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Abstract Only a fast and global transformation towards decarbonization and sustainability can keep the
Earth in a civilization-friendly state. As hotspots for (green) innovation and experimentation, cities could
play an important role in this transition. They are also known to profit from each other’s ideas, with policy
and technology innovations spreading to other cities. In this way, cities can be conceptualized as nodes
in a globe-spanning learning network. The dynamics of this process are important for society’s response
to climate change and other challenges, but remain poorly understood on a macroscopic level. In this
contribution, we develop an approach to identify whether network-based complex contagion effects are a
feature of sustainability policy adoption by cities, based on dose-response contagion and surrogate data
models. We apply this methodology to an exemplary data set, comprising empirical data on the spreading
of a public transport innovation (Bus Rapid Transit Systems) and a global inter-city connection network
based on scheduled flight routes. Although our approach is not able to identify detailed mechanisms,
our results point towards a contagious spreading process, and cannot be explained by either the network
structure or the increase in global adoption rate alone. Further research on the role of a city’s abstract
“global neighborhood” regarding its policy and innovation decisions is thus both needed and promising,
and may connect with research on social tipping processes. The methodology is generic, and can be used to
compare the predictive power for innovation spreading of different kinds of inter-city network connections,
e.g. via transport links, trade, or co-membership in political networks.

1 Introduction

Anthropogenic climate change and other human-made
pressures on the environment are threatening the
civilization-friendly Holocene state that the Earth sys-
tem has been existing in for thousands of years [1,2].
A world-wide transformation of the economic, societal
and political world towards sustainable practices and
technologies is urgently needed to mitigate these effects
[3]. Cities may play an important role as active agents
in this global sustainability transformation, with their
potential for impactful change mediated by a number
of factors: Precisely because some of the largest drivers
of planetary boundary transgressions are located in
cities, their mitigation potential is high. For example,
the urban population accounts for over 80% of global
greenhouse gas emissions [4], and has large freshwa-
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ter [5] and chemical pollution footprints [6]. Already,
over half of the global population lives in cities, a share
that is projected to rise to two thirds by the middle of
the 21st century [7]. These urban populations are also
among the most threatened by negative consequences
of environmental changes, such as flooding events [8]
and heat waves [9]. Thus, if the challenge of remaining
within the planetary boundaries can be solved, it must
be solved in the urban context. At the same time, cities
are uniquely suited to address these issues. As centers of
knowledge and innovation [10,11], and possessing sig-
nificant economic resources [12], innovative solutions
are most likely to originate here. This is especially true
for sustainability innovations, where so-called frontrun-
ner cities have shown how experimentation with sus-
tainability can create positive inertia for change [13–
15].

To become relevant for the global sustainability
transformation, locally conceived and implemented
innovations must spread world-wide. As part of the
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human response to anthropogenic environmental
changes, the spreading of sustainability innovations
thus represents an important Earth system [16] pro-
cess. Innovation and policy transfer has been exten-
sively studied in the social sciences [17–20], primarily
in case studies investigating individual cities or small
city networks [21–23]. While this focus on individual
circumstances is surely well-placed for studying such
complex and diverse processes, we argue that it would
be well complemented by data- and model-based stud-
ies of the macroscopic global dynamics of urban innova-
tion spreading. It has been reported earlier that univer-
sal principles of growth, innovation and sustainability
can be found by applying statistical physics to cities,
leading to scaling laws and revealing the pace of urban
life (“Urbanocene”) [11,24–26]. Our approach is thus
motivated by the complexity science of social physics
and complex networks [27–29].

In this contribution, we develop a method for inves-
tigating the proliferation of urban sustainability inno-
vations on a global scale by viewing cities as complex
interacting systems [27]. Specifically, we hypothesize
a complex contagion process [30,31], implying a non-
trivial relationship between the probability of a city to
implement an innovation and its exposure(s) to it from
other cities. Throughout this work, we use terms such
as “infection” and “contagion” to describe the inno-
vation spreading process, in line with earlier literature
[32]. In this context, the “infection” of a city should
simply be understood as the adoption of the studied
innovation by a city, without negative connotations or
the inference of passivity. Likewise, “contagion” only
implies that this process may be directly influenced by
other cities which have already implemented the inno-
vation, and which are connected to the original city in
some way.

Networked spreading and contagion processes have
been studied in many different scientific subjects, such
as epidemics [33], cascading failures [34], and the forma-
tion and spreading of social norms, opinions and behav-
iors [35–37]. The spreading of social, political and tech-
nological innovations relevant for sustainability transi-
tions and rapid decarbonisation have also been iden-
tified as a promising approach for understanding the
emergence of social tipping points in this context [3,38–
40].

We use a set of example data sets to develop and
demonstrate our method. As a proxy for the inter-city
links facilitating the spreading of innovations, we use
the global network of scheduled flight routes. We cor-
relate this (static) network with the spreading of Bus
Rapid Transit Systems (BRTs), a public transport inno-
vation which combines features of bus networks and
light rail systems [41]. The spreading of BRTs has pre-
viously been investigated in case studies [42,43], but
never on a global scale.

Detecting contagion in such low-rate spreading pro-
cesses on a large, high-density network poses a statis-
tical challenge. Because of the small number of total
infections, we cannot rely on interpreting the func-
tional shape of the infection rate as in [44]. Instead, our

approach is based on dose response functions (DRFs)
[30,45,46], an analytical tool that has been used to
study a variety of simple and complex spreading pro-
cesses, such as the diffusion of information on social
media networks [47] and the spreading of health-related
behaviors among students [48]. Dose response func-
tions encode the probability of infection of a node, as
a function of the exposure (or “dose”) received from
connected nodes. We modify this measure for a frac-
tional contagion paradigm [37], to describe a city’s
probability of adopting a new innovation dependent
on the fraction of its network neighborhood that has
already implemented the innovation. We then develop
a hierarchy of surrogate models, successively excluding
non-contagion-related mechanisms that may confound
the observation of contagion processes. The surro-
gate model method relies on Monte-Carlo-based, data-
derived hypothesis tests to analyze specific data fea-
tures without prescribing concrete underlying mecha-
nisms. Surrogate models have successfully been used as
a tool in exploratory data analyses [49,50], particularly
for investigating networked processes [51,52], includ-
ing epidemic and social contagion [48,53,54], and time
series data [55,56]. Partially randomizing the empiri-
cal data in line with specific null hypotheses, and then
comparing key measurements (here, DRF functional
shapes) allows us to investigate correlations found in
the data, and their causal relevance.

This paper is structured as follows: In Sect. 2, a
description of the data sets used to demonstrate the
method is given, along with a motivation for their selec-
tion. This is followed by the description of the employed
methods in Sect. 3, detailing our use of DRFs (Sect. 3.1)
and surrogate models (Sect. 3.2). The results of our
analysis are reported in Sect. 4; we discuss them and
conclude in Sect. 5.

2 Data

To demonstrate the methodology, we use one exam-
ple data set each for the city network and the spread-
ing innovation, respectively. The choice for these illus-
trative data sets is driven by three considerations: the
availability of an adequate data set, the plausibility of
finding contagious spreading behavior in this data, and
the scientific or social relevance of understanding the
spreading process of the system itself and its analogues.
The data sets used here are the global network of sched-
uled flight routes for the network component, and the
adoption of Bus Rapid Transit System (BRT) public
transport innovation for the spreading component.

2.1 Flight route network

The choice of flight route connections for the city
network component has several advantages. First, a
globally homogeneous data set is available from pub-
lic sources [57]. This data also includes smaller cities,
which are often not the focus of city network research
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Fig. 1 Visualization of the spreading of Bus Rapid Transit
Systems (A–C) and rate of implementation (D). Spread of
Bus Rapid Transit System in 1980 (A), 2000 (B) and 2016
(C); the latter two represent the bounds of the time interval
investigated here. The date of implementation is displayed
on a color scale from yellow (1972) to red (2016). Overlaid

in green is the global network of flight routes. (D) Imple-
mentation rate of Bus Rapid Transit Systems in a stacked
histogram, color coded by continent. A marked rise of imple-
mentations is apparent after the year 2000, prompting our
scrutiny of this time interval. A version of (D) resolved on
the country scale is presented in Appendix B

[58]. Furthermore, we expect any kind of city-to-city
connection, be it on an economic, political, or cultural
level, to also produce some amount of flight traffic. The
flight route network can thus serve as a plausible proxy
for any underlying inter-city linkages.

We source the network data from a publicly available
data set [57], which contains information on airports
and scheduled routes that are visualized in Fig. 1. We
correlate this information with data on city locations
and population sizes [59], to transform the airport-
to-airport direct route network into an undirected,
weighted city-to-city network. The exact algorithm for
calculating a city’s connection strength to another is
described in Appendix A. Only cities with a population
of greater than 60 000 are considered here, correspond-
ing to the lowest population threshold which includes
almost all cities which have implemented a Bus Rapid
Transit System (see Sect. 2.2). As the flight route data
source provides a snapshot of the global flight route
network dated to 2014, we assume the network to be
static. Limitations imposed by this choice are discussed
in Sect. 5.

2.2 Bus rapid transit systems

We choose the implementation of Bus Rapid Transit
Systems (BRT) as the spreading innovation component
of the illustrative analysis. BRTs are a public trans-
port innovation, first developed in the early 1970’s [60].
Combining a number of measures such as dedicated bus
lanes, frequent service with timed transfers, off-board
fare collection, and preferential intersection treatment,

BRTs are frequently compared to light rail networks
[41]. Often representing a cost-effective way of imple-
menting a high-quality public transport network for
cities, they can play an important role in shifting the
modal share towards environmentally friendlier means
of transport [61].

A comprehensive database of BRT implementations
is jointly maintained and publicly provided by the BRT
+ Centre of Excellence and EMBARQ, the WRI Ross
Center for Sustainable Cities signature initiative for
sustainable transport [60]. Only implementations rated
“Bronze”, “Silver” or “Gold” by these organizations
are considered in this analysis, in order to exclude
systems that only share a limited amount of features
with full BRT implementations. The global implemen-
tation rate of BRTs is displayed in Fig. 1; an alterna-
tive version resolved to the country level can be found
in Appendix B. Following several decades of low adop-
tion rates, a marked increase can be observed after
the year 2000. To better understand this phenomenon,
and exclude times of low activity that may drown out
any potential contagion effects in the data, we focus
on this “epidemic” phase of rapidly rising implementa-
tions between the years 2000 and 2016. At the begin-
ning of this period, BRTs are already present on four
continents (Fig. 1B). The data is considered in a time-
stepped fashion, with time step length t = 1 year.
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3 Methods

We use a dose-response-contagion approach to investi-
gate contagion effects, described in Sect. 3.1 To differ-
entiate between true contagion effects and confound-
ing factors like homophily and shared environments,
we use a hierarchy of surrogate data sets. This allows
for a search for evidence of causal contagion effects by
excluding alternative hypotheses, and is described in
Sect. 3.2.

3.1 Dose–response functions

Dose-response functions (DRFs) are a useful tool in
characterizing contagion effects on networks [45,46,48].
They represent the functional dependence of a node’s
infection probability pinf on the exposure “dose” I
from neighboring infected nodes. Depending on the
underlying contagion process, DRFs can have differ-
ent functional forms, such as smooth, sigmoidal curves,
and even sharp step-like functions for threshold-based
contagion processes [46]. As a measure of the “dose”
received by a city, we define the infection pressure Ii(t)
experienced by a city i,

Ii(t) =

∑Ni

j=1 wijsj(t)
∑Ni

k=1 wi,k

. (1)

Here, Ni represents the number of cities connected
to city i, and wij holds the weight of the connection
between cities i and j. The infection status sj(t) is 1
or 0 if city j is infected or uninfected at time t, respec-
tively. This definition represents a fractional contagion
paradigm, a type of complex contagion [37] that fea-
tures the inhibition of infection probability by non-
infected neighbors. It is motivated by the conjecture
that cities with a high network degree should be less
likely to adopt the innovation after an exposure of a cer-
tain strength, than cities that have few or low-weight
other connections. In this way, high numbers of con-
nections to non-infected cities may “drown out” the
effects of infected neighbors. Vice versa, exposures are
more effective if they are experienced by a city with a
low degree of connectivity. This also solves the problem
of high-degree nodes, such as the air traffic hub Lon-
don, which would otherwise receive very high exposures,
but cannot plausibly be expected to become infected
much more readily. The system thus retains the intu-
itive assumption that, for an illustrative example of two
connected cities with strongly differing connectivities,
an infection is more likely to jump from the high-degree
city to the low degree city than vice versa. This is
despite the weight of the connection remaining sym-
metric.

From all cities’ time series Ii(t), we compute the
total distribution of infection doses D(I). Likewise,
we compute the distribution of “successful” infection
doses C(I), which is made up of only those infection
doses Ii(t̂i) that were received by cities i which became

infected at t̂i + 1. With these two distributions, we
can compute the DRF: the infection rate per time step
rinf(I) as a function of experienced infection pressure:

rinf(I) =
C(I)
D(I)

. (2)

The empirically determined DRF rinf(I) is used as an
estimator of the true probability of infection pinf(I)
after exposure to the infection pressure I: pinf(I) ≈
rinf(I). We assume the individual exposure responses
to be statistically independent, and can thus under-
stand this process as a series of

∑
D(I) independent

Bernoulli-experiments. As we expect the success rate
to be very low in our exemplary data set, we esti-
mate the confidence intervals using the Agresti-Coull
method [62], ensuring that the two-sided confidence
bounds remain within the (0, 1) interval.

3.2 Surrogate models

In the presence of confounding effects such as homophily
and shared local or global influences, contagion can be
hard to identify [63]. In the next section (Sect. 3.2.1),
we describe our use of surrogate models to address this
challenge, followed by the description of the surrogate
models produced for this study (Sect. 3.2.2).

3.2.1 Surrogate model method

The surrogate model approach is a statistical proof-by-
contradiction method used for investigating specific fea-
tures and correlations in empirical data sets. It is based
on testing composite null hypotheses on data sets that
are derived from the empirical data using Monte Carlo
methods [51,52,55,56]. A variety of time series [48,64–
66] and network data sets [48,67–69] have been ana-
lyzed using surrogate models. The method is described
in the following paragraph.

First, a composite null hypotheses H0 is constructed,
which specifies a class of processes that may be suffi-
cient to reproduce the observed empirical data. Ideally,
H0 excludes certain features or correlations in the data,
e.g. relating to hypothetical underlying contagion pro-
cesses. Based on H0 and the empirical data, a surrogate
data set is then constructed that resembles the origi-
nal data, but lacks the hypothetical features excluded
by H0. Partially randomizing the empirical data set,
in a way that is consistent with the null hypothesis, is
one option of generating such data sets. This method,
referred to as constrained realizations [70], forces the
resulting data set to resemble the empirical data in
key statistical measures as directed by H0. Specific
correlations and data features may thus be selectively
removed, without committing to a specific model. An
ensemble of surrogate data sets is produced for each null
hypothesis to reduce statistical uncertainties. Finally, a
discriminating statistic is computed on both the empir-
ical data and the ensemble of surrogate models. If the
empirical value differs significantly from the ensemble

123



Eur. Phys. J. Spec. Top. (2022) 231:1609–1624 1613

of surrogate values, the null hypothesis is rejected. This
can be regarded as evidence that the preserved features
are not sufficient to explain the observations, pointing
to a more complex underlying mechanism. By carefully
choosing progressively more complex null hypotheses,
the nature of this underlying process can be investi-
gated.

Using the dose-response contagion approach, we
would like to compare the empirical DRF with those
computed on each surrogate model realization. We must
therefore find a measure that may quantify the differ-
ences of a large number of functional shapes. Compar-
ing with the simple bin-wise average of the surrogate
DRFs is not sufficient here, as individual data points
within a single surrogate model realization are not sta-
tistically independent from each other. This is because
of the constrained realizations method, which may pre-
serve measures such as the total number of infected
cities while randomizing other variables. In that case, a
data point being raised in one bin of the surrogate data
DRF (signifying a greater number of infections at this
level of infection pressure) will always result in a differ-
ent data point being lowered, making them statistically
correlated. Since bin-wise averaging over all surrogate
data sets would destroy such inter-bin correlations, we
want to instead compare the individual surrogate model
DRF’s functional forms with the empirical DRF. We
achieve this by performing weighted least-squares fits
to each individual surrogate sample’s DRF, and com-
paring the resulting fit parameter distribution to the
parameters of the fit obtained from empirical data.

A number of different DRF shapes are plausible [46],
and thus the fitted DRF shape in general has to be cho-
sen with care. However, in the studied data set, only
O(100) cities have adopted the BRT innovation. Infec-
tion doses in the network are thus generally low, and
any saturation effects are unlikely to have significant
effects. We therefore expect the empirically determined
DRF to be close to linear, and perform the fit using a
polynomial of degree one:

p(I) ≈ m · I + b . (3)

In the fits, each bin’s data point is weighted with the
total number of times the corresponding infection pres-
sure range was observed in data, displayed as the bin
height in Fig. 2A. The fit parameters m (DRF slope,
a measure of the sensitivity of cities’ reactions to the
dose I) and b (y-axis intersection point, a measure of
spontaneous background infection rate at received dose
I = 0) are chosen as the discriminating statistic for
comparing empirical and surrogate model DRFs.

The fit parameter distribution of the DRFs com-
puted on surrogate models can be visualized as a two-
dimensional histogram. We non-parametrically esti-
mate the underlying two-dimensional probability dis-
tribution P (m, b) using kernel density estimation, with
Gaussian kernels whose width is set by Silverman’s rule
[71]. We then calculate the value of the quantile func-
tion Q(memp, bemp) of this distribution, integrating the
probability density function over the parameter space

where it gives a lower probability than the one it gives
for the empirical fit parameters (memp, bemp):

QH0(memp, bemp)

=

∫∫ ∞

−∞
P (m, b)θ(memp, bemp) dm db

θ(memp, bemp) =

{
1 P (m, b) ≤ P (memp, bemp)
0 otherwise

(4)

This quantile represents a stochastically robust mea-
sure of the difference between surrogate DRF param-
eter distribution and the empirical DRF parameters.
It is used to accept or reject the null hypotheses that
the surrogate models are based on. We set the signifi-
cance threshold for the rejection of null hypotheses at
QH0 > 0.05.

3.2.2 Surrogate model production

In this analysis, surrogate models for four null hypothe-
ses are produced to probe the underlying mechanism of
the spreading behavior of BRTs and their relationship
with the global flight route network. A large ensem-
ble of 5000 (H1

0, H2
0) or 10,000 (H3

0, H4
0) realizations

is computed for each surrogate model, to reduce the
influence of statistical fluctuations. To determine the
statistical stability of the result, several of these ensem-
bles are produced for each null hypothesis. If the value
of the quantile function Q differs between the different
ensembles of the same null hypothesis, five ensembles
are produced, and their mean value for Q is calculated.
The statistical uncertainty is then estimated conserva-
tively as the largest difference between the mean value
for Q and any of the individual ensemble’s values. We
use the canonical naming convention put forward in [51]
to describe the surrogate models M associated with the
null hypotheses H0. Surrogate models are thus defined
by the quantities they conserve with respect to the orig-
inal empirical data. To make the surrogate models gen-
erally comparable to the empirical data, the number of
cities infected in the studied time period, the structure
of the network, and the identity of previously infected
cities are conserved in all models. The hierarchy of their
null hypotheses, conserving progressively more features
of the data, is described here.

1. H1
0 : M(wij , Ninf). The empirical DRF can be repro-

duced with a class of models that is only based on
the structure of the network wij . This most basic
hypothesis is designed to check if the observed DRF
is purely an artifact of the flight network structure.
To produce the surrogate data set, the identities
of infected cities are randomly re-assigned to other
cities in the network, and their respective infection
times are drawn from a uniform distribution.

2. H2
0 : M(wij , p(t̂)). The empirical DRF can be repro-

duced with a class of models that is only based on
the network structure, and the distribution of infec-
tion timestamps p(t̂). This hypothesis additionally
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investigates the influence of the infection year distri-
bution, which can be seen to have a strong upward
trend in Fig. 1D. The first step to producing the sur-
rogate model data for this null hypothesis is the ran-
domization of the identity of newly infected cities,
analogous to the previous case (H1

0). Here, however,
the points in time that the cities become infected
are drawn from a probability distribution that is
derived from the empirical data. The kernel den-
sity estimation-generated probability density func-
tion used for this is displayed in Appendix B.

3. H3
0 : M(wij , ni). The empirical DRF can be repro-

duced with a class of models that is only based on
the network structure, and the identity/position of
the infected cities ni in the network. This hypoth-
esis again builds on H1

0, conserving the network
structure, but additionally conserves the identity of
newly infected cities ni. Thus, the state of the sys-
tem at the last time step is exactly the same as in
the empirical data, with the same network, and the
same cities infected. Only the timing of the infections
is changed. This hypothesis thus tests whether the
position of infected cities in the network is sufficient
to explain the observed DRF. This represents a use-
ful test for homophilic effects: If the null hypothesis
cannot be rejected, then it is apparent that the tim-
ing of the infections is not a relevant factor for the
spreading process. Consequently, the probability of
becoming infected would not depend on other infec-
tions in the network neighborhood. It could instead
be dominated by, e.g., the membership in a certain
closely-connected clique of cities for which a BRT is
especially suitable. The surrogate model data is pro-
duced by re-drawing the infection year for each city
infected in the studied time period from a uniform
distribution.

4. H4
0 : M(wij , ni, p(t̂)). The empirical DRF can be

reproduced with a class of models that is only based
on the network structure, the network position of
the infected cities, and the distribution of infection
times. Building on H2

0 and H3
0, the overall distri-

bution of infection years is again conserved by this
null hypothesis. If any artifacts are introduced by
the uniform infection time distribution in H3

0, they
should be removed by requiring the infection years to
be distributed as they are in the empirical data. This
is again achieved by drawing them from a distribu-
tion derived from the empirical data through kernel
density estimation, as displayed in Appendix B.

4 Results

In this section, the results of the analysis are dis-
played and interpreted. As in Sect. 3, the empirical
dose response function (DRF) is treated first (Sect. 4.1),
followed by the results of the surrogate model study
(Sect. 4.2).

Fig. 2 Infection pressures on cities, and dose response
function (DRF). Distributions of A the infection pressures
Ii(t) experienced by all cities within the studied time inter-
val, and of B infection pressures experienced by those cities
that implemented a Bus Rapid Transit System (BRT) the
following year. An exponential function fitted to the data
is given for each (dashed blue) for ease of viewing; note
that the fit in A excludes the first bin. The infection pres-
sure experienced by a city is defined as the fraction of
weighted network connections to cities that have adopted
the BRT innovation. In C, the empirical dose response func-
tion rinf(I) is displayed, obtained by the bin-wise division of
B and A. The binomial error of each data point is estimated
using Agresti-Coull intervals. An alternatively scaled ver-
sion of this figure, with fully displayed errorbars in C and an
identical y-scale in A and B, can be found in Appendix C. A
clear upward trend is visible: cities whose network neighbor-
hood already featured more BRT implementations appear
to implement the BRT implementation more frequently

4.1 Empirical dose response function

The distribution of infection pressure (dose) values I,
experienced by any city at any time step, is displayed in
Fig. 2A. The lowest bin, containing cities that had no
or very light connections to cities with BRT, is strongly
elevated, followed by a brief section up to an infection
pressure of about 0.03 where data points are scattered
around an infection rate of 0.001. Above I = 0.03, a
roughly exponential decay in frequency from low to
high pressures is visible. “Successful” infection pres-
sures, that is, infection pressure experienced by those
cities that are about to adopt a Bus Rapid Transit
System (BRT), are displayed in Fig. 2B. The limited
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number of BRT adoptions becomes very apparent here;
the number of cities newly infected in the studied time
period, and thus the number of data points in Fig. 2B,
is 86. The downward trend can nevertheless be clearly
observed to be flatter than the one in Fig. 2A. Likewise,
the lowest bin is not nearly as emphasized. Dividing
the two histograms to obtain the empirical DRF thus
yields a graph with a marked upward trend, displayed in
Fig. 2C. The shape of the DRF appears roughly linear,
the linear fit yielding a slope of m = 0.052, and a y-axis
cutoff of b = 1.7 × 10−4. This confirms our expectation
and justifies the linear fits performed for the surrogate
data study (described in Sect.3.2). While the DRF val-
ues for many high infection pressures are zero, the very
large error bars show that a lack of data introduces
significant uncertainty in this regime of larger I.

The strong positive correlation between infection
pressure and infection rate points to contagion effects
at first glance: Cities whose network neighbors have
previously adopted BRTs to a large fraction, more fre-
quently also adopt BRTs. However, this correlation is
not necessarily causal. The correlation could be an arti-
fact of some other process, such as homophilic effects:
If BRTs were especially suited for a certain clique of
cities, which happens to be closely connected inter-
nally, similar correlations might arise. There may also
be the possibility of other, more basic attributes of the
data such as the network structure itself being suffi-
cient in explaining the observed DRF. To investigate
and exclude these confounding effects, surrogate model
tests are performed, as discussed in the following sec-
tion.

4.2 Surrogate models

In this section, the results of the surrogate model tests
are presented. For orientation, the short descriptions
of the surrogate models are repeated here; they are
described in more detail in Sect. 3.2.2 As mentioned
there, the number of cities infected in the studied time
period, the structure of the network, and the identity
of cities infected before the studied time interval are
conserved in all models.

First surrogate test. H1
0 : M(wij , Ninf). The empir-

ical DRF can be reproduced with a class of models that
is only based on the structure of the network, and the
number of newly infected cities Ninf. This represents
the most basic assumption testing whether the observed
DRF is merely a product of the structure of the network
structure itself, without regard for which or when cities
implement a BRT. This would imply that the spread-
ing of the BRT innovation proceeds completely inde-
pendent of the network, and thus also completely inde-
pendent of any other variables correlated with a city’s
position in the network. If, instead, a city’s network
connections are in some way relevant for its BRT adop-
tion probability, the positive correlation of the empiri-
cal DRF should not be found in this surrogate model.
As shown in Fig. 3A, the latter is evidently the case:
The average surrogate DRF (in blue) is nearly com-

pletely flat over the entire infection pressure range. The
fit parameter comparison in Fig. 3B thus only confirms
the obvious. The empirical DRF’s fit parameters are
strongly separated, with QH1

0
≈ 0. This result remains

the same for repeated re-creations of the ensemble. The
null hypothesis is thus rejected.

Second surrogate test. H2
0 : M(wij , p(t̂)). The

empirical DRF can be reproduced with a class of mod-
els that is only based on the network structure, and
the distribution of infection times p(t̂). The second
null hypothesis builds on the first one, and addition-
ally preserves the yearly BRT adoption rate; that is,
the distribution of the years in which new BRTs are
implemented. In view of the strong rejection of H1

0,
we expect a similar result for this surrogate model,
since the potential effect of the variable infection rate
appears negligible compared to the randomization of
which cities become infected. The result of this test is
displayed in Fig. 3C, D. As expected, the average sur-
rogate model DRF remains flat, and the distribution
of surrogate DRF fit parameters is strongly separated
from the empirical DRF fit parameters. A difference to
H1

0 is visible, however: the fit parameter distribution
(Fig. 3D) is shifted towards positive slopes, whereas it
was centered around m = 0 for H1

0 (Fig. 3B). Combined
with the correspondingly lower values for b, this reduces
the separation between the distribution and the empir-
ical for parameters. However, the value of the quantile
function remains QH2

0
≈ 0, which remains the same

for repeated re-creations of the ensemble. H2
0 is thus

rejected. The time distribution of the BRT implemen-
tations appears to hold significance for the DRF, but is
not nearly sufficient to explain the empirically observed
correlation.

Third surrogate test. H3
0 : M(wij , ni). The empiri-

cal DRF can be reproduced with a class of models that
is only based on the network structure, and the position
of the infected cities in the network. This hypothesis
again builds on H1

0, this time by conserving the the
identity of the infected nodes in the network, meaning
which of the cities implement BRT. The resulting sur-
rogate model is thus much more strongly constrained
to resemble the empirical data than for the previous
two hypotheses. The times at which these infections
occur are randomly drawn from a uniform distribution.
Using this null hypothesis, we can probe the system for
homophilic effects. If, for example, there is a closely con-
nected clique of cities that BRT is especially suited for,
or that share a BRT-favorable political environment,
then the infected cities’ position in the network would
be expected to be sufficient to reproduce the observed
DRF. In particular, the specific times of infection /
BRT adoption would be irrelevant, as the null hypoth-
esis posits.

The comparison of the empirical DRF with the
ensemble of surrogate model DRFs is displayed in
Fig. 4A, B. Here, the importance of not relying on
the bin-wise average of the surrogate DRF ensem-
ble becomes apparent: while the difference between
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Fig. 3 Surrogate data sets with randomly reassigned
infected cities. A, C Comparison of the empirical dose
response function (DRF, black circles) and the bin-wise
average of the DRFs of 5000 surrogate model runs (blue),
for the surrogate models where the identity of cities imple-
menting BRT (“infected cities”) are randomly reassigned
to cities in the network. In A (H1

0), the infection times
(BRT implementation timestamps) of the infected cities are
randomized uniformly, while in C (H2

0), the distribution of
infection times is conserved. The error bars of the empirical
DRF are calculated as described in Sect. 3.1. Weighted lin-
ear least-squares fits are computed for each surrogate model

realization; their fit parameters are displayed in B and D.
The weighted linear least-squares fit to the empirical data
is displayed as a red line in A and C, whose parameters
are marked as a red cross in B and D, respectively. As
opposed to the empirical DRFs, the average surrogate DRFs
appear flat throughout most of the infection pressure range
(A, C) and the corresponding fit parameter distributions
differ strongly from the empirical fit parameters. The null
hypotheses H1

0 and H2
0 can thus be rejected. These figures

show that the network position of infected cities is relevant
for the spreading of the innovation, and cannot be ignored
in a model describing this process

empirical and surrogate data is not readily apparent
in Fig. 4A, it can more clearly be discerned in B.
While the value of the quantile function QH3

0
= 0.0296

comes closer to the chosen significance threshold than
in the previous two tests, the null hypothesis is nonethe-
less rejected. This value for QH3

0
remains the same

for repeated re-creations of the ensemble. Evidently,
this surrogate model can reproduce the empirical DRF
much better than the two previous ones. Which nodes
become infected is thus apparently correlated with their
network position, and homophilic effects may be at play.
However, they do not appear sufficient on their own to
explain the observed empirical DRF.

We observe that the individual values of memp, and
to a lesser extent bemp, are not uncommon in the fit
parameter distribution of the surrogate DRFs. Only
in the two-dimensional graph does it become appar-
ent that their combination (memp, bemp) is very rarely
observed. It appears that the empirical DRF’s data
point at I ≈ 0, being very close to rinf(I) = 0 and
having very small error bars (Fig. 4A), more strongly
constrains bemp to small values than is the case for the
surrogate model data. We interpret this as the observa-
tion that, in the absence of an infected, or “seed” city
in a city’s neighborhood, the infection rate is inhibited.
Thus, in the empirical data, cities are unlikely to adopt
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Fig. 4 Surrogate data sets with identities of infected cities
conserved. A, C Comparison of the empirical dose response
function (DRF, black circles) and the bin-wise average of
the DRFs of 10 000 surrogate model runs (blue), for the
surrogate models where the identity of cities implementing
BRT (“infected cities”) are conserved. In A (H3

0), the infec-
tion times of the infected cities are randomly drawn from a
uniform distribution covering the investigated time interval.
In C, (H4

0) the infection times are drawn from a distribution
derived from a kernel density estimation of the distribution
found in empirical data. The error bars of the empirical
DRF are calculated as described in Sect. 3.1. Weighted lin-
ear least-squares fits are computed for each surrogate model
realization; their fit parameters are displayed in B (H3

0) and
D (H4

0). The fit to the empirical data is displayed as a red
line in A and C, whose parameters are marked as a red

cross in B and D. In both A and C, the average surro-
gate DRFs appear to match the empirical DRF. However,
individual data points are correlated within each surrogate
model realization’s DRF. The fit parameter comparison in B
and D takes this into account, revealing a significant differ-
ence between the distribution of surrogate model fit param-
eters and those of the empirical DRF. The null hypothe-
ses H3

0 and H4
0 can thus be rejected as well. These figures

demonstrate that the timing of cities’ innovation adoptions
relative to one another is not random, and important for the
innovation spreading process. An explanation solely based
on homophilic effects, implying a spreading process that is
only based on preferential attachment between cities that
are likely to adopt BRT, is thus not sufficient to explain the
data

BRT if none of their neighbors have done so yet, sug-
gesting a contagion process to be possibly at play.

The analysis of H2
0 demonstrated that the non-

constant rate of infections may play a role for the under-
lying process. Building on H3

0, but conserving this dis-
tribution as well, thus remains as the final test that
may distinguish between homophily and potential con-
tagion effects. This most restrictive surrogate analysis

performed in this study is described in the following
paragraph.

Fourth surrogate test. H4
0 : M(wij , ni, p(t̂)). The

empirical DRF can be reproduced by a class of models
that is only based on the network structure, the net-
work position of the infected cities, and the distribution
of infection times. Combining null hypotheses H2

0 and
H3

0, this hypothesis is designed as the most stringent
test for homophily. The infection timestamps of newly
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infected cities are, again, sampled from a probability
distribution derived from empirical data via kernel den-
sity estimation.

In this test, the value for the quantile function QH4
0

fluctuated slightly for subsequent re-creations of the
ensemble. The ensemble was thus produced five times,
and the mean value for QH4

0
is given in the following.

The uncertainty interval is estimated conservatively as
the largest difference between the mean and any of the
constituent values. We explain the greater fluctuation
with the reduction of the randomization phase-space,
by the additional constrains placed on the surrogate
data. The result most closely matching the mean value
for QH4

0
is displayed in Fig. 4C, D.

Similar to H3
0, no significant difference between the

empirical and average surrogate DRFs can be observed
(Fig. 4C). However, the distribution of surrogate DRF
fit parameters is clearly removed from the empirical
DRF’s fit parameter. The additional conservation of the
infection time distribution has shifted the distribution
towards higher m and lower b, similar to the difference
between H1

0 and H2
0. With a quantile function value of

QH4
0

= 0.0138 ± 0.0037, null hypothesis H4
0 is actually

somewhat more strongly rejected than H3
0. The uncer-

tainty is too small to have an effect on the hypothesis
rejection decision.

Similarly to H3
0, the individual values for memp and

bemp are common in the distribution of surrogate DRF
fit parameters, and steeper DRF slopes m > memp are
actually more likely to occur. However, the combined
analysis of (memp, bemp) again shows the significant dif-
ference between the empirical and surrogate data. This
demonstrates the strength of the method in distinguish-
ing differences between empirical and surrogate data,
beyond what would have been visually perceivable in
Fig. 4C.

Both contagion and homophilic mechanisms are
expected to create a strong correlation between the
nodes’ network position and their probability to become
infected. However, only in the case of contagion dynam-
ics does the relative timing of infection events matter:
For a kind of “infection wave” traveling from node to
node across the network, the order of infections is not
random. Thus, with the rejection of both H3

0 and H4
0,

we find homophilic effects to be an insufficient expla-
nation of the data. We interpret this as evidence point-
ing towards underlying contagion mechanisms control-
ling the spreading behavior of BRT innovations between
cities, where the linkages provided by the global flight
route network appear to be an adequate proxy (Table
1).

5 Discussion and conclusion

Cities may learn from each other which policies and
technologies to adopt. As part of the human response
to anthropogenic environmental changes, this repre-
sents an Earth System process that has attracted lit-

Table 1 Values of the quantile function Q(memp, bemp), as
defined in Eq. 4 for the four investigated null hypotheses. All
four are rejected, though much more narrowly for H3

0 and
H4

0. Only QH4
0

showed any significant fluctuation between

identically produced ensembles. For details on the kernel
density estimations which form the basis for the calculation
of Q, see Appendix D

Null hypothesis Surrogate model QHi
0

H1
0 M(wij , Ninf) 0.0000 ± 0.0000

H2
0 M(wij , p(t̂)) 0.0000 ± 0.0000

H3
0 M(wij , ni) 0.0296 ± 0.0000

H4
0 M(wij , ni, p(t̂)) 0.0138 ± 0.0037

tle research attention at the macroscopic scale so far.
In this contribution, we proposed a method for inves-
tigating the spreading of urban innovations related
to sustainability on the global network of cities. The
method is made up of two steps: first, we estimate dose-
response functions (DRFs) from empirical data on the
network proxy and spreading process. Second, we per-
form hypothesis tests on surrogate data models gen-
erated from the empirical data, to probe and exclude
specific effects that may confound the detection of con-
tagion effects.

This method was demonstrated on a pair of exam-
ple data sets: We correlate the spreading of Bus Rapid
Transit Systems, a public transport innovation, with
the global network of flight routes as a proxy for inter-
city learning connections. We find significant evidence
towards contagion processes in this data, which cannot
be sufficiently explained by homophilic effects such as
a shared environment or clustering. Cities whose neigh-
borhood is free of BRT implementations appear espe-
cially unlikely to adopt a BRT themselves. This under-
lines the fact that cities often base their policy decisions
on each others’ experiences.

Our results indicate that it is possible to find prox-
ies for the global city learning network. This forms the
basis for future work, for example on comparing which
inter-city linkages offer the largest predictive power for
the spreading of innovations, and what kind of (com-
plex) contagion processes are at work. The investiga-
tion of these processes has the potential to improve our
understanding of the human components of the Earth
System. Identifying “gaps” in this network, such as
cluster boundaries that innovations rarely cross, may
even open the doors for targeted interventions in the
future. Such actions could ensure that vital innovations
are adopted quickly around the globe, and reduce the
time lag between the inception of a good idea and its
environmental impact on a global scale. Even social
tipping processes might be facilitated, with innovation
uptake starting locally and then spreading rapidly via
self-enforcing positive feedbacks. Similar to this work,
social tipping processes are inherently based on net-
work processes [72], which include changes of network
nodes internally, or of the network structure itself. Sen-
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sitive interventions points, as mentioned above, have
been linked to social tipping processes relevant for tran-
sitions in and around urban systems [73], decarboniza-
tion [39], and other positive tipping points [38,74].

Our analysis has a range of limitations, which we
would like to address here. Firstly, those relating to the
datasets used to illustrate the method. We base the net-
work component of our analysis on a publicly available
dataset of scheduled flight routes, which provides only a
static snapshot. Temporally resolved data, especially on
actual origin-to-destination passenger flows instead of
scheduled airport-to-airport routes, could be expected
to contain a clearer signal. Using a different weight-
ing algorithm [75] to create a different network using
a rescaled network distance from the same underlying
data could possibly also result in a better predictor.
On the matter of the spreading innovation, the low
(O(100)) number of total BRT adoptions likely signifi-
cantly reduces our ability to discern actual trends from
noise and fluctuations in the data. On the methodolog-
ical side, our analysis shares the drawbacks of all sta-
tistical methods, in that hypotheses about the data can
only be rejected, and a confirmative result is impossible.
The proof-by-contradiction nature of our method can
thus only indirectly infer contagion processes. Further-
more, DRFs are a highly aggregate statistical measure,
which may not be specific enough for accurately charac-
terizing subtle spreading processes under the data lim-
itations. A systematic analysis of the statistical power
of the method under varying conditions of noise, sys-
tem size, different underlying spreading processes, and
other parameters would be desirable to more accurately
interpret the results. Such an analysis, which could
be achieved using large ensembles of simulations, lies
beyond the scope of this contribution.

Furthermore, there are a number of potential exter-
nal factors that may drive or facilitate the innovation’s
spreading, confounding the results extracted from the
example data sets. Processes such as increasing urban-
ization (growing populations and population densi-
ties, demographic changes), large-scale economic shifts
(arrival of new industry sectors, economic and cul-
tural effects of globalization), or changes in the political
landscape (regulatory changes on national and super-
national level, e.g. in the EU), and countless others
surely play a role in cities’ individual decisions to adopt
Bus Rapid Transit Systems. These may occur simul-
taneously for entire regions, and, for example, greatly
raise the “susceptibility” of affected cities to imple-
ment the innovation. Such factors could possibly either
mimic, or drown out, contagion processes in the data.
Unfortunately, quantifying these factors, and control-
ling for them in a global data set, poses great method-
ological and data availability challenges, and is beyond
the scope of this study. However, it should be noted
that even under conditions of greater “susceptibility,”
the decision to implement a particular public transport
innovation (as opposed to its competitors) may still
depend on the experience of other, closely connected
cities. Analyzing the spreading of a set of innovations
with very different characteristics, spanning both tech-

nological and governance innovations and addressed at
different kinds of urban challenges, may allow future
research to mitigate the masking effects of these drivers
without requiring a detailed understanding of each fac-
tor.

While our method can exclude specific correlations
and causal connections in the data, it cannot provide
a detailed process-based understanding of urban inno-
vation transmission. In future work, hypotheses of con-
crete mechanisms should be tested, for example using
combinations of Monte Carlo and maximum likelihood
methods. A similarly promising approach would be to
use higher-order statistics, such as multi-node correla-
tions for identifying longer contagion chains and net-
work motifs related to spreading dynamics.

The applications of our method are limited by
data availability. Comprehensive databases on inter-
city linkages are rare, especially on the global scale.
While abundant data often exists on the national and
inter-national level, homogeneous city-scale data that
covers more than just the largest “world cities” [12,76]
is much harder to find. If cities’ role as active agents in
the Anthropocene is to be taken seriously, then the col-
lection of high-quality data on this scale is paramount.
The comparative analysis of multiple spreading pro-
cesses, correlated with a number of different inter-city
network proxies, promises valuable insights on the real-
world mechanisms underlying the transfer of urban
innovations.

Our proposed method is generic, and can be applied
to probe for contagion effects in any combination of city
network and spreading innovation. It can also easily be
generalized to temporally dynamic networks. Further-
more, it may be useful for the analysis of other complex
systems wherever contagion processes are hypothesized
in low-rate spreading phenomena on densely connected
networks. Potential applications include the spreading
of opinions, social norms and behaviors among individ-
uals and more abstract agents, wherever such data sets
are available. As highlighted, this proposes a potential
connection to research on social tipping processes [3],
which are one of the most promising pathways for mit-
igating dangerous anthropogenic global warming and
the long-term crossing of other planetary boundaries.
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A City connection weight calculation

The connection weights of the cities, interpretable as
abstract proximity measures, are derived from the flight
route database [57] and the geographic distance between air-
ports and city centers [57,59]. The network is constructed
as follows:

1. All cities with a population above 60 000 are considered
as nodes in the network.

2. All airports within 60 km of a city’s center are considered
to belong to this city. Cities sharing airports and vice
versa are possible.

Fig. 5 KDE-derived time-dependent infection probability.
Displayed are the yearly Bus Rapid Transit System (BRT)
adoption rate (blue), and the kernel density estimation-
derived approximation of the underlying probability distri-
bution (orange). This distribution is used in the surrogate
data production of H2

0 and H4
0

Fig. 6 Time-dependent BRT implementation rate for the
countries with the most adoptions. Superimposed with the
global BRT adoption rate (blue outline), the yearly BRT
adoptions for the six countries that have the most cities
with BRT adoptions are displayed according to the color
key in the figure

3. Two cities are connected to each other if one can be
reached from the other with ≤ 2 flights. The weight wij of
this connection functionally depends on the multiplicity
of the flight routes ri→j and rj→i that directly connect i
and j (if any), as well as the number and multiplicity of
viable 2-flight paths between the cities. The functional
dependence is defined here:

wij = fi→j + fj→i (5)

fi→j = ri→j +

∑Mi
k=1 ri→krk→j∑Mk

l=1 rk→l

(6)

Here,
∑Mi

k=1 refers to the sum over all Mi cities that can
be reached with a single flight from city i. Thus, the
contribution to wij of any 2-flight path i → k → j is
the product of the route multiplicities ri→k and rk→j ,
divided by the out-degree of node k.
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Fig. 7 Alternative version of Fig.2: infection pressures on
cities, and dose response function (DRF). This figure dis-
plays the same contents as Fig. 2, but with rescaled y-axis
in all three subfigures. A and B now have the same y-scale,
facilitating a comparison of their downward trend. In C,
the displayed y-axis is increased, so that all errorbars are
entirely visible

Potential connections using more than two flights are not
considered, as this would significantly increase the computa-
tion time and network density, while not adding significantly
weighted connections. Note that the scheduled flights them-
selves are directed; i → k → j represents a valid connection
between i and j, while i → k ← j does not. However, the
resulting city connection weight wij = wji is undirected, or
symmetric, by construction.

B Temporal and spatial aspects of the
spreading of Bus Rapid Transit System

In this appendix, the temporal and spatial characteristics
of the Bus Rapid Transit innovation are explored in more
detail. Fig. 5 shows the global Bus Rapid Transit System
(BRT) adoption rate, overlaid with a kernel density estimate
of the underlying probability distribution. This probability
distribution is used in the surrogate data production for null
hypotheses H2

0 and H4
0. It is only calculated on the studied

year range of 2000 to 2016.

In Fig. 6, the BRT spreading in the six countries with
the most implementations is shown: China (18 adoptions),
Brazil (13), USA (9), Colombia (9), Mexico (9) and France
(9). All other countries have 4 adoptions or less. It can be
observed that, while Brazil dominates the pre 2000-period
and China does the same for the time after that year, no
single country can be identified as the sole main driver of
the spreading dynamics.

C Alternative version of the empirical dose
response function figure

In Fig. 7, an alternative version of Fig. 2 is displayed. In
this version, the y-axes of subfigures A and B cover the same
range. It is thus much easier to see that the downward trend
of the distribution of all infection pressures Ii(t) (Fig. 7A) is
stronger than the one in Fig. 7B, which displays the infection
pressures experienced by those cities that implemented a
Bus Rapid Transit System (BRT) the following year. This
makes the upward trend of the DRF, shown in Fig. 2C and
calculated by dividing the histograms in B and A, more
intuitive.

Furthermore, Fig. 7C is shown with an increased y-range
compared to Fig. 2C. The data points at high infection pres-
sure and zero infection rate can be seen to have very large
error bars, demonstrating their small contribution to the
weighted least-squares fit.

D Quantile function calculation for fit
parameter distributions

The underlying probability distributions from the fit param-
eter distributions displayed in Figs. 3 and 4, are estimated
using kernel density estimations. Gaussian kernels were
used, and their bandwidths were determined using Silver-
man’s rule [71]. In Fig. 8, the estimated probability distri-
butions are displayed. The fit parameters of the empirical
DRF is shown as a red cross. The value of the quantile func-
tion Q, measuring the likelihood of the empirical data point
being produced by the distribution, is noted in the figures’
legends.
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Fig. 8 Parameter probability distributions of the linear fits on every surrogate data realization. The probability distribu-
tions are determined via kernel density estimation, and correspond to the surrogate ensembles for A H1

0, B H2
0, C H3

0 and
D H4

0
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