
Eur. Phys. J. Spec. Top. (2022) 231:545–555
https://doi.org/10.1140/epjs/s11734-021-00421-5

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Mathematical modeling and analytical examination of
peristaltic transport in flow of Rabinowitsch fluid with
Darcy’s law: two-dimensional curved plane geometry
Wei-Mao Qian1, Arshad Riaz2, Katta Ramesh3, Sami Ullah Khan4, M. Ijaz Khan5,a, Ronnason Chinram6, and
M. Kbiri Alaoui7

1 School of Continuing Equation, Huzhou Vocational & Technical College, Huzhou 313000, P. R. China
2 Department of Mathematics, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
3 Department of Mathematics, Symbiosis Institute of Technology, Symbiosis International (Deemed University),

Pune 412115, India
4 Department of Mathematics, COMSATS University Islamabad, Sahiwal 57000, Pakistan
5 Department of Mathematics and Statistics, Riphah International University I-14, Islamabad 44000, Pakistan
6 Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
7 Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia

Received 18 March 2021 / Accepted 16 December 2021 / Published online 4 January 2022
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of
Springer Nature 2022

Abstract In this paper, the authors presented the effects of space voids and electrical conductivity on
the flow of a pseudoplastic (Rabinowitsch) fluid analyzed in a curved two-dimensional plane geometry.
The walls of the channel are considered to develop the peristaltic waves along its length. The problem is
manipulated under the observations of long wavelength and low Reynolds number approximations. The
motion is assumed to be steady by transforming it in a wave frame traveling with the speed of wave.
Analytical hybrid perturbation techniques have been incorporated to handle the complicated coupled
differential equations. It is found that the results are well in agreement with the existing literature as a
special case, evocating the validity of the study. Expressions of velocity, pressure gradient, and stream
function have been invoked graphically. It is concluded from the results that porous medium and magnetic
field suggest opposite variations of velocity and trapping circulating contours are stretching with magnetic
field and contracting with increasing voids.

1 Introduction

The biological fluid flows can be generated by continual
wavelike rhythmic structures of biological vessels like
ureter, intestines, stomach, esophagus, and blood ves-
sels (capillaries, veins, arteries, etc.). These rhythmic
structures of smooth muscles are known as the peri-
staltic phenomenon. This phenomenon may be used
in various applications in the physiological systems.
For instance, transport of ovum and spermatozoa, fluid
motion in uterine, chyme flow in the gastrointestinal
tract, motion of food in the esophagus, and motion
of urine. These are internal mechanisms of peristaltic
phenomenon. Nowadays, external mechanisms of peri-
stalsis exist such as motion of earthworms, finger and
roller pumps operate on this mechanism, and micro and
nanorobots also use the peristaltic mechanism. Utiliz-
ing these concepts, many researchers have studied many
problems with peristalsis in the symmetric and asym-
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metric channels, which seems unrealistic, because most
of the physiological and industrial systems are in curved
structures. The concept of curvature in the peristal-
sis is investigated in only few studies. Riaz et al. [1]
have investigated the electromagnetism and permeabil-
ity measures in Jeffrey fluid through eccentric annuli
executing peristaltic porous confines. They have pro-
duced the results that pumping rate is enhanced by
magnetic field but reduced by porosity factors. Noreen
[2] studied the effects of induced MHD on the peri-
staltic propulsion of viscous fluid in a curved configura-
tion. In this study, the author has proved the symmetry
of velocity profiles disturbs in the presence of curva-
ture effects. Riaz et al. [3] achieved exact solutions for
multiphase nonlinear fluid expressing peristaltic pump-
ing characteristics in an annulus comprising complaint
walls and magnetism is also taken into consideration. It
is revealed that imposed magnetic field suppresses the
fluid and particle motion. Zeeshan et al. [4] have used
curved configuration to study the viscous particulate-
fluid suspension in a peristaltic transport. Their obser-
vation clears that the concentration of fluid rises with
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the curvature parameter. Srinivas and Kothandapani
[5] have published the porosity and magnetic effects on
thermal and mass transfer analysis of wave type trans-
port including compliant boundaries. Maraj et al. [6]
have given the homotopy perturbation solutions for the
motion of Williamson fluid under the curved peristal-
sis. In this study, it is noticed that mixed behavior
is noticed for the velocity with the curvature param-
eter. Akbar and Butt [7] have described the peristaltic
nanofluid propulsion in through curved walls, and stud-
ied the pressure gradient and velocity variations under
the influence of curvature parameter. Some more rele-
vant cases may be observed through various references
(see [8–10]) and the references therein.

The study of magnetic field in fluid flow systems
attracted many researchers due to its wide range of
applications in industry and engineering. This study
represents the interaction between the fluid flow and
applied magnetic field. The applications include tar-
geted drug delivery, imaging contrast enhancement,
nanoparticle manipulation, and laser beam scanning.
In view of many applications of magnetohyrodynam-
ics, many researchers have started their research in
fluid flows with magnetic field effects. Stiller et al. [11]
have presented a review on the recent numerical and
experimental investigations of the flow driven by rotat-
ing and traveling magnetic fields. Sucharitha et al. [12]
have discussed the effect of MHD on the motion of Jef-
frey fluid driven by tapered peristalsis. Meenakumari
et al. [13] have used a numerical technique named RK.
Fehlberg-based shooting technique to discuss the effects
of inclined magnetic field on the unsteady motion of
Williamson nanofluid over a stretching surface. Sam-
rat et al. [14] have investigated the MHD flow over the
paraboloid of revolution. Trivedi and Ansari [15] have
performed the analytical study on the Casson nanofluid
flow past a linear stretching sheet with inclined mag-
netic field. Nowadays, the field of biomagnetic fluid
dynamics is emerging area of interest in living crea-
tures. In general, biological cells and molecules are con-
sidered as biomagnetic materials. The use of magnetic
field in the biomedicine can be captured in many ways,
such as passage sealers, magnetic hyperthermia, drug
delivery, imaging contrast enhancement, and nanopar-
ticle manipulations in biomedical engineering. It is also
observed from many studies that the flow patterns
rapidly change under the applied magnetic field [16–18].
Narla et al. [19] have provided the detailed examina-
tion on the flow variables such as streamlines, pressure
rise, and pressure gradient for the flow of an MHD vis-
coelastic fluid in a peristaltic curved configuration. Ali
et al. [20] applied Generalized Differential Quadrature
Method (GDQM) to suggest a numerical simulation of
peristaltic Flow with changing electrical conductivity
and Joule dissipation effects along with MHD. Aman-
ullah et al. [21] have proposed the numerical magnetic
field features for Carreau fluid flow numerically through
an isothermal sphere.

Porous medium has many applications in engineer-
ing and industry, and it has also many applications
in biomedicine and bioengineering. Generally, a porous

medium is material with some pores. These pores
appear in many biological systems, such as central
nervous system, brain aneurysm, drug delivery, tis-
sue replacement, and computational biology. There is
a vast study present in literature in the presence of
porous medium (for instance, [22–24]), but very few
cases have been discussed the effect of porous medium
under the peristaltic curved boundaries. Hayat et al.
[25] have considered Ellis fluid to investigate the flow
in curved peristaltic configuration under the effects of
porous medium. The key observation of this study is
the velocity enhances with the Darcy number. Moham-
madein and Abu-Nab [26] have discussed the motion
of Newtonian fluid in a curved geometry under the
peristalsis and porous medium with the vapour bub-
ble. From this study, the velocity deduction is observed
with permeability. Vajravelu et al. [27] have provided
the pumping type passage of Phan–Thien–Tanner fluid
by taking porous medium. More literature on porous
medium can be found in [28–30].

From the last few decades, the investigation of non-
Newtonian materials has received much attention to the
investigators in fluid dynamics. Rabinowitsch fluid is
one of the non-Newtonian fluids (class of shear thinning
liquids). This fluid model perfectly describes the diverse
fluid models such as Newtonian, Dilatant, and pseudo-
plastic fluid in the limiting cases of the Rabinowitsch
model. Some of the examples of Rabinowitsch model
are blood, whipped cream, and ketchup. Based on these
facts in mind, many investigators have focused in the
direction of Rabinowitsch fluid flow model. Akbar and
Butt [31] have discussed the motion of a Rabinowitsch
fluid in the presence of metachronal wave of cilia with
the exact solutions. Vaidya et al. [32] have provided
the semi-analytical solutions with the help of perturba-
tion technique for the flow of Rabinowitsch fluid under
the influence of peristalsis. In this study, the authors
have provided the results for the limiting cases such
as Newtonian, pseudoplastic, dilatant, and fluid mod-
els. In another study, Vaidya et al. [33] have considered
the same fluid model with the variable liquid and wall
properties. Sadaf and Nadeem [34] have discussed the
transport of a Rabinowitsch fluid under the effects of
peristalsis and porous medium. Vaidya et al. [35] have
focused to study the non-uniform effects of peristalsis
on the motion of a Rabinowitsch liquid in the presence
of wall properties. Maraj and Nadeem [36] have studied
the propulsion of Rabinowitsch liquid under the con-
siderations of peristalsis and curved configuration. Few
more studies can be seen in the direction of Rabinow-
itsch liquid flow model in the references [37–40] and the
references therein.

To the best of author’s information, no study releases
the effects of magnetic field and porous medium effects
on rabinowitsch model in a curved channel with a
hybrid analytical technique. This study composes the
peristaltic flow of Rabinowitsch model executing peri-
staltic waves through a curved porous channel magne-
tized by applied normal magnetic field. This study may
be helpful in electrical conductions of many industrial
for dilatant and pseudoplastic fluids and clinical issues
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Fig. 1 Physical structure of the problem

for blood flows. The mathematical modeling has been
completed by introducing the concept of low Reynolds
number and long waves traveling axially. The equa-
tions of motion have been explored using wave frame to
evaluate the steady incompressible flow. The obtained
coupled partial differential equations are handled by
two combined analytical perturbation techniques. The
expressions of velocity, pressure gradient, and trapping
have been dealt through graphical aspect under the
variation of physically appearing parameters.

2 Mathematical modeling

Assume a curved channel whose width is 2a which is
loaded with Rabinowitsch liquid. The radius and center
of curvature of the circle, where the channel is wound,
are represented by R∗ and O, separately. There is a
rearrange graph of the stream geometry in Fig. 1. We
utilize a curvilinear arrange framework (N,S,Z) to
inspect the stream in which N is coordinated toward
the outspread course, S is toward the flow line, and
vertical way Z is the representative.

The Cartesian frame of reference is set at the origin
O . It is related with curvilinear facilitate framework as
per these changes

X ′ =
(
R∗ + N

)
cos

(
S

R∗

)

Y ′ =
(
R∗ + N

)
sin

(
S

R∗

)

⎫
⎬

⎭
. (1)

The upper wall equation in (X, Y ) system is

X ′2 + Y ′2 =
(

(R∗ + a)

+b sin
(

2π

λ

(
R∗ tan−1

(
Y ′

X ′

)
− ct

)))2

.

(2)

Putting Eq. (1) in Eq. (2), we arrive at

R = a + b cos
(

2π

λ
(S − ct)

)
. (3)

Supplanting the left-hand side of Eq. (3) by H1, the
condition becomes

H1(S, t) = a + b cos
(

2π

λ
(S − ct)

)
, (upper wall),

(4)

where λ, b, and t are the wavelength, amplitude, and
the time, separately. In the similar manner, the lower
wall equation is

H2(S, t) = −a − b cos
(

2π

λ
(S − ct)

)
, (Lower wall).

(5)

Additionally, the magnetic field B = (0, B0) is applied
orthogonally to the flow direction (radial) and the sur-
faces of geometry are assumed to be porous with voids
in the layers. The MHD is playing a role of body force
on the motion of the fluid whose term J×B is inserted
in the momentum equation through Maxwell’s equa-
tions and the factor of porosity is also included through
Darcy’s law. The governing equations in component
form for the present study have been described below
[31–36]

∂

∂N

((
N + R∗) V

)
+ R∗ ∂U

∂S
= 0, (6)

ρ

[
∂V

∂t
+ V

∂V

∂N
+

R∗U
N + R∗

∂V

∂S
− U2

N + R∗

]

= − ∂P

∂N
+

)

1
N + R∗

∂

∂N

((
N + R∗) τNN

)
+

R∗

N + R∗
∂

∂S
(τNS)

− τSS

N + R∗ − μ

k1
V , (7)

ρf

[
∂U

∂t
+ V

∂V

∂N
+

R∗U
N + R∗

∂U

∂S
− UV

N + R∗

]

= −
(

R∗

N + R∗

)
∂P

∂S
+

)

1
(N + R∗)2

∂

∂N

((
N + R∗)2 τNS

)

+
R∗

N + R∗
∂

∂S
(τSS) − σB2

oU

(N + R∗)2
− μ

k1
U, (8)

where σ and k1 are identifying the current density and
porosity measures, correspondingly. In the wave frame
[36], Eqs. (7) and (8) hold the subsequent form

ρ

[
−c

∂v

∂s
+ v

∂v

∂n
+

R∗(u + c)

n + R∗
∂v

∂s
− (u + c)2

n + R∗

]
= − ∂p

∂n
+

)

1

n + R∗
∂

∂n
((n + R∗) τnn) +

R∗

n + R∗
∂τns

∂s

− τss

n + R∗ − μ

k1
v, (9)
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ρf

[
−c

∂u

∂s
+ v

∂u

∂n
+

R∗(u + c)

n + R∗
∂u

∂s
+

(u + c)v

n + R∗

]

=

(
R∗

n + R∗

)
∂p

∂s
+

)

1

(n + R∗)2
∂

∂n
{(n + R∗) τns}+

R∗

n + R∗
∂τss

∂s

−σB2
◦ (u + c)

(n + R∗)2
− μ

k1
(u + c)

)
. (10)

Now, we make the above equations non-dimensional by
incorporating the following dimensionless quantities:

s =
2π

λ
s, n =

n

a
, u =

u

c
, v =

v

c
,

k =
R∗

a
, τ =

a

μc
τ , Re =

ρca

μ
, ε =

b

a
,

δ =
2πa

λ
, p =

2πa2

λμc
p, β =

αμ2c2

a2
,

h1 =
H1

a
, h2 =

H2

a
, H2 =

σB2
0a

2

μ
, Da =

k1
a2

.

After imposing above transformations, we found the
dimensionless form of Eqs. (9) and (10) which can be
observed

δRe

[
−δ

∂v

∂s
+ v

∂v

∂n
+ δ

k(u + 1)
n + k

∂v

∂s
− (u + 1)2

n + k

]

= − ∂p

∂n
+ δ

(
1

n + k

∂

∂n
((n + k) τnn)

+δ
k

n + k

∂τns

∂s
− τss

n + k
− v

Da

)
, (11)

Re

[
−δ

∂u

∂s
+ v

∂u

∂n
+ δ

k(u + 1)
n + k

∂u

∂s
− (u + 1)v

n + k

]

= −
(

k

n + k

)
∂p

∂s
+

)

1
(n + k)2

∂

∂n

(
(n + k)2 τns

))
+ δ

k

n + k

∂τss

∂s

− H2

(n + k)2
(u + 1) − (u + 1)

Da
. (12)

At this stage, we assume the lubrication approach due
to waves having small wave number δ → 0 and negli-
gible effects of turbulence, i.e., Re → 0, and we finally
receive

∂p

∂n
= 0 (13)

−
(

k

n + k

)
∂p

∂s
+

1
(n + k)2

∂

∂n

(
(n + k)2 τns

)

− H2

(n + k)2
(u + 1) − (u + 1)

Da
= 0, (14)

where the stress component τns for Rabinowitsch model
is calculated as [36]

τns + βτ3
ns =

∂u

∂n
− u + 1

n + k
(15)

along with the set of no-slip boundary conditions
defined as [33–36]

u = −1 at n = ±h(s) = ± [1 + ε cos (s)] . (16)

3 Solution procedure

The above achieved relations are coupled non-
homogeneous differential equations with variable coef-
ficients. Such complicated equations cannot be tack-
led by some exact mathematical technique. Hence, we
have utilized the combined techniques of perturbation
method and HPM [41] to have the series solution which
is detailed as below. Let we suggest the following series
for τns and u by assuming β a small parameter:

τns = τ0ns + βτ1ns + . . . (17)
u = u0 + βu1 + . . . (18)

Using above series in (14) and (15) and equating the
terms of zeroth and first exponents of β, we achieve the
following two systems.
Coefficients of β0 :

−
(

k

n + k

)
∂p

∂s
+

1
(n + k)2

∂

∂n

(
(n + k)2 τ0ns

)

− H2

(n + k)2
(u0 + 1) − (u0 + 1)

Da
= 0, (19)

τ0ns =
∂u0

∂n
− (u0 + 1)

n + k
. (20)

Putting Eq. (20) in Eq. (19), we approach

−
(

k

n + k

)
∂p

∂s
+

1
(n + k)2

∂

∂n
[
(n + k)2

(
∂u0

∂n
− (u0 + 1)

n + k

)]

− H2

(n + k)2
(u0 + 1) − (u0 + 1)

Da
= 0.

)
(21)

with boundary conditions

u0 = −1 at n = ±h(s) = ± [1 + ε cos (s)] . (22)

Coefficients of β :

1
(n + k)2

∂

∂n

(
(n + k)2 τ1ns

)
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− H2

(n + k)2
u1 − u1

Da
= 0, (23)

τ1ns + τ3
0ns =

∂u1

∂n
− u1

n + k
(24)

or

τ1ns =
∂u1

∂n
− u1

n + k
−

[(
∂u0

∂n
− (u0 + 1)

n + k

)]3

.

(25)

Putting Eq. (25) in Eq. (23)

1
(n + k)2

∂

∂n

[
(n + k)2

(
∂u1

∂n
− u1

n + k
−

(
∂u0

∂n

− (u0 + 1)
n + k

)3
)]

− H2

(n + k)2
u1 − u1

Da
= 0

)
, (26)

and boundary conditions are

u1 = 0 at n = ±h (s) . (27)

Solution of u0 by HPM
Now, we use HPM to solve the above obtained highly
complicated systems of differential equations.

Let us find the solution of zeroth order system. As
per policy of HPM, we first construct the deformation
relation for u0 as follows:

D
[
u0 −

�

u0

]
+ q

[�

N (u0)
]

= 0, (28)

where D is the linear differential operator of our own
choice keeping in mind the order of differential equa-
tion and is selected as D = ∂2

∂n2 , q is embedding param-

eter, and
�

N stands for the given operator applied on
the unknown variable along with forcing functions of
independent variable. Equation (26) takes the follow-
ing form:

∂2

∂n2
[u0−] + q

[
−

(
k

n + k

)
∂p

∂s

+
1

(n + k)2
∂

∂n

(
(n + k)2

(
∂u0

∂n
− (u0 + 1)

n + k

))

− H2

(n + k)2
(u0 + 1) − (u0 + 1)

Da

]
= 0.

)
(29)

Moreover, 0 is an initial guess and it is suggested as

�

u =
−2Da − h2 + n2

2Da
. (30)

Now, we take the series expansion of u0 as increasing
exponents of q, that is

u0 = u01 + qu02 + . . . (31)

Zeroth-order system for u0

Equating the coefficients of q0, we observe the following
system with corresponding conditions defined on the
walls:

D
[
u01 −

�

u0

]
= 0, (32)

u01 = −1 at n = ±h(s). (33)

First-order system for u0

Equating the coefficients of q, we extract the another
system of equations with respective surface conditions
and is elaborated as

D [u02] +
∂2u01

∂n2

+
2

n + k

∂u01

∂n
+

1
(n + k)2

∂

∂n
((n + k) (u0 + 1))

−
(

k

n + k

)
∂p

∂s
= 0. (34)

u02 = 0 at n = ±h(s). (35)

After solving above two systems, we get

u01 =
�

u =

(−2Da − h2 + n2
)

2Da
(36)

and

u02 = − 1

12Da2h(k + n)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(h − n)(h + n)(3Da(−3 + H2)k − 9Dan
−k(3k − n)(k + n) + 6Da2(k + n)p)

+3(k + n)(((h − k)2k(h + k)
+Da(h2 − hH2k + (−1 + 3H2)k2))

(h − n)Log[−h + k] + (−(h − k)k(h + k)2

+D2h2 + hH2k + (−1 + 3H2)k2))

(h + n)Log[h + k]− 2h(k(−h2 + k2)

(k + n) + Da(h2 + k(−k + 3H2k + H2n)))
Log[k + n])

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(37)

Solution of u1 by HPM
Let us define the homotopy equation for u1 as

D
[
u1 −

�

u1

]
+ q

[�

N (u1)
]

= 0, (38)

where
�

u1 is an initial guess which is chosen as

�

u1 =

(−h2 + n2
)

2Da
. (39)

Equation (38) can be replaced by the following form:

123



550 Eur. Phys. J. Spec. Top. (2022) 231:545–555

Table 1 Validation of the current results by comparing with the existing literature [36]

Variation of curvature
parameter k

Stress tensor Data in
study [36]

Current Stress tensor
data with Da = 100 and
Ha = 0

Current Stress tensor
data with Da = 2.5 and
H = 1.5

1.10 1.51009 1.51023 -0.12987
1.15 1.51075 1.51081 0.25192
1.20 1.51118 1.51120 0.509586
1.25 1.51148 1.51151 0.694366
1.30 1.51169 1.51172 0.832676
1.35 1.51185 1.51191 0.939529
1.40 1.51196 1.51102 1.02411
1.45 1.51204 1.51215 1.09236
1.50 1.51209 1.51211 1.14832

∂2

∂n2
[u1−] + q

[
1

(n + k)2
∂

∂n

{
(n + k)2

(
∂u1

∂n

− u1

n + k
−

(
∂u0

∂n
− (u0 + 1)

n + k

)3
)}

− H2

(n + k)2
u1 − u1

Da

]
= 0

)
. (40)

Let us suppose

u1 = u11 + qu12 . . . (41)

Inserting the above series of u1 into Eq. (40), we can
build the two systems by equating coefficients of q.

Zeroth-order system for u1

D
[
u11 −

�

u1

]
= 0, (42)

with boundary conditions

u11 [±h(s)] = 0. (43)

First-order system for u1

D [u12] +
1

(n + k)2
∂

∂n

[
(n + k)2

(
∂u11

∂n

− u11

n + k
−

(
∂u01

∂n
− (u01 + 1)

n + k

)3
)]

− H2

(n + k)2
u11 − u11

Da
= 0, (44)

with

u12 [±h(s)] = 0. (45)

After solving above equations simultaneously, we gather

u11 =
�

u1 =
(−h2 + n2)

2Da
, (46)

u12 =
1

96Da3hk(k + n)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(h(h − n)(h + n)(6h4 + 342k4 + 228k3n
−81k2n2 − 54kn3 − 81n4 − 24Da2

((−3 + H2)k − n)(k + n)− 4Dakn2(k + n)
+h2((−363 + 20Da)k2 + 10(−27 + 2Da)kn

+81n2)) + 6(k + n)((h − k)(9h4

−66h2k2 + 57k4 − 4Da2(h2 + hH2k
+(−1 + 3H2)k2))(h − n)Log[−h + k]

+(h + k)(−9h4 + 66h2k2 − 57k4

+4Da2(h2 − hH2k + (−1 + 3H2)k2))(h + n)
)

Log[h + k] + 2h(3(3h4 − 22h2k2 + 19k4)

(k + n) + 4Da2(h2((−1 + H2)k − n)
+k2(k − 3H2k + n − 2H2n)))Log[k + n]))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(47)

The pressure gradient dp/dx can be evaluated as

dp

dx
=

1

2h3⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2h − Q − h(87h4−190h2k2+105k4)β
15Da3

+h(25h2k2−15k4+8h4β)
30Da2

−h(3k2(−2+H2(6−4β)+β)+h2(4+(−5+8H2)β))
6Da

− 1
4Da3k

⎛
⎜⎜⎜⎜⎝

Da(−h2k + k3)2 − 2(h2 − 7k2)

(h2 − k2)2β + Da2(h4β + k4

(−2 + H2(6− 4β) + β + 2h2k2

(1− β + H2(−1 + 2β))))
(Log[−h + k]− Log[h + k])

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(48)

4 Graphical results and discussion

This section is included to examine the tabular and
graphical results of involved parameters affecting the
flow characteristics. To relate the current investigation
with existing literature and to enhance the validity
graph of the current study, we have presented a Table 1
which clearly indicates that the study published in [36]
is a limiting case of the current analysis when we over-
look the effects of porosity and magnetic features. To
observe the influence of emerging parameters, we have
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Fig. 2 Alteration of velocity field u for β along with k =
2, s = π, Q = 1, ε = 0.1, Da = 0.6, H = 1

Fig. 3 Alteration of velocity field u for Da along with k =
1.2, s = πQ = 1, ε = 0.1, β = 0.05, H = 2

portrayed the Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12 13.
Figures (2, 3, 4, 5, 6, 7) contain the graphs of velocity
componentsu drawn against the radial factor n under
the alteration of fluid parameter β , Darcy number Da ,
the amplitude ratio ε, Hartman number H, curvature k,
and flow rate Q, respectively. Figures 8, 9, 10, 11 reveal
the characteristics of pressure gradient curves against
the β,Da,H, and K, correspondingly. We can observe
the trapping analysis from Figs. 12 and 13 which are
sketched under the variation of Da and H.

From Fig. 2, we can extract that velocity is varying
directly with the increasing effect of β in left and mid-
dle parts of the channel, but the curves are declined in
the right side. This can physically explain that the mag-
nitude of β represents the elasticity of the fluid which
rapids up the fluid accordingly. Figure 3 implies that
velocity is lowering in the domain [−h, 0) but rising
in (0, h] by ascending variations ofDa. It reflects the
physical reasoning that porosity of the medium affects
the flow in lower and central regions of the channel sig-
nificantly as compared to the upper half. The behavior
of velocity projectile under the increments of amplitude
ratio ε is quite similar to that of porosity parameterDa
. It is noted from Fig 5 that Hartmann number makes

Fig. 4 Alteration of velocity field u for ε along with k =
1.2, s = π, Q = 1, β = 0.05, Da = 0.4, H = 2

Fig. 5 Alteration of velocity field u for H along with k =
1.2, s = π, Q = 1, ε = 0.1, Da = 0.4, β = 0.05

Fig. 6 Alteration of velocity field u for k along with β =
0.05, s = π, Q = 0.1, ε = 0.2, Da = 0.4, H = 2

the flow faster in lower area and gives reflexive behav-
ior in the upper portion. This result is quite against the
consequences found for Darcy number. It may be due to
the fact that the magnetic field is applied in transverse
direction to the flow which has suppressed the flow more
comprehensively in the upper arrear as compared to the
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Fig. 7 Alteration of velocity field u for Q along with k =
1.2, s = π, β = 0.05, ε = 0.2, Da = 0.4, H = 2

Fig. 8 Alteration of pressure ∂p
∂s

for β along with k =
2, Q = 1, ε = 0.1, Da = 0.3, H = 1

Fig. 9 Alteration of pressure ∂p
∂s

for Da along with k =
1.2, Q = 1, ε = 0.1, β = 0.05, H = 2

far away region. The readings of k on velocity profile
are almost in line with that of received for Darcy num-
ber Da (Fig. 6). It means that porosity, curvature of
channel, and amplitude ratio affect the flow in quite
same manner. It is assumed from Fig. 7 that when we
larger the numerical values of flow rate Q, the veloc-
ity increases throughout the channel. It reflects that

Fig. 10 Alteration of pressure ∂p
∂s

for H along with k =
1.2, Q = 1, ε = 0.1, β = 0.05, Da = 0.4

Fig. 11 Alteration of pressure ∂p
∂s

for k along with Da =
0.4, Q = 0.1, ε = 0.2, β = 0.05, H = 2

fluid travels fast if the amount of fluid per unit time is
enhanced.

Figures 8, 9, 10, 11 comprise the plot of pressure
gradient profile ∂p

∂s drawn against the flow rate Q for
parameters β,Da, H, and k, correspondingly. From
Fig. 8, it is concluded that ∂p

∂s is decreasing with the
large values of β and it becomes maximum at the cen-
ter as compared the corners of the channels. This is
because in the middle part of the channel, a more pres-
sure gradient is required to maintain the flow rate,
but the elasticity of the fluid decreases its magnitude.
The effect of the porosity representative Da is almost
same as we have examined for β (see Fig. 9), but
in this diagram, the height of the curves is getting
higher than the previous ones. It is measured from
Fig. 10 that pressure gradient is getting large with
the variation of applied magnetic field. Physically, it
suggests that the fluid is traveling faster as observed
above which may be the cause of increase in pres-
sure profile to settle down the flow rate. The pressure
curves for k can be visualized in Fig 11 and it is eas-
ily found here that ∂p

∂s is diminishing its height when
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Fig. 12 Streamline for Da (a) for Da = 5, (b) for Da = 5.5, (c) for Da = 6

Fig. 13 Streamline for H (a) for H = 0.1, (b) for H = 0.2, (c) for H = 0.3

we give large magnitude to the curvature parameter k
.

Figures 12 and 13 suggest the scene of flow pat-
tern for different parameters. These graphs contain
the contours of stream function ψ plotted in two-
dimensional domains. Figure 12 contains the stream-
lines of the parameters Da; it can be obtained here
that a circulating bolus is becoming large in lower
part but shorter its size in upper part of the container
with increasing values ofDa. It can also be seen that
the flow is symmetric about the center line which is
also depicting the assumption symmetric channel. It
can be noticed from Fig. 13 that totally opposite sce-
nario is observed in the sketch of streamlines for the
MHD parameterH. It shows that porous medium and
MHD are exerting quite different impact on flow pat-
tern.

5 Conclusions

In this communication, we have analyzed the theo-
retical study of pumping characteristics of the same
fluid with same circumstances along with the inclu-

sion of two new factors, the porous medium and the
MHD. After getting the analytic solution, we have
seen the graphical picture of whole the analysis. The
key points which we have achieved are manipulated
as:

Porous medium is restricting the flow velocity in
lower part of the channel, but in upper side, there
is no hindrance to the flow.
It is found that the magnetic field opposes the flow
speed in half side, but increases it in other region.
It is concluded that peristaltic pressure is increased
with magnetic field, but decreased with porosity fac-
tor.
It is also evident from above analysis that flow pat-
tern is showing totally opposite picture for porosity
and MHD.
It is also measured that the current study gives
the data of [36] as a limiting case of H=0 and
Da=infinity.
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