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Abstract The first section of this paper discusses the stability and Hopf bifurcation for a new dynamical
system using stability theory, the center manifold as well as normal form theory. To verify the analytical
results, numerical simulations are performed. The second section focuses on controlling the Hopf bifurcation
with a robust controller capable of handling a wide range of parameter values. By fine tuning the control
parameters, the controller ensures that Hopf bifurcation occurred at P0. Furthermore, we postpone the
Hopf bifurcation at P+ by adjusting the control parameters.

1 Introduction

There are several successful industrial uses for nonlinear
control systems. Researchers and designers in aviation
control, robotics, process control, and biomedical engi-
neering are investigating nonlinear control approaches
[1–4]. Cai and Yuan [5] proposed a hybrid control strat-
egy with state feedback and parameter control. The
results dedicated that hybrid control could chang the
critical value for Hopf bifurcation. Yang and Wei [6] also
proposed a nonlinear control scheme, which allowed a
much parameter regain and could be extended to degen-
erate Hopf bifurcation. A hybrid control strategy for
controlling the Hopf bifurcation in a modified hyper-
chaotic Lü system was proposed by Tang [7]. They
were able to delay the Hopf bifurcation by selecting an
appropriate parameter control, thereby extending the
system’s stability range.

As evidenced by the literature, more work on Hopf
bifurcation control has been done [8–15]. Du et al. [16]
studied Hopf bifurcation with center manifold theorem
and normal form. A washout controller was designed
to control bifurcation at the equilibrium E0 by adjust-
ing the controller parameters. Kim and Chang [17] pro-
posed a new chaotic system and examined its compound
structures. This paper seeks to design a controller to
further delay the bifurcation at the equilibrium point
P0 and also to extend the stability range of the system
[17].

a e-mail: zlqrex@sina.com (corresponding author)
b e-mail: kalbertt2@gmail.com

2 Stability Analysis

Consider a governing system as follows

⎧
⎨

⎩

ẋ = a(y − x),
ẏ = xz + by,

ż = −x2 − cz,

(1)

where x, y, z are state variables, a, b and c are system
parameters.

System (1) has a chaotic attractor for a = 2, b =
1, c = 0.6 as shown in Fig. 1.

The system has three equilibrium points, i.e., P0(0, 0,

0), P+(
√

bc,
√

bc,−b), and P−(−√
bc,−√

bc,−b) if bc >
0. Obviously, the equilibrium point is stable when a, c >
0 and b < 0 and unstable when a < 0 or b > 0 or c < 0.

The Hopf bifurcation at the equilibrium point P0, on
the other hand, cannot occur. Dias et al. [18,19] looked
into the existence of invariant set of topological circles
to find a good set of parameters for the equilibrium P+.

3 Bifurcation method

This section describes how to compute the first and the
second Lyapunov coefficients, as represented by l1 and
l2, respectively.

Consider the following differential equation

ẋ = f(x, ξ) (2)
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where x ∈ R4 are the state variables, and ξ ∈ Rn are
control parameters. It is also assumed that f ∈ C1[R4×
Rn]. If system (2) has the equilibrium point x = x0 at
ξ = ξ0, and x = x − x0, then

F (x) = f(x, ξ0) (3)

F (x) is smooth and can be expressed in the Taylor series
expansion as follows

F (x) =
1
2
B(x, x) +

1
6
C(x, x, x) + O(||x||4), (4)

where A = fx(0, ξ0), i = 1, 2, 3, 4.

Bi(x, y) =
4∑

j,k=1

∂2Fi(ξ)
∂ξj∂ξk

|ξ=0, xjyk,

Ci(x, y, z) =
4∑

j,k,l=1

∂3Fi(ξ)
∂ξj∂ξk∂ξl

|ξ=0, xjykyl. (5)

Assume A has a pair of purely imaginary eigenval-
ues, denoting as λ2,3 = ±iω0, (ω0 > 0) at (x0, ξ0),
where these eigenvalues admit no other eigenvalues with
Reλ = 0, p, q ∈ C

n are vectors satisfying

Aq = iω0q,A
T p = −iω0p, 〈p, q〉 =

n∑

i=1

pipi = 1. (6)

For any vector in the eigenspace y ∈ T c, one can
describe it as y = ωq + ωq, where ω = 〈p, y〉 ∈ C.
The center manifold associated with λ2,3 = ±iω0 is
parametrized by ω and ω, employing an immersion with
the form x = H(ω, ω), where H : C

2 −→ R4 can be
expanded as follows

H(ω, ω) = ωq+ωq+
∑

2≤j+k≤5

1
j!k!

hjkωjω−k +O(| ω |6),

(7)
where hjk ∈ C

4 and hjk = hjk. Substituting the deriva-
tive of H(ω, ω) into (4) yields

Hωω
′
+ Hωω

′
= F (H(ω, ω)). (8)

The vector hjk can be obtained according to (9). Thus,
on the center manifold, we have

ω
′
= iω0ω +

1
2
G32ω | ω |4 +O(| ω |6), (9)

where Gjk ∈ C
2. The first Lyapunov coefficient

l1 =
1
2
ReG21, (10)

where G21 = 〈p,H21〉,H21 = C(q, q, q̄) + B(q̄, h20) +
2B(q, h11), h20 =(2iω0I4)−1B(q, q), h11 =−A−1B(q, q̄),

and I4 are unit 4 × 4 matrices.
The second Lyapunov coefficient

l2 =
1
12

ReG32, (11)

where

G32 = 〈p,H32〉,
H32 = 6B(h11, h21) + B(h̄20, h30) + 3B(h̄21, h̄20)

+ 3B(q, h22) + 2B(q̄, h31) + 6C(q, h11, h11)

+ 3C(q, h̄20, h20) + 3C(q, q, h̄21)
+ 6C(q, q̄, h21) + 6C(q̄, h20, h11)

+ C(q̄, q̄, h30) + D(q, q, q, h̄20)
+ 6D(q, q, q̄, h11) + 3D(q, q̄, q̄, h20)
+ E(q, q, q, q̄, q̄) − 6G21h21. (12)

By solving the following n + 1-dimensional equation

(
iω0I4 q

p̄ 0

)(
h21

s

)

=
(

h21

0

)

(13)

with the condition 〈p, h21〉,the vector h21 can be
obtained.

h30 = (3iω0I4 − A)−1[3B(q, h20 + C(q, q, q))],

h31 = (2iω0I4 − A)−1[3B(q, h21) + B(q̄, h30)
+ 3B(h20, h11) + 3C(q, q, h11)
+ 3C(q, q̄, h20) + D(q, q, q, q̄) − 3G21h20],

h22 = −A−1[D(q, q, q, q̄) + 4C(q, q̄, h11) + 2B(q, h̄21)

+ 2B(q̄, h21) + B(h̄, h20)]. (14)

4 Hopf bifurcation at P0(0,0,0)

Now consider the stability of P0(0, 0, 0) in the controlled
system as illustrated below:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = a(y − x)
ẏ = xz + by + u

ż = −x2 − cz

v̇ = y − mv

, (15)

where u = k1(y−mv)+k2(y−mv)2, k1, k2 are the gains
and m is the constant time coefficient which satisfies
m > 0 and μ(0) = 0.

The Jacobian matrix of the system (15) evaluated at
P0(0, 0, 0) is

P0 =

⎛

⎜
⎝

−a a 0 0
0 b + k1 0 −mk1
0 0 −c 0
0 1 0 −m

⎞

⎟
⎠ . (16)
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Characteristic polynomial evaluated at the equilibrium
point P0(0, 0, 0) is

P (λ) = (λ + c)[λ3 + (abm − k1)λ2

+ (am − ak1 − abm)λ + a2bm]. (17)

If c > 0, ab + m − k1, a2bm < 0, and

b < b0 =
m2 + k2

1 − 2mk1 + am − ak1
a2 + 2am − ak1

, (18)

The equilibrium point P0 is stable. If b > b0, the equi-
librium point P0 is unstable. Equation (18) will be used
to study the Hopf bifurcation at P0 which occurs at sys-
tem (15).

The multi-linear symmetric functions of the smooth
function f can be written as

B(x, y) = (0,−a(x1y3 + x3y1), x1y2 + x2y1, 0)T

C(x, y, z) = (0, 6k2(x2, y2, z2 − m3x4y4z4m
2x2y4z4

+ m2x4y2z4 + m2x4y4z2

− mx2y2z4 − mx4y2z2), 0, 0)T . (19)

The eigenvalues of matrix A are

λ1,2 = ±iω0 = ±i
√

am − ak1 − a2b,

λ3 = −c, and λ4 = −(ab + m − k1). (20)

From (8), we have

q =

⎛

⎜
⎜
⎝

a(am+ω2
0)+aω0(a−m)i

a2+ω2
0

m + ω0i
0
1

⎞

⎟
⎟
⎠ ,

p = (k1 + k2i, k3 + k4i, 0, k5i)T , (21)

where

σ1 = (a2 + ω2
0)(m

2 − ω2
0 + mk1)

−(2k1m + ω2
0)

×(am + ω2
0) − ω2

0(m − k1)(a − m),
σ2 = 2mω2

0(a
2 + ω2

0) − ω0(m − k1)(am + ω2
0)

−ω0(a − m)(2k1m + ω2
0),

k1 =
(a2 + ω2

0)[σ2ω0(m − k1) − σ1(2k1m − ω2
0)]

a(σ2
1 + σ2

2)
,

k2 =
(a2 + ω2

0)[−σ2(2k1m − ω2
0) − σ1ω0(m − k1)]

a(σ2
1 + σ2

2)
,

k3 =
(a2 + ω2

0)(σ1m + σ2ω0)
a(σ2

1 + σ2
2)

,

k4 =
(a2 + ω2

0)(σ1ω0 − σ2m)
a(σ2

1 + σ2
2)

,

k5 =
mk1(a2 + ω2

0)(σ1 + σ2)
a(σ2

1 + σ2
2)

,

B(q, q) =

⎛

⎜
⎜
⎝

0
2a[(aω2

0−am22mω2
0)+(m2ω0+2amω0−ω2

0)i]

a2+ω2
0

0
0

⎞

⎟
⎟
⎠ ,

B(q, q̄) =

⎛

⎜
⎜
⎝

0
2a(m2+ω2

0)

a2+ω2
0

0
0

⎞

⎟
⎟
⎠ ,

h11 =

⎛

⎜
⎜
⎜
⎜
⎝

−2a(m2+ω2
0)

b(a2+ω2
0)

−2a(m2+ω2
0)

b(a2+ω2
0)

0
−2a(m2+ω2

0)

bm(a2+ω2
0)

⎞

⎟
⎟
⎟
⎟
⎠

,

h20 = (2iω0I3 − A)−1B(q, q) = (�1, �2, 0, �3)T ,

σ3 = (ci − 2ω0)(2amω0 − 8ω2
0 − 2ak1ω0

−4k1ω
2
0i − 2a2bω0

+4mω2
0i + 4amω2

0i + a2bmi),
σ4 = a(−2aω0 + mi)(8ω3

0 − 4k1ω
2
0i

+2ak1ω0 − 2amω0

+2a2bω0 + 4mω2
0i + 4amω2

0i + a2bmi),
σ5 = a2b2m2 + 4a2b2ω2

0 + 8a2bk1ω
2
0 − 8a2bk1mω2

0

+8a2bm2ω2
0 + 32a2bω2

0

+4a2k2
1ω

2
0 − 8a2k1mω2

0 + 4a2m2ω2
0 + 16a2ω2

0

+16k2
1ω

4
0 − 32k1mω4

0 + 16m2ω4
0 + 64ω6

0 ,

�1 = (2aσ4[(aω2
0 − am2 − 2mω2

0)
× + (m2ω0 + 2amω0 − ω3

0)i])(σ5(a2ω2
0))

−1,

�2 = (2(a + ω0(c + 2ω0i)(m + 2ω0i)
×[(aω2

0 − am2 − 2mω2
0)

+(m2ω0 + 2amω0 − ω3
0)i]) × (σ3(a2ω2

0))
−1,

�3 = (2(c + 2ω0i)(c + 2ω0i)
×[(aω2

0 − am2 − 2mω2
0) + (m2ω0

+2amω0 − ω3
0)i])

×(σ3(a2ω2
0))

−1. (22)

One also has

B(q, h11) = (0, 0, ((−2a(m2 + ω2
0)

×[aω2
0 + m2a2 + mω2

0

+ω0(2a2 + ω2
0 − am)i])

×(b(a2 + ω2
0)

2)−1), 0)T ,

B(q̄, h20) = (0, 0, ((a�2[(am + ω2
0) − ω0(a − m)i]

+�1(a2 + ω2
0)(m − ω0i))

×(a2 + ω2
0)

−1, 0)T ,

C(q, q, q̄) = (0, �4 + �5i, 0, 0)T ,

H21 = (0, �4+�5i,�6+�7i,0)T ,
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G21 = (�4k3 − �5k3 + �4k4)i, (23)

where

�4 = 6mk2[(m + 1)(ω2
0 + 3m2) − (3m2 + 2ω2

0)],

�5 = 6k2ω
3
0 ,

�6 = ab(am + ω2
0) + �1bm(a2 + ω2

0)

− 4a(m2 + ω2
0)[a(a2m + ω2

0) + m(a2 + ω2
0)],

�7 = −abω0(a − m)−�1bω0(a2+ω2
0)−4aω0(m2+ω2

0)

× [a(am + ω2
0) + m(a2 + ω2

0)]. (24)

It is now only necessary to confirm the Hopf bifurca-
tion’s transversal condition. Consider differential equa-
tions (1) with the parameter b as a dependent variable.
At the crucial parameter b = b0, the real part of the
complex eigenvalues confirms

ξ
′
(b0) = Re

〈

p,
dA

db
|b=b0,q

〉

(25)

The Hopf point’s transversal condition holds as ξ
′
(b0) �=

0.

Theorem 1 For the differential equation (15), the first
Lyapunov coefficient for the point P0 is as follows:

l1 =
1
2
(�4k3 − �5k4) (26)

If l1 is greater than zero and the Hopf point transver-
sal condition holds,then a transversal Hopf point at P0

exists in equation (15).

Letting m = 0.5, the controller is

u = k1(y − mv) + k2(y − mv)2. (27)

If 0 < k1 < 1, a transversal Hopf point at P0 exists
in equation (15) when a = 2, c = 4. Furthermore, if
k1 > 0, there exist a stable periodic orbit close to P0.
The dynamical evolution as b increases is as follows:

1. When 0.2 < b < 1.1, the system is stable,
2. When 1.1 < b < 1.4, the system is chaotic with one

periodic window in the chaotic band.

Now, if we fix a = 2, b = 1, and vary c, the dynamic
route of the system is summarized as follows:

1. If 3.5 < c < 20, the system becomes stable,
2. If 20 < b < 40, Chaos exists foe this system with

some periodic windows in the chaotic band,
3. If 40 < c < 80, a long period-doubling bifurcation

window exists.

According to the analysis performed here, the Hopf
bifurcation at P0 cannot occur when b ∈ [1.1, 1.4].
We devise a control law with which the system (15)

exhibits a Hopf bifurcation when b = 0.8215, illustrated
in Figs. 2, 3, 4.
Let a = 2, c = 0.6, k1 = 0.3 and k2 = 0.1; then, the Hopf
bifurcation value can be calculated as b0 = 0.8215. As
shown in Figs. 2 and 3, the equilibrium is stable when
b = 0.6132 < b0 and unstable when b = 0.9321 > b0. A
transversal Hopf point at P0 occurs when b0 = 0.8215
as shown in Fig. 4. By computation, one can obtain
l1 = −2.59570. As a result, the stable periodic solution
that bifurcates from P0 is supercritical.

5 Hopf bifurcation at P+

We investigate the stability of P+ in system (15) in this
section . The Jacobian matrix at P+ is

P+ =

⎛

⎜
⎜
⎝

−a a 0 0
−b b + k1

√
bc −mk1

−2
√

bc 0 −c 0
0 1 0 −m

⎞

⎟
⎟
⎠ . (28)

Characteristic polynomial of the matrix P+ is

p(λ) = λ4 + Qλ3 + Rλ2 + Sλ + T, (29)

where

Q = a + m + c − k1,

R = abc + mc − ck1 + am + ac − ak1,

S = a2bc − ack1 + mac + mabc + abc,

T = 2a2bcm.

(30)

If Q > 0, R > 0, S > 0, T > 0 and

S(S − QR) + Q2T = 0, (31)

system (15) has transversal Hopf points at P+.
Dias et al.[11], found out that the equilibrium point

P+ is stable.
The controller in this section is designed as

u = k1(y − 0.5v) + k2(y − 0.5v)2, (32)

to set off Hopf bifurcation at P+.
If system (15) experiences Hopf bifurcation at the equi-
librium P+, then condition (34) is satisfied. The multi-
linear symmetric functions corresponding to f are

B(x, y) = (0,−x1y3 − x3y1, x1y2 + x2y1, 0)T ,

C(x, y, z) = (0, 6k2(x2y2z2 − m3x4y4z4

+m2x2y4z4 + m2x4y2z4 + m2x4y4z2

−mx2y2z4 − mx4y2z4), 0, 0)T . (33)
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Fig. 1 Trajectory of the chaotic attractor in various projections

Fig. 2 Time history and phase trajectory of system (15) with a = 2, b = 0.6, c = 4,m = 0.5, k1 = 0.3, k2 = 0.1
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Fig. 3 Time history and trajectory of system (15) with a = 2, b = 0.9132, c = 4,m = 0.5, k1 = 0.3, k2 = 0.1

Fig. 4 Time history and trajectory of system (15) with a = 2, b = 0.8215, c = 4,m = 0.5, k1 = 0.3, k2 = 0.1

The eigenvalues of A are

λ1,2 = ±1.2346i, λ3 = −0.4201, λ4 = −1.2156 (34)

From (7), we have

q =

( 0.5106 − 0.1734i
0.3035 + 0.5671i
0.9015 + 1.0013i1

)

,

p =

⎛

⎜
⎝

0.0145 − 0.3015i
0.18075 + 0.2301i
0.167 + 0.3642i
0.2601 + 0.0115i

⎞

⎟
⎠ ,

B(q, q) =

⎛

⎜
⎝

0
8.7215 + 2.4112i

−0.2657 − 0.1502i
0

⎞

⎟
⎠ ,

B(q, q̄) =

⎛

⎜
⎝

0
2.6356

−0.6265
0

⎞

⎟
⎠ ,

h11 =

⎛

⎜
⎝

0.4556
0.5667
3.0854
2.8456

⎞

⎟
⎠ ,

h20 =

⎛

⎜
⎝

−0.0225 + 0.3675i
−0.8720 + 0.3056i
0.1034 + 0.5983i

−0.0859 + 0.7146i

⎞

⎟
⎠ ,

B(q, h11) =

⎛

⎜
⎝

0
−0.3147 + 0.7594i
−0.3421 + 0.6921i

0

⎞

⎟
⎠ ,

B(q̄, h20) =

⎛

⎜
⎝

0
−0.1673 + 0.3117i
−0.6115 + 0.5954i

0

⎞

⎟
⎠ ,

C(q, q, q̄) =

⎛

⎜
⎝

0
3.2i
0
0

⎞

⎟
⎠ ,
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Fig. 5 Time history and trajectory of system (1) with a = 2, b = 1, c = 4

Fig. 6 Time history and trajectory of system (15) with a = 2, b = 1, c = 4,m = 0.5, k1 = 0.3, k2 = 0.1

Fig. 7 Bifurcation diagram of x in terms of parameter c (b) Lyapunov exponents spectrum

H21 =

⎛

⎜
⎝

0
3.2 + 2.1157i

−0.7649 + 1.3954
0

⎞

⎟
⎠ ,

G21 = −3.9815 + 0.8516i. (35)

Considering equation (15) depended on the parame-
ter c, at c = c0 verifies

ξ
′
(c0) = Re

〈

p,
dA

db
|c=c0,q

〉

= 0.2875 > 0 (36)
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Fig. 8 Bifurcation diagram of x in terms of parameter b (b) Lyapunov exponents spectrum

Thus, the transversal condition holds.

Theorem 2 Considering equation (15), the first Lya-
punov coefficient related to P+ is

l1 = −2.5957k2 − 0.259 (37)

If k2 �= −0.259,then, l1 �= 0 which proves that (15) has
transversal Hopf points at P+ for a = 2, b = 1 and
c = 0.6. The k2 determines the sign of the first Lya-
punov coefficient. The first Lyapunov coefficient van-
ishes when k2 = −0.259.

Given that

a = 2, b = 1, c = 0.6134,m = 0.5121, k1

= 0.3423, k2 = −0.259 (38)

Consider system (15) for (a, b, c, k1, k2), after tedious
calculations, we have

C(q, q, q̄) =

⎛

⎜
⎝

0
−0.2583 + 2.0014i

0
0

⎞

⎟
⎠ ,

H21 =

⎛

⎜
⎝

0
−0.9645 + 2.8745i
−0.9476 + 3.0015i

0

⎞

⎟
⎠ ,

G21 = 2.1159i,

h30 =

⎛

⎜
⎝

1.0012 + 0.3753i
−0.7854 + 1.8975i
−0.1320 + 0.4596i
−0.4713 + 0.2005i

⎞

⎟
⎠ ,

h31 =

⎛

⎜
⎝

−3.7732 + 0.2593i
−0.96754 − 0.8513i
−2.0031 + 0.7642i
−0.7639 − 0.0167i

⎞

⎟
⎠ ,

h21 =

⎛

⎜
⎝

−5.0034 + 0.5934i
−5.2632 − 6.0158i
−6.7456 + 1.6632i
−2.9763 + 1.9654i

⎞

⎟
⎠ ,

h22 =

⎛

⎜
⎝

−3.0016 + 4.7421i
−1.8534 + 6.0139i
−7.3375 − 25.6614i
6.2754 − 11.0220i

⎞

⎟
⎠ ,

G32 = −2.52391 − 8.4632i,

l2 =
1
12

ReG32 = −0.2103258333. (39)

Theorem 3 Consider (a, b, c,m, k1, k2) ∈ Φ for equa-
tion (15), the second Lyapunov coefficient related to P+

is
l2 = −0.2103258333. (40)

As l2 �= 0, system (15) has a transversal Hopf point of
codimension 2 at P+.

Letting m = 0.5, k1 = 0.3, k2 = 0.1, the controller is
designed as

u = 0.3(y − 0.5v) + 0.1(y − 0.5v)2 (41)

In an uncontrolled system, P+ is locally stable. While
comparing the controlled system (15) to the uncon-
trolled system (1), we can see that a transversal Hopf
point exists in system (15) at P+ under the parameter
region, shown in Figs. 5 and 6. We obtained distinct
dynamical phenomena for system (1) and (15) if we fix
parameters a = 2 and b = 1 and vary c in the interval
[3, 4]. The bifurcation diagram in relation to parameter
a and c, is shown in Figs. 7 and 8, respectively.

As we increase c, system (1) goes through the follow-
ing dynamical paths:
There is a period-two orbit window when c ∈ [0, 2.9].
When c ∈ (0, 3.9], the system becomes chaotic. When
c = 4, a Hopf bifurcation for the uncontrolled system
occurs at the equilibrium P+. In Figure 9, we design a
controller to make that system (15) undergoes a Hopf
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Fig. 9 Time history and trajectory of system (15) with a = 2, b = 1, c = 6.1324,m = 0.5, k1 = 0.3, k2 = 0.1

bifurcation when c = 6.1324. The analysis performed
here shows that Hopf bifurcation is delayed. By calcu-
lation, l1 = −2.59570 cab be obtained. As a result, the
periodic solution that bifurcates from P+ is supercriti-
cal as well as stable.

6 Conclusions

The control of Hopf bifurcation for a new system is
investigated in this paper. Through the use of appro-
priate controls, the controller is built with the desired
location and properties. Numerical simulations demon-
strate that supercritical Hopf bifurcation exists. The
controller ensures that P0 undergoes a controllable Hopf
bifurcation. Adjusting the controller parameters, the
Hopf bifurcation at the equilibrium point P+ is delayed.
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