy inference system (ANFIS) to find
a fuzzy mathematical model. The adaptive neuro-fuzzy
inference system (ANFIS) is a combination of neural
network and fuzzy logic. It has the learning capabil-
ity to approximate non-linear functions more precisely.
ANFIS is an artificial neural network based on the
Takagi–Sugeno fuzzy inference system. ANFIS-based
predicting models resemble human brain functioning,
which helps to predict diseases [25]. There are several
works in which ANFIS is used in disease prediction
[26–28]. ANFIS has been used to investigate the effect
of working conditions on occupational injury using data
of professional accidents assembled by ship repair yards
[29]. Adaptive neuro-fuzzy inference system (ANFIS)
technique has been used to model and forecast Nige-
ria’s industrial electricity consumption [30]. Ekici et al.
predicted the building energy needs in the early design
stage using ANFIS [31]. Wei et al. used ANFIS in pre-
dicting injection profiles [32].

The rest of the paper is organized in the following
way. In Sect. 2, we have discussed the materials and
methods of the work. In Sect. 3, we have obtained the
result and discussed it thoroughly. Next, in Sect. 4, we
describe the error measures during our computation.
Finally, the last section is dedicated to a precise con-
clusion of the whole work.

2 Materials and methods

2.1 Brief introduction to ANFIS model

Fuzzy inference systems (FIS) are among the most
famous applications of fuzzy logic, and fuzzy set theory
[33]. ANFIS is capable of learning and generalizing from
the training data [34]. The strength of FIS is the ability
to handle linguistic concepts and perform non-linear
mappings between inputs and outputs [35]. There are
two types of fuzzy inference systems (1) Mamdani type
and (2) Sugeno type. The Takagi–Sugeno fuzzy infer-
ence system was developed in 1985 [36]. This method
is similar to the Mamdani method in many ways. The
Takagi–Sugeno system is mainly used in a model with

one output, suitable for modeling non-linear systems
by interpolating between multiple linear models. Like
the Mamdani in the Takagi–Sugeno method, the initial
step is to fuzzify the inputs and apply the fuzzy rules.
The output membership functions are either linear
or constant. An adaptive network is a network that
consists of nodes and links that connect the nodes.
Some of the nodes are adaptive (square nodes), and
some remain fixed (circular nodes), and the learning
rules specify how these parameters need to be changed
to minimize the error. Adaptive neuro-fuzzy inference
system (ANFIS) is derived by embedding a fuzzy
inference system into the framework of an adaptive
neural network. The basic idea behind ANFIS is that
it creates a fuzzy inference system and tries to improve
the membership function of the input variables by
learning from the provided data. ANFIS is based on
Takagi–Sugeno fuzzy inference system. The application
of an adaptive neural-fuzzy inference system (ANFIS)
was first introduced by Jang [37]. To explain the
ANFIS, let us consider an example of a Takagi–Sugeno
fuzzy model with the following two rules:

If x1 is a11 and x2 is a21 then y = b1
If x1 is a12 and x2 is a22 then y = b2.

The pictorial representation of ANFIS model is shown
in Fig. 1. The inputs of the first layer are the provided
data, say x1 and x2 and the output is the degree of
membership of the input values corresponding to their
membership functions. One can choose the membership
functions in several ways. In this work, we have taken
the membership function of the inputs as a Gaussian
fuzzy number. The functional form of Gaussian fuzzy
number with mean cij and standard deviation σij is

μaij
(xij ; cij , σij) = exp

(−(xj − cij)2

2σ2
ij

)
(1)

Here, a11, a12, a21 and a22 are linguistic variables. The
output of the 1st layer are oij for i, j = 1, 2 where

oij = μaij
(xij ; cij , σij) = exp

(
−(xj−cij)

2

2σ2
ij

)
. The output

of first layer is the input of 2nd layer. The output of 2nd
layer are w1 and w2 where

w1 = o11 ∗ o21 = μa11(x1) ∗ μa21(x2) and
w2 = o12 ∗ o22 = μa12(x1) ∗ μa22(x2).
The output of the 3rd layer are normalized output

which are obtained by computing w
′
1 = w1

w1+w2
and

w
′
2 = w2

w1+w2
. These are the inputs of the 4th layer. The

output of layer 4 is multiplication with b′
is for i = 1, 2.

The final output is obtained at Layer 5 by summing the
outputs of the previous nodes, i.e., y =

∑2
i=1 biw

′
i.

Two learning methods are generally used to identify
the relationship between input and output in ANFIS,
which determines the optimized distribution of mem-
bership functions. These learning methods are back-
propagation and hybrid. The hybrid system is a com-
bination of the back-propagation and the least-squares
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Fig. 1 Pictorial representation of ANFIS model

method [38]. In this backward pass, the premise param-
eters are updated by the gradient descent algorithm
[39]. The parameters associated with the membership
functions change through the learning process. A gra-
dient vector measures how well the fuzzy inference sys-
tem is modeling the input–output data for a given set
of parameters. Once the gradient vector is obtained,
an optimization procedure can be applied to adjust the
parameters to reduce the error [40].

To create FIS using ANFIS, we applied fuzzy logic
toolbox of MATLAB (R2013a) which enables creation
and editing of FIS, manually or automatically driven
by the data. Model performance is examined using root
mean square error (RMSE).

2.2 Data preparation

2.2.1 Choosing input and output variables

This study includes the health condition before and
after lockdown of 200 persons from Birnagar munici-
pality of Nadia district of West Bengal chosen at ran-
dom. We collect the data of blood pressure (BP both
SP and DP), respiratory distress (RD), fasting blood
sugar (FBS), cholesterol (CHL) and insomnia (INS) of
200 persons before and after lockdown from Birnagar
municipality area.

2.2.2 Systolic pressure (SP) and diastolic pressure (DP)

Normal blood pressure is a measure of good health.
Measuring systolic pressure (SP) and diastolic pressure
(DP) gives blood pressure measurement. If SP is higher
than the standard measurement, then it is called hyper-
tension, and if the measure of DP is lower than nor-
mal, it is called hypotension. Hypertension increases
the chance of heart diseases, heart attack, stroke. On
the other hand, hypotension causes hazards, especially
for the elderly. According to [41], the distribution of
blood pressure is given in Table 1.

2.2.3 Respiratory distress (RD)

Respiratory distress occurs when fluid builds up in the
tiny, elastic air sacs in one’s lungs. The fluid keeps one’s
lungs from filling with air, due to which enough oxygen

Table 1 The chart of weights for SP and DP

Description SP DP

Low < 90 < 60

Normal 90–120 60–80

Pre-hypertension 120–139 80–89

Stage 1 hypertension 140–159 90–99

Stage 2 hypertension ≥ 160 ≥ 100

Isolated systolic hypertension ≥ 140 < 90

Table 2 The chart of weights for RD

Description RD

No RD 0

Low 1

Medium 2

High 3

Table 3 The chart of weights for FBS

Description FBS

Low < 70

Normal 70–126

Pre-diabetic 126–200

Diabetic > 200

does not reach the organs. This leads to breathing prob-
lems. Respiratory distress occurs mostly in the elderly.
The distribution of respiratory distress is given in Table
2.

Table 4 The chart of weights for CHL

Description CHL

Low < 120

Desirable 120–200

Borderline high 200–239

High > 240

Table 5 The chart of weights for INS

Description INS

No insomnia 0

Low 1

Medium 2

High 3
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Table 6 The chart of weights

Cholesterol Weights SP Weights DP Weights FBS Weights RD Weights INS Weights

≤ 120 0.15 < 90 0.07 < 60 0.08 ≤ 70 0.15 0 0.2 0 0.2

121 0.195 91–97 0.085 60–70 0.1 ≤ 120 0.2 1 0.15 1 0.15

122 0.18 98–102 0.09 71 0.0975 121 0.195 2 0.1 2 0.1

123 0.17 103–110 0.0975 72 0.095 122 0.18 3 0.05 3 0.05

124 0.16 110–120 0.1 73 0.0925 123 0.175

125 0.155 121–130 0.09 74 0.09 124 0.165

126 0.15 132 0.0866 75 0.0875 125 0.155

127 0.14 134 0.0833 76 0.085 126 0.15

128 0.13 136 0.08 77 0.0825 127 0.145

129 0.12 138 0.0766 78 0.08 128 0.14

130 0.11 140 0.0733 79 0.0775 129 0.13

131–140 0.1 141–150 0.07 80–85 0.075 130 0.12

141–190 0.05 152 0.0675 86 0.07 131–140 0.11

191 0.192 154 0.065 87 0.065 142–200 0.1

192 0.184 156 0.06 88 0.06 201–300 0.05

193 0.176 158 0.055 89 0.055 > 300 0.02

194 0.168 160 0.05 90–95 0.05

195 0.16 162 0.0475 96 0.045

196 0.152 164 0.045 97 0.04

197 0.144 166 0.0425 98 0.035

198 0.136 167 0.04 99 0.03

199 0.124 168 0.04 100–105 0.025

200–230 0.12 170 0.0375 106 0.0225

231 0.112 172 0.035 107 0.02

232 0.104 180 0.0325 108 0.015

233 0.096 182 0.0325 109 0.012

234 0.088 188 0.03 110 0.01

235 0.08 200 0.03

236 0.072 222 0.0275

237 0.064 260 0.025

238 0.056

239 0.048

240–250 0.04

≥ 251 0.03

2.2.4 Fasting blood sugar (FBS)

Fasting blood sugar (FBS) measures the level of blood
sugar after overnight fasting. A fasting blood sugar level
of 99 mg/dL or lower is considered as normal, 100-125
mg/dL indicates prediabetes. Change in blood sugar
can cause low vision, headaches, fatigue, frequent uri-
nation, etc. The distribution is given in Table 3.

2.2.5 Cholesterol (CHL)

Cholesterol is fat that moves throughout the human
body on its own. It does not dissolve into blood. There
are two types of cholesterol (i) high-density lipoprotein
(HDL) (ii) low-density lipoprotein (LDL). If the blood
contains too much of LDL, then one is said to be diag-
nosed with high cholesterol. High cholesterol leads to

many health hazards like stroke, heart attack. On the
other hand, low cholesterol indicates cancer, depression,
hemorrhagic stroke, etc. The distribution is given in
Table 4.

2.2.6 Insomnia (INS)

According to [41], insomnia is a sleeping disorder in
which one has trouble sleeping. They may have a prob-
lem in falling asleep or staying asleep. Insomnia can be
acute or chronic. Stress, anxiety, and depression may
lead to insomnia. One may also face insomnia due to a
change of habits, new shifts at work, genes (Table 5).
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Table 7 k-cross validation

Iteration Folds for training Fold for testing

1 2, 3, 4, 5 1

2 1, 3, 4, 5 2

3 1, 2, 4, 5 3

4 1, 2, 3, 5 4

5 1, 2, 3, 4 5

Table 8 Cross-validation for this model

Iteration Folds for
training

Fold for
testing

RMSE value

Training Testing

1 2, 3, 4, 5 1 0.055 0.134

2 1, 3, 4, 5 2 0.052 0.302

3 1, 2, 4, 5 3 0.040 0.172

4 1, 2, 3, 5 4 0.052 0.224

5 1, 2, 3, 4 5 0.03 0.7

2.2.7 Normalized health condition (NHC)

The Takagi–Sugeno fuzzy inference system can have
only one output. To fix the output, we have multi-
plied the provided data of the six parameters after lock-
down with its corresponding weight and added it. For
example, if the SP, DP, RD, FBS, CHL and INS of a
person after lockdown be 112, 80, 1, 108, 114, and 1
then according to the defined weights which are given
in Table 6, the output is computed as 112 × 0.1 + 80 ×
0.1 + 1 × 0.15 + 108 × 0.2 + 114 × 0.2 + 1 × 0.15, i.e.,
63.9. After computing this value for each of the 200 per-
sons, the output range becomes [37.86–80.89]. To have
a clear picture of the variable NHC, we have computed
the value of NHC when the inputs, namely SP, DP, RD,
FBS, and CHL, are in different ranges (see Tables 1, 2,
3, 4, 5). For example,

(i) when all the input variables are in low range, SP
= 90, DP = 60, RD = 0, FBS = 70, CHL = 120,

and INS = 0, then NHC= 90× 0.07+60× 0.08+
0 × 0.2 + 70 × 0.15 + 120 × 0.15 + 0 × 0.2 = 39.6.

(ii) when all the input variables are in normal range,
SP = 120, DP = 80, RD = 0, FBS = 126, CHL =
200, and INS = 0, then NHC= 120 × 0.09 + 80 ×
0.075+0×0.2+126×0.15+200×0.12+0×0.2 =
63.7.

(iii) when SP, DP are in range of pre-hypertension,
RD and INS are low, FBS is in prediabetic range,
CHL is in borderline, SP = 130, DP = 85, RD =
1, FBS = 130, CHL = 220, and INS = 1, then
NHC= 130 × 0.09 + 85 × 0.075 + 1 × 0.15 + 130 ×
0.12 + 220 × 0.12 + 1 × 0.15 = 60.375.

(iv) when SP, DP are in the range of stage-1 hyperten-
sion, RD, INS are medium, FBS is in the range of
diabetic, CHL is in high range, for example if SP
= 150, DP = 95, RD = 2, FBS = 205, CHL = 245,
and INS = 2, then NHC= 150×0.07+95×0.05+
2 × 0.1 + 205 × 0.05 + 245 × 0.04 + 2 × 0.1 = 35.7.

(v) In a similar manner, SP = 170, DP = 100, RD
= 3, FBS = 300, CHL = 260, and INS = 3, then
NHC= 170×0.03+100×0.025+3×0.05+300×
0.03 + 260 × 0.025 + 3 × 0.05 = 23.4. Thus, we
can say that high value of NHC indicates good
health. When the value of NHC decreases, the
normal health of a person deteriorates.

2.2.8 Normalization

We can see that the features taken as inputs in this sys-
tem are of different types and lie within various ranges.
To enhance the system’s performance, we convert the
raw data into normalized data. Due to normalization,
the data set will have a uniform range [0, 1]. There
exist several normalization methods such as min–max,
Z score, and simple feature scaling. In this work, we
have used the min–max scaling technique, which is
given as

xnorm =
x − xmin

xmax − xmin
(2)

Fig. 2 Graph of training
error with the change of
epochs

123



3322 Eur. Phys. J. Spec. Top. (2022) 231:3317–3327

Fig. 3 Graphical
representation of
FIS-predicted output and
the given test data; ∗
represents the
FIS-generated output, .
represents the given testing
data

where xmin and xmax represents, respectively, the min-
imum and maximum values among the set of data x .

2.3 Cross-validation

Model validation is a process that confirms if the goal
of the model is achieved. There are many processes to
validate a model, such as (i) train/test split, (ii) k-
fold cross-validation, (iii) time-series cross-validation,
(iv) nested cross-validation, and many more. Among
all these processes, k-cross-validation is one of the most
common validation techniques. In k-cross-validation
technique, we are validating the model k times. There-
fore, this method is more effective than the other val-
idation methods. Hence, in this paper, we have used
the k-fold validation process. In this process, we divide
the total data into k classes. Each of them is called
fold. That is why the process is called k-fold validation.
Among the k folds, we choose arbitrarily onefold and
use it as testing data, and the remaining (k − 1) folds
as training data. We compute the testing error at this
stage. We repeat the process by choosing one fold from
the remaining (k−1), which we had used for training in
the previous step for testing, and the remaining (k − 1)
fold for training. We continue this process till all the
folds are used for training and testing (Table 7). The
error of the application is the average error after each
iteration.

In this work, among 200 collected data, we have taken
20 data for validation. We divide the remaining 180
data into fivefold, i.e., here k = 5. Then, each fold con-
tains 36 data. We have made five iterations, as shown
in Table 7. Choosing the number of epochs is a criti-
cal task in the training process. Epochs represent the
number of complete pass-through training data set. We
must select a necessary number of epochs as a high
number of epochs may cause over-fitting of the data.
In our present work, we have taken epoch number as
10. Figure 2 represents the change of RMSE value of
training with respect to the number of epochs. We can
observe from Fig. 2 that the ultimate error is achieved
at epoch 2, and the error does not change after that.
Choosing the epochs, we compute the RMSE values of
training and testing at each iteration and observe at
which iteration both the errors are comparatively low.

SP (3)

DP (3)

RD (3)

FBS (3)

CHL (3)

INS (3)

f(u)

NHC (729)

anfismodel5

(sugeno)

729 rules

Fig. 4 ANFIS model structure

In addition, we have to keep in mind that the difference
between training and testing errors must be low. Oth-
erwise, there will be a chance of over-fitting or under-
fitting the data. The training and testing error of each
iteration for this model is shown in Table 8. From Table
8 we see, in the 1st iteration, the training error is mini-
mum; the difference between testing and training error
is lowest. Hence, we choose the ratio of iteration 1 to
train and test the model. Further, to check the perfor-
mance of the model, we have tried to fit the model with
data of 20 persons which are distinct from the 180 data
that we have already used.

3 Results and discussion

From the above section, we have derived the best pos-
sible model using ANFIS. We can see from Fig. 2 that
the RMSE value of training finally takes the value of
0.05513. Figure 3 illustrates the graphical representa-
tion of FIS-predicted output and the given test data.
The red color represents FIS-generated output, and the
blue represents the output used while testing. Here, we
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Fig. 5 ‘if-then’ rules of the
fuzzy inference system

can see the plot of 40 testing data points and FIS-
derived output. In this case, the RMSE value of testing
is 0.134, which is computed using the formula (2).

Ultimately, we have derived a Sugeno-type fuzzy
inference system (Fig. 4). The inputs are taken as
Gaussian fuzzy numbers in the model and output as
constant. Each of the inputs has three membership
functions. The fuzzy inference system is generated by
the grid partitioning method. In the grid partitioning
method, the input and output space are divided as per
the linguistic variables into equal partitions; each par-
tition is called ‘grid’. The system starts with zero out-
put; it gradually learns the rules in the training process
and changes the output values accordingly. 729 ‘if-then’
rules have been created in the system. Product is done
in ‘and’ method, and probabilistic or method is done
in ‘or method’. Hybrid learning is selected as learning
algorithm. Defuzzification is done using weighted aver-
age method. Figure 5 represents the ‘if-then’ rules of
the fuzzy inference system.

Figure 6 represents the surfaces generated by the
model, which represents how NHC changes with respect
to any two inputs keeping other inputs fixed. Figure 6a
represents the change in NHC with respect to SP and
DP when RD= 0.5, FBS = 0.6, CHL = 0.001 and INS
= 0.1. Figure 6b represents its projection. Figure 6c
represents the change in NHC with respect to SP and
DP when RD = 0.1, FBS = 0.2, CHL = 0.001 and INS
= 0.1. Figure 6d represents its projection. Figure 6e
represents the change in NHC with respect to RD and
INS when SP = 0.3, DP = 0.0005, FBS = 0.1 and CHL
= 0.001. Figure 6f represents its projection. Figure 6g
represents the change in NHC with respect to RD and
INS when SP= 0.7, DP = 0.001, FBS = 0.6, CHL
= 0.001. Figure 6h represents its projection. Figure 6i
represents the change in NHC with respect to FBS and
CHL when SP = 0.3, DP = 0.0005, RD = 0.1 and
INS = 0.2. Figure 6j represents its projection. It is seen
from the figures that the output takes negative values

and positive values. Further, it takes values beyond [0,1]
because the output variable starts with zero. Gradu-
ally, it learns via the hybrid algorithm, leading to a
change of the output variable. Therefore, the output
value does not remain within [0, 1] interval. In a real-
life situation, it is observed that the output attains the
negative values when the inputs are taken relatively
odd in contrast with any real-life scenario. For exam-
ple, in Fig. 6a, RD and FBS are medium, whereas CHL
and INS are low. For a person with respiratory distress,
high blood sugar, low SP, and high DP is not possible.
The system has taken negative outputs while generat-
ing the model in such cases. Due to the same reason
mentioned above, we can see the output has taken val-
ues greater than 1. Therefore, here we will explain the
cases when the output range is [0, 1]. When the value
of NHC decreases, it implies poor health, whereas the
high value of NHC implies good health. From the fig-
ures, we observe that the health status of a person who
had low or high blood pressure before lockdown does
not change much (Fig. 6a, c). But, it is interesting to
note that the output range in Fig. 6c is greater than
Fig. 6a. This may happen due to the low value of the
other inputs, namely RD, FBS, CHL, and INS. People
with normal blood pressure, normal blood sugar, and
cholesterol have faced respiratory distress and insom-
nia due to lockdown. A similar scenario has occurred
for a person with cholesterol and blood sugar. Increas-
ing blood sugar level shows low NHC. Figure 6i and j
represents that situation.

4 Error analysis for measuring NHC

In this section, we intend to compute the error to
validate the model. With the help of root mean square
error (RMSE), we can find the error of a proposed
model, and with the R-squared value, we can see
how well the model predicts. The expected values
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Fig. 6 a Representation of
the change in NHC with
respect to SP and DP when
RD= 0.5, FBS = 0.6, CHL
= 0.001 and INS = 0.1.
b Its projection.
c Representation of the
change in NHC with
respect to SP and DP when
RD= 0.1, FBS = 0.2, CHL
= 0.001 and INS = 0.1.
d Its projection.
e Representation of the
change in NHC with respect
to RD and INS when
SP= 0.3, DP = 0.0005, FBS
= 0.1 and CHL = 0.001.
f Its projection.
g Representation of the
change in NHC with respect
to RD and INS when
SP= 0.7, DP = 0.001, FBS
= 0.6, CHL = 0.001. h Its
projection. i Representation
the change in NHC with
respect to FBS and CHL
when SP= 0.3, DP
= 0.0005, RD = 0.1 and
INS= 0.2. j Its projection
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and model-derived values of the output variable are
given in Table 9. The inputs used to determine the
model-derived outputs are distinct from the training
data and testing datasets. Using formula (2), the
RMSE of the proposed model has been computed. We
see that the computed RMSE is 0.197, an accepted
value of the error. The R2 value is computed using (4).

R2 = 1 − RSS
TSS

,

where RSS = residual sum of squares =
∑n

i=1(y(i) −
f(x(i)))2,

TSS = total sum of squares =
∑n

i=1(y(i)− ȳ)2, (4)
where y(i) are the actual values, f(x(i))′s are the

predicted values where i = 1, 2, . . . , n, and n is the sam-
ple number.

In addition, the value of the coefficient of determi-
nation, i.e., R2 is 0.97. Hence, we conclude that the
proposed model is a good fit.

5 Conclusion

In this paper, an artificial intelligent-based system has
been proposed and analyzed to investigate the impact of
lockdown on human health. Here, we have successfully
created a model that can determine the effect of lock-
down on public health. We have determined the model
based on six basic parameters: systolic pressure, dias-
tolic pressure, respiratory distress, fasting blood sugar,
cholesterol, and insomnia. We have developed a fuzzy
inference system with the help of an adaptive neuro-
fuzzy inference system (ANFIS). Further, we have dis-
cussed some surfaces generated by the fuzzy inference
system. Using the above fuzzy inference system, we can
say that the six parameters, SP, DP, RD, FBS, CHL,
and INS, do not affect a person’s health independently.
All the inputs have a significant amount of contribu-
tion to a person’s well-being. The health of persons
with normal blood pressure average cholesterol levels
do not change much due to lockdown. But, for a per-
son with relatively poor health conditions, NHC has
decreased significantly. In addition, it is observed that
due to lockdown, some healthy individuals have also
faced respiratory distress and even insomnia. Further,
it can be concluded that in the future, lockdown can be
implemented to contain the disease in desperate times
like this. But, the Government officials’ decision-makers
must keep in mind that all the measures taken by the
government officials must be on par with the practical
situation of the majority of the population. To extend
this work, we will consider other inputs like lifestyle,
economic background while formulating a model in the
future. This work can also be expanded by collecting
more data by surveying more individuals in different
regions.
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