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Abstract Coronavirus disease so called as COVID-19 is an infectious disease and its spread takes place
due to human interaction by their pathogen materials during coughing and sneezing. COVID-19 is basi-
cally a respiratory disease as evidence proved that a large number of infected people died due to short
breathing. Most widely and uncontrollably spreading unknown viral genome infecting people worldwide was
announced to be 2019–2020 nCoV by WHO on January 30, 2020. Based on the seriousness of its spread and
unavailability of vaccination or any form of treatment, it was an immediate health-emergency of concern
of international-level. The paper analyses effects of this virus in countries, such as India and United States
on day-to-day basis because of their greater variability. In this study, various performance measures, such
as root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2) , mean
absolute standard error (MASE) and mean absolute percentage error (MAPE) which characterize models’
performances. R2 value has been achieved to be closest to 1, i.e., 0.999 from Wavelet Neuronal Network
Fuzzified Inferences’ Layered Multivariate Adaptive Regression Spline (WNNFIL–MARS) for both the
countries’ data. It is important to capture the essence of this pandemic affecting millions of the population
daily ever since its spread began from January, 2020.

1 Introduction

Corona-genomic viruses that are member of the Coron-
aviridae species have viruses consisting of large strands
of RNA sequences. The RNA is sized about 27–32 kb
engulfed with polyadenylated. In each cluster, viruses
pigeon-hole their way into host cells genomic sequence.
This so-called ‘Corona’ virus got first identified in ani-
mals such as mice, horses and many reptiles as well as
cows, bullocks etc. that led to severe infections some
of which gastric, respiratory tract ones. Predominant
infections associated with this virus have been ‘respira-
tory’, ‘gastric’ however, ‘hepatic’ or ‘neurological dis-
eases’ recorded.

Till date as per various studies reported the structure
has been described to be as engulfed non-segmented
positively oriented RNA-genomic viral classifying into
the category Corona-viridae on the bases of character-
istics. There have been a lot of research into the RNA
genome of this virus. One of the key outcomes involve
that its effect on the host RNA is based on individual-
to-individual response which means coronavirus infec-
tions could be mild categorized as Beta coronaviruses.
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Studied multifarious diseases regarding various char-
acteristics such as usages, action-mechanisms and var-
ious others towards treatment of pandemic [1]. Explo-
ration of statistical simulations to study the dynam-
ics of HIV, estimation of river water quality through
artificial intelligence, COVID-19 pandemic, complex-
ity analysis for China region modelled to study in
detail [2–6]. Studied human corona via glycoproteins in
receptor-binding sites [7]. Explained time series trans-
formations required in analysis [8]. Modelled the phases
of transmission in which novel coronavirus gets trans-
ferred [9]. Discussed a dynamic model indicating trans-
fer through hands, foots, mouths etc. [10]. Analyzed
the role of ‘Chloroquine’ during SARS-CoV-2 [11]. Dis-
cussed an epidemiology model for HCV-infections [12].
Randomness via fuzzy random set theory modelled
for Plasma disruption in fusion reactors [13]. Detailed
explanation for corona-theorem with the applicability
into spectral-problems [14]. Discussed the newest vari-
ant, Omicron [15]. Explored the COVID-19 herd immu-
nity [16]. Studied respiratory-tract in human beings for
novel virus isolation [17]. Explained in detail the coron-
avirus related concerns [18]. Explained the AIDS mech-
anism so as to study viral diseases [19]. Studied as well
as explained the second and third waves of coronavirus
[20].
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Discussed the effects of coronavirus in lower respirat-
ory-tracts observed in infants [21]. Detailed study of
Corona to understand the pneumonia infection in low
immunity-patients [22]. Discussed ‘Corona-theorem’ for
‘countably-many functions’ [23]. Pathogenesis of
COVID-19 epidemiology in Saudi discussed with the
help of nonlinear time series [24]. WHO reported ‘novel-
coronavirus’. Survey on ‘MERS-CoV’ updates [25,26].
Studied the respiratory syndrome during human coron-
avirus via molecule analysis [27]. WHO stated updates
on Coronavirus around January, 2020 along with the
discussion about the ‘pneumonia-outbreak’ originat-
ing from bats developing into ‘corona-virus’. Discussed
important antibiotics that would hinder the entrance
of ‘Ebola virus’, ‘MERS-CoV’, ‘SARS-CoV’ in human-
beings as well as other living beings. WHO described
‘novel coronavirus’ updated reports [28–31].

None of the authors designed the wavelet conjuncted
neuronal network fuzzified inferences’ layered hybrid
model for countrywise daily data COVID-19 genome
transmission. In this study, forecasts of the datewise
data of confirmed cases. In our forecasting models, we
have made an attempt of artificial intelligence (AI)
based learned algorithms, such as WNNFIL, WNNFIL–
LSSVR, WNNFIL–MARS. Forecasts via validated data
for longer time spans have been evaluated on the basis
of error performances through RMSE, MAE, R2 .

2 Chaotic analysis

2.1 Lyapunov characteristic exponent (LCEs)

Alexander M. Lyapunov, a Russian engineer first dis-
cussed the concept of characteristic exponents hence
the name Lyapunov Characteristic Exponents (LCEs)
became widely known. It is used to measure the stabil-
ity of the variables considered under the system. Dis-
cussed the degree of strangeness, i.e., randomness that
led to strange attractors’ formation. Such exponents
have been observed to be the direct indicators as well as
quantifiers for determining randomness. The number of
Lyapunov exponents depend upon the dimension of the
phase diagram. The LCEs < 0 indicates nearby initial
conditionalities converging, i.e., delta-errors decreas-
ing through delta-time increment. However, whenever
the LCEs are positive, the infinitesimally nearby initial
conditions diverging exponentially, i.e., errors increas-
ing rapidly with respect to time increments. Such a
phenomena is known as the sensitivity towards initial
conditions famously known as Chaos. LCEs are con-
sidered as the standardizations for eigenvalues com-
puted in various states, such as steady-state, limit-
cycles or randomness. Determination of these character-
istics for non-linear systems involves numerically inte-
grating underlying differential equalities over the vari-
ation in parameters and initial conditions.

Steps to compute Lyapunov Exponents:

1. Consider xn = fn(x0) ; yn = fn(y0) then, the
nth iteration of orbits for x0 and y0 under f are:
|x0 − y0| � 1 , |xn − yn| � 1,

2. Then, the divergence at that nth iteration in case of
1-dimension setup is calculated as the summation of

|xn − yn| ≈
(

n−1∏
t=0

|f ′(t)| |x0 − y0||
)

having |x0 − y0| << 1 , |xn − yn| << 1 ; xn =
fn(x0), yn = fn(y0) are nth iterations of orbits of
x0 and y0 under f .

3. Next, exponential rate of divergence, i.e., log|f ′ (x) |
for two localized initial conditions formulating into

λ(x0) = lim
n→∞

1
n

log

(
n−1∏
t=0

|f ′(xt)|
)

where
n−1∏
t−0

|f′(xt)| ≈ eλ(x0)n for , n � 1.

4. Hence, λ(x0) can be defined as LCEs for the trajec-
tory of x0.

5. Thus, two trajectories in phasespace having initial-
separation, δx0 diverge |δx(t)| ≈ eλt|δx(0)| where
λ > 0 denotes LCE.

6. Consider λ1, λ2, . . . , λn be the eigen-values for the
linearized-equation du

dt = A (u∗) s.t. m1 (t) = eλt

and
∼
λi = limt→∞ 1

t ln
∣∣eλit

∣∣ = Re [λi] .

Thus, LCEs can be taken as equivalent to real parts
of calculated eigenvalues at all of the fixed points.
Whenever these exponents become less than zero, the
localized initial conditions become convergent depicting
(small) delta-errors are decreasing. The subset formed
is also known as attracting set. Therefore, attractor
can be defined as an attracting set that consists of
a dense orbit. Whereas, whenever the LCEs become
positive, the initial conditions become divergent, i.e.,
(small) delta-errors are increasing. Behavior of attrac-
tors as per LCE values being classified into

• Equilibria: 0 > λ1 ≥ λ2 · · · ≥ λn ;
• Periodic limit-cycling: λ1 = 0, 0 > λ2 ≥ λ3 . . . ≥ λn

;
• k -periodic limit-cycling: λ1 = λ2 = · · · λk = 0, 0 >

λK+1 ≥ λK+2 · · · ≥ λK+n ;
• Strange-randomness, i.e., chaotic: λ1 > 0,

∑n
i=1 λi <

0 ;
• Hyper-randomness, i.e., hyper-chaotic: λ1 > 0, λ2 >

0,
∑n

i=1 λi < 0 .

2.2 Rescaled R/S analysis

As proposed by H.E. Hurst, Rescaled-range analysis
(R/S analysis) involves the understanding of long-term
persistence occurring in the time successions. It begins
via splitting of timeseries, si assuming non-overlapping
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sections φ having magnitude, p resulting in Kp =
int (K/p) segments altogether. Next step, this inte-
grated data is calculated in every section as

Xφ(i) =
i∑

t=1

(
sφp+t − 〈sφp+t〉p

)

=
i∑

t=1

sφp+t − i

p

p∑
t=1

sφp+t;

φ = 0, . . . Kp − 1

Now, piecewise constants’ trend and various other aver-
aging can be handled through subtraction. Next step
involves recording ranges through maximum and mini-
mum values and computing standard deviations in each
section considered above denoted as

Rφ(p) = maxp
i=1Xφ(i) − minp

i=1Xφ(i),

Sφ(p) =

√
1
p

p∑
i=1

X2
φ(i)

p(k) = Ck−α;

C − constant; p(k) − ACF with lag ‘k’

H = 1−α
2

Lastly, as the name suggests range needs to be rescaled
over all sections to capture the fluctuation in function
form, FR/S as

FR/S(p) =
1

Kp

Kp−1∑
φ=0

Rφ(p)
Sφ(p)

∼ pHe , for p >> 1

having He—Hurst exponent as desired.
In addition, He calculated from slope of the regres-

sion fitline plotted for the log–log curve of the variable
with respect to time.

Remark 3 From Remarks 1 and 2, He can be calculated
in terms of multi-fractal & spectral analysis as: 2He ≈
1 + η = 2 − � .

Remark 4 Clearly, whenever 0 < � < 1, then 0.5 <
He < 1. In general, this relation may not hold for all
multifractal analysis.

As and when the data is stationary, He using rescaled
R/S. Thus, He < 1/2 specify long-term anti-correlation
among data, and He > 1/2 shows positive correlations.
In addition, power-law correlations decay sooner than
1/p, taking H = 1/2 for larger p values.

3 Machine learning-based forecast models

Variable considered with respect to time successions’
corpora that needs to be put together for real-time

response variables’ approximation towards nCOVID-
19. Furthermore, it is taken as mentioned by the des-
ignated authorities that these are the daily-confirmed
cases nearly from last week of January for the study of
variations in time-periods in accordance with various
data sets for simulations. Everyday active cases data
for United States and India. For this forecast model
case study, datewise data of Confirmed cases recorded
in India & USA is taken as available on the designated
authorities’ reports and bulletins.

The unprecedented and unforeseen nCov-19 spread
had its own course world over. Both the countries stud-
ied in this article had their own different timelines for
the spread of outbreak. The data sets of USA seemed
to have greater variability as compared to that of India.
Therefore, both the countries’ confirmed cases became
important towards the study of this pandemic. Uncer-
tainty associated with the available data invites a model
that can forecast the spread of an infectious disease. To
understand the dynamics of the disease including its
mode of transmission, we need to have intelligent fore-
casting models with respect to realistic human data
(confirmed, deaths and recovered cases). Accordingly,
we have developed innovative forecasting models for the
country-based datewise data of confirmed cases.

3.1 Discrete waveform signal analysis (DWS)

Theorem Sequence consisting of embedded-approxima-
tion-subsets to be taken as

0 ← ....Vj−i ⊂ Vj ⊂ Vj+1.... → R

having f(x) ∈ Vj − f(2x) ∈ Vj+1

f(t) ∈ V0 ⇔ f(t − k) ∈ V0, k ∈ Z
ϕ(t − k)k∈Z forming an orthonormal basis

plus, the sequence of orthogonal complements, details’
subspaces:

Wn s.t. Vn+1 = Vn ⊕ Wn.

ϕ − scaling function, i.e., a low-pass sieve.

Remark Basis, V{j} to be understood as

ϕj,k(t) = 2j/2ϕ(2jt − k), k ∈ Z

For non-stationary time-dependent series, detrended
fractal investigation of time successions can be easily
implemented by considering wavelet coefficients of the
type Xφ(i) . In this case, the convolution corresponds
to the basic arithmetic such as addition/subtraction
for mean values of Xφ(i) within sections having magni-
tude, p .

The wavelet coefficients Wϕ (κ,p) are based on both
time position κ & scaling, p . The waveform transforms
required for the data signals, ds is calculated through
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the following summation for discrete waveform signals
of the time series, si, i = 1, . . . , K:

Wϕ (κ,p) =
1
p

∫ ∞

−∞
ds(t)ϕ[(t − κ)/p]dt , (continuous)

=
1
p

K∑
i=1

ds(i)ϕ[(t − κ)/p] , (discrete)

In addition, the local frequency decomposition of the
signal is described by the time resolution apt for the
considered frequency f = 1/p.

3.2 Least squares support vector regression
(LSSVR)

LS-SVRs handle higher complicacies as compared to
SVR as described by Suykens. Objective-function does
not change much as compared to that of the classi-
cal one. Difference arises when ε -based loss function
replaces the classical squared-loss function. It has been
observed that regression through this approach anni-
hilates noise alongwith monitoring of computational-
labour.

Mathematically, it can be understood as

φ2(ω, h,∈) = γAW + ζAD

with

AW =
1
2
ωT ω and

AD =
1
2

K∑
i=1

∈2
i

=
1
2

K∑
i=1

(
yi − (

ωT σ (xi) + h
))2

where γ , ζ - hyper-parameters tuning with respect to
SSE

Hence, the LSSVR regressor resultant that can be
achieved from the Lagrangian-function as followed:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lm(ω, h,∈, α) = φ2(ω,∈)

−
K∑

i=1

αi

{[
ωT σ (xi) + h

]
+ ∈i −yi

}
= 1

2ωT ω + μ
2

K∑
i=1

∈2
i

−
K∑

i=1

ψi

{[
ωT σ (xi) + h

]
+ ∈i −yi

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

where ψi ∈ R as Lagrange multipliers.

3.3 Wavelet neuronal network fuzzified inferences’
layered least-squares support vector regression
(WNNFIL–LSSVR)

Beginning with the NNFIL model as follows, Fig. 1:
The following theorem and lemma for the conjuncted

model are proposed as:

Theorem The simulation of the responses obtained
after training through DWTS into approximations and
details trained through NNFIL.

Lemma The results are then transferred towards least
squares support vector regressors’ model having ‘Gaus-
sian function’ as kernel forming an important part for
the formulation of optimization-based solution.

Thus, the flowchart in Fig. 2 clearly puts forward
every step involved in the proposed model.

3.4 Multivariate adaptive regression spline (MARS)

Conceptually, MARS is the process of creating intri-
cate pattern of correlations among the multi-variables
known as the predictor-response variables not consider-
ing or taking into account the already known knowledge
of relations that need to be hypothesized.

Thus, MARS build this model of single and multi-
response data then validated and tested using separate
sets. Finally, then the model can be utilized for esti-
mation. The generalized-form MARS given as in the
equation below:

y = f(x) = β0 +
M∑

m=1

βmHkm(xv(k,m))

y - output parameter;
β0 - constant;
M - no. of basis-function;
Hkm(xv(k,m)) − mth basis function;
βm - Corresponding coefficient of Hkm(xv(k,m)).

xv(k,m) - predictor in the kth of mth product.

The basis-function, H is defined as

Hkm =
k∏

k=1

hkm

For the order K = 1, model becomes additive, while
in case of K = 2, model becomes pairwise interactive

3.5 Wavelet neuronal network fuzzified inferences’
layered multivariate adaptive regression spline
(WNNFIL–MARS)

The following theorem and lemma for the conjuncted
model are proposed as:
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Fig. 1 Working of the
NNFIL conjuncted model

Theorem Simulation of the resultant values achieved
from DWT decomposition into cAs and cDs trained
through NNFIL.

Lemma Thus, results are then transferred towards
MARS technique having each feature, f mined leading
to the formation of Adaptive Regression Splines.

Thus, the flowchart of Fig. 3 demonstrates every step
involved in this proposed model.

4 Performance measures

The estimation provided from the conjuncted models is
evaluated on the basis of following performances, such
as ‘root mean squared error (RMSE)’, ‘mean absolute
error (MAE), ‘coefficient of determination (R2)′:

(i)
MSE =

∑n
i=1 (yi − ŷi)2

n

having yi is the recorded data; ŷi is the predicted
assessment; n is the number of days in prediction.
The square root for MSE is referred as ‘root mean
squared error’ :

(ii) RMSE =
√

MSE

(iii) R2 = 1 − SSE
SST

having SSE =
∑n

i=1 (yi−ŷi)2; SST =
∑n

i=1

(yi − ȳi)2,

(iv)
MAE =

1
N

(
N∑

i=1

|yi − ŷi|
)

,
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Fig. 2 Flowchart of
WNNFIL–LSSVR hybrid
model for COVID-19

having yi is the actual datavalues, ŷi is the pre-
dicted assessment, n is the number of days in pre-
diction.

5 Discussion of results

The results for the confirmed cases arising in USA
and India have been simulated provided by desig-

nated sources. Figure 4 shows linear fitting of WNN-
FIL trained model for USA data set. Model trained
values increase at 60th day and goes upto 80th day
after which it almost remains stabilized for the rest
of the days. Whereas linear regression plots a straight
increasing line leaving out all the data values. Figure
5 depicts linear regression of WNNFIL–LSSVR trained
model for USA data set. Model trained values remain
stabilized till 60 days the increases and goes upto 80th

123



Eur. Phys. J. Spec. Top. (2022) 231:3471–3488 3477

Fig. 3 Flowchart of
WNNFIL–MARS hybrid
model for COVID-19

day after which it almost remains stabilized for the rest
of the days. Whereas linear regression plots a straight
increasing line leaving out all the data values, Fig. 6
illustrates linear regression of WNNFIL–MARS trained
model for USA data set. Figure 7 shows that Lyapunov
exponents for the confirmed cases in USA. Whenever
Lyapunov exponents can be seen < 0, it showed that

the nearby initial conditions (ICs) converging to one
another leading towards small epsilon-errors decreasing
with respect to time. For any of the Lyapunov char-
acteristics > 0 (+ve), it showed infinitesimally nearby
initial conditions(ICs) diverging from one another expo-
nentially fast implying that the errors in initial condi-
tions would rise with respect to time. As and when tra-
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Fig. 4 Linear regression
fit for WNNFIL trained
model for USA

Fig. 5 Linear regression
fit for WNNFIL–LSSVR
trained model for USA

Fig. 6 Linear regression fit for WNNFIL–MARS trained model for USA
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Fig. 7 Lyapunov exponent values for Confirmed cases in USA

Fig. 8 Wavelet denoising of confirmed cases for USA

jectories indicate diverging with respect to time being
known as the sensitive dependence on ICs coined as
Chaos. Figure 8 clearly tracks the wavelet decompo-
sition into A3, D1, D2, D3 to feed as responses into
trained values. It filtered the noise that extracted char-
acteristics trained and tested to forecast the predictor
variables. Figure 9 shows the actual values in compar-
ison to trained forecasts obtained from wavelet decom-
position values fed into WNNFIL trained model for
the confirmed cases in USA. Similarly, Fig. 10 demon-
strates the actual values in comparison to tested fore-

casts obtained from WNNFIL tested model for the con-
firmed cases. The predicted values based upon the con-
firmed cases data observed in comparison to the actual
ones through WNNFIL–LSSVR using RBF kernel in
Fig. 11. Similarly, estimated values upon the confirmed
cases observed in comparison to the actual ones through
WNNFIL–MARS model as can be seen in Fig. 12.

For India, confirmed cases have been analyzed. Fig-
ure 13 shows linear fitting of WNNFIL trained model
for India confirmed data set. Model trained values
remain almost in the neighbourhood of zero upto 70
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Fig. 9 WNNFIL trained model for confirmed USA

Fig. 10 WNNFIL tested model for confirmed USA

days then increase for rest of the days. Whereas lin-
ear regression plots a straight increasing line leaving
out almost all the data values. Figure 14 depicts lin-
ear regression of WNNFIL–LSSVR trained model for
India. Model trained values remain almost stabilized
upto 120 days then increases for the rest of the period.
Whereas linear regression plots a straight increasing
line leaving out almost all the data values. Figure 15
illustrates linear regression of WNNFIL–MARS trained
model for India. Model trained values remain almost
stabilized for almost 120 days then increases nearly

exponentially. Figure 16 shows that Lyapunov expo-
nents for the confirmed cases in India. Whenever Lya-
punov exponents can be seen < 0(-ve), it showed that
the nearby initial conditions(ICs) converging to one
another leading towards small epsilon-errors decreasing
with respect to time. For any of the Lyapunov charac-
teristics > 0 ( + ve), it showed infinitesimally nearby
initial conditions(ICs) diverging from one another expo-
nentially fast implying that the errors in initial condi-
tions would rise with respect to time. As and when tra-
jectories indicate diverging with respect to time being
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Fig. 11 WNNFIL–LSSVR model for confirmed USA

Fig. 12 WNNFIL–MARS model for confirmed USA

known as the sensitive dependence on ICs coined as
Chaos. Thus, these values indicated towards the ran-
domness in the system. Figure 17 clearly tracks the
wavelet decomposition into A3 , D 1 , D 2 , D 3 to feed
as responses into trained values. It shows the decom-
position of signal into approximations and details at
various levels. It filtered the noise that extracted char-
acteristics trained & tested to forecast the predictor
variables. Figure 18 shows the actual values in compar-
ison to trained forecasts obtained from wavelet decom-

position values fed into WNNFIL trained model for
the confirmed cases in USA. Similarly, Fig. 19 demon-
strates the actual values in comparison to tested fore-
casts obtained from WNNFIL tested model for the con-
firmed cases. The two trajectories are entirely different
as the testing under this model is unable to capture
the peaks of future forecasts. The predicted values of
the confirmed cases data observed in comparison to the
actual ones through WNNFIL–LSSVR using RBF ker-
nel in Fig. 20. Similarly, estimated values up to of the
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Fig. 13 Linear regression fit for WNNFIL trained model for India

Fig. 14 Linear regression
fit for WNNFIL–LSSVR
trained model for India

Fig. 15 Linear regression
fit for WNNFIL–MARS
trained model for India
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Fig. 16 Lyapunov exponent values for confirmed cases in India

Fig. 17 Wavelet decomposition of daily data of confirmed cases for India

confirmed cases observed in comparison to the actual
ones through WNNFIL–MARS intelligent hybrid model
in Fig. 21. Table 1 tabulates the statistical characteris-
tics, such as LCEs, Hurst Exponents (HE), R/S value,
entropy, fractal dimension (FD), predictability index
(PI) and the behaviour of two data sets according to
PI. The behaviour observed as anti-persistence based
on all the statistical parameters. Determination of these
characteristics for non-linear systems involves numeri-
cally integrating underlying differential equalities over
the variation in parameters and initial conditions. Table
2 shows performance measures that are RMSE, MSE,
MAE, R2 for training data models which are WNNFIL,
WNNFIL–LSSVR, WNNFIL–MARS intelligent hybrid

for confirmed cases of India and USA. WNNFIL–MARS
model performs best across all errors and fits best in
case of India, i.e., 0.987 and comparable to WNNFIL–
LSSVR in case of USA, i.e., 0.995. Table 3 encapsu-
lates various studies carried out towards COVID-19
spread.

Conclusions

The study aims to model the features of COVID-19 that
can be identified to reduce its spread and develop design
strategies such as strictly following social distancing,
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Fig. 18 WNNFIL trained model for confirmed India

Fig. 19 WNNFIL tested model for confirmed India

sanitizing etc. Thus, it is necessary to study ongoing
scenario of the pandemic. Modelling outcomes provide
an insight on the extent of interventions required to
circumvent or to include so as to predict and esti-
mate future trends. In addition, this study concludes
that in both the number of confirmed people with
corona have seen a gradual dip which indicates con-
trary to the perception of pandemic causing havoc
in one of the most developed countries. Performance
error measures of training models have been simu-
lated through Lyapunov, WNNFIL, WNNFIL–LSSVR,
WNNFIL–MARS, Hurst and Entropy for both India
and USA. For India, WNNFIL–MARS perform better

compared to WNNFIL–LSSVR. This can be validated
through RMSE, MSE, MAE and R2 values. Similarly,
for USA, WNNFIL–MARS have lower error values as
compared to WNNFIL–LSSVR. The goodness of fit,
R2 value has been achieved to be closest to 1, i.e.,
0.999 from WNNFIL–MARS for both the countries’
data. This indicates that wavelet neuronal multivariate
adaptive regression splines training-learned model fits
best among all other prediction models in this study.
In the present-day scenario, a rise leading to a second
wave of corona-affected confirmed cases in the month
of November have been observed in both the coun-
tries. This indicates we need to follow extra-precautious
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Fig. 20 WNNFIL–LSSVR model for confirmed India

Fig. 21 WNNFIL–MARS model for confirmed India
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Table 1 Various statistical characteristics for the two data types

Data types Lyapunov
exponent

Hurst
exponent (He)

R/S value Entropy Fractal dimen-
sion (Fd = 2 −
He)

Predictability
Index (Pi =
2|Fd − 1.5|)

Behaviour
based on Pi

India
confirmed

0.0085 0.7806 24.8813 6.7593 1.2194 0.5612 Anti-
persistence

USA
confirmed

0.0027 0.7810 24.9198 7.1708 1.2190 0.5620 Anti-
persistence

Table 2 Performance measures of training models of India & USA daily Confirmed cases data

Data types Training model Performance measures

RMSE MSE MAE R2

Daily confirmed cases in India WNNFIL 6.8109 × 103 4.6389 × 107 3.0366 × 103 0.502
WNNFIL–LSSVR 5.0707 × 105 2.5712 × 1011 2.6635 × 105 0.624
WNNFIL–MARS 5.4639 36.5944 2.8954 0.987

Daily confirmed cases in USA WNNFIL 7.3783 × 105 5.4440 × 1011 5.8735 × 105 0.805
WNNFIL–LSSVR 1.8827 × 106 3.5446 × 1012 1.3166 × 106 0.999
WNNFIL–MARS 3.5371 14.3904 2.0331 0.995

Table 3 Different studies carried out towards COVID-19 spread

Published-year Authors Brief-Explanation Characteristics
recorded

Simulated
results

March, 2020 Fang Y. et al. Data-driven analysis of
transmission of
COVTD-19 outbreak

SEIR model,
Data fitting

MAE; MSE;
R2

May, 2020 Salgotra R. et al. Time-Series Analysis and
Forecast for COVTD-19
in India

Genetic
Algorithm

RMSE; R2

June, 2020 Rustam F. et al. Supervised Machine
Learning forecasts for
COVTD-19

Machine
Learning
methods

RMSE; MAE;
R2

2020 Bhardwaj; Bangia Wavelet–NNFEL
technique for the daily
data of China. India,
USA for COVID-19
spread

WNNFIL MSE, MASE,
sMAPE,
MAE,
RMSE, R2

2021 Present study
Bhardwaj;
Bangia

Hybridized Wavelet
Neuronal learning-for the
data of India and USA
to predict novel
COVTD-19 spread

WNNNFIL;
WNNFIL–
LSSVR;
WNNFIL–
MARS

MSE, MAE,
RMSE, R2,
alpha

behaviour. Thus, the social distancing in the infected
parts of different cities and countries might show sub-
stantial improvement in real and as well as analytical
front. In addition, it may aid to employ similar control
strategies and various other measures taken by author-
ities and citizens against this pandemic. Furthermore,
this study helped to understand the rise in transmission
and spread through surface contacts or humans coming
in contact with each other.
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