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Abstract We numerically integrate the equations of motion of the Levitron in its twofold fashion, i.e. in
terms of the Eulerian description of the spinning top’s motion as well as those in a different set of angular
coordinates, the yaw-pitch-roll angles, in order to avoid the singularity posed by the vanishing of the angle
describing the top’s nutation. We not only extend both set of equations to include dissipation for a more
realistic model of the Levitron, but we introduce two types of mechanical forcing to inject energy into the
system to prevent the prompt falling of the spinning top as well. A systematic study of the flying time
as a function of the perturbation parameters is performed, and detailed bifurcation diagrams are obtained
exhibiting an Arnold’s tongues structure. A very similar structure is obtained when the stability analysis is
carried out by recourse to a fast method to compute the maximum Lyapunov exponent, namely the Mean
Exponential Growth factor of Nearby Orbits (MEGNO). Our numerical experiments confirmed that the
MEGNO serves as an early indicator of the stability of the Levitron’s flights, regular solutions being good
candidates to allow for very long flying times.

1 Introduction

The Levitron consist of a top, namely a magnetized
rotationally symmetric rigid body of uniform mass that
behaves as a magnetic dipole, and a base that provides
a permanent magnetic field such that the interaction
with the magnetic dipole compensates the gravitational
force acting on the top when put to spin over it, see Fig.
1.

The stability of the magnetic levitation shown by the
Levitron was studied by Berry as a six degrees of free-
dom Hamiltonian system using an adiabatic approx-
imation in [1]. Further, Dullin and Easton [3] found
critical spin rate bounds where the levitation persists,
and Gans et al. [4] offered numerical results regarding
the initial conditions’ manifold where this occurs.

The numerical studies presented in [3] were crucial
for the comprehension of Levitron’s dynamics. Further-
more, the introduction of dimensionless constants pro-
posed in [4] facilitated the analysis of the concomitant
numerical simulations. Both papers followed the guide-
line drew by [1] and are the basis of both [6,10], and
the present work.
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Moreover, in [8] a simple dipole interaction model and
a Taylor series expansion for the magnetic field were
used to predict certain features of the equilibrium and
stability of the Levitron. This simple model, combined
with measurements of the magnetic field along the axis,
permitted a fairly accurate prediction of the upper and
lower limits of the locus of stable equilibria.

Meanwhile, in [12] an analysis and numerical inte-
gration of the equations of motion for an experimental
stemless top that includes gyroscopic precession around
the local magnetic field lines is presented, and an upper
spin limit for the top is observed experimentally and
explained as an adiabatic condition.

The energy losses due to friction were considered
for the first time in [11] and later on in [10], where a
mechanical perturbation was first introduced to inject
energy into the system.

The existence of invariant regions in phase space cor-
responding to persistent levitation of the top as well as
equilibrium solutions were detected in [6]. Also therein,
the numerical verification of the range for the spinning
rates given in [1] was performed, and an asymptotic
multi-scale analysis was carried out with the aim of
studying the nonlinear interaction between the transla-
tional and rotational modes.

The aim of the present effort is the numerical study
of the Levitron’s dynamics when not only damping
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forces but also mechanical perturbations are taken into
account. For the sake of completeness and clarity the
equations of motion are included at length, and invari-
ant regions in phase space as well as equilibrium solu-
tions are considered.

To account for a more realistic setting, dissipative
terms are introduced in the equations of motion to
model the air friction and, as a consequence, finite
flight times are derived. Following [10], a strategy to
inject energy into the system is numerically explored.
It should be pointed out that our approach is of a
mechanical nature, e.g. neither electromagnetic drive
[11] nor air-jet propulsion [12] is considered. Though a
first attempt in dealing with this scenario was presented
in [10], herein we consider beyond the effect of a peri-
odic mechanical perturbation acting upon the vertical
position of the spinning top.

By means of extensive numerical experiments, we
obtain bifurcation diagrams spanning a whole range of
the parameters characterizing the mechanical perturba-
tions and distinguish the stability regions which corre-
spond to long levitation times. Moreover, we derive the
maximum Lyapunov exponent (mLCE) by recourse to
the Mean Exponential Growth factor of Nearby Orbits
(MEGNO) (see [2] for details), thus obtaining an early
prediction of the Levitron’s flight time. However, to
reach this goal we had to overcome the singular charac-
ter of the Jacobian matrix of the variational equations
associated to the vanishing of the angle describing the
top’s nutation.

This paper is organized as follows. First, two different
formulations of the equations of motion are presented
in Sect. 2. Section 3 is devoted to describing the gen-
eral setting for our simulations and the adopted numer-
ical techniques for our stability study of the Levitron’s
dynamics; the MEGNO as a tool for studying the tra-
jectories’ stability is outlined in the same section, where
we point out how the maximum Laypunov exponent can
be obtained in a fast fashion. A more realistic model
including dissipation due to air friction is addressed in
Sect. 4. A mechanical, either parametric or hysteretic,
perturbation introduced to compensate the energy loss
due to air friction is proposed in Sect. 5. The results
of the numerical integration of the equations of motion
over a grid in the perturbation parameter space are
given in Sect. 6 via bifurcation diagrams exhibiting both
flight times’ and MEGNO contour–plots, and the feasi-
bility of obtaining an early prediction of the flight time
by means of the MEGNO is discussed. The validity of
the proposed scheme for computing the MEGNO from
the reduced set of variational equations corresponding
to the coordinates and momenta of the center of mass
in the Eulerian description of the dynamics is verified
in Sect. 7. Conclusions are derived in Sect. 8.

2 Equations of motion

To describe the motion of the spinning top we recur
to the Eulerian angles namely the tilt θ, the preces-

Fig. 1 Levitron

sion ψ (or the latitude and the longitude of the rota-
tion axis respectively) and the spin φ, while the coor-
dinates r̄ = (x, y, z) denote the position of the top’s
center of mass. Notice that due to the axial symmetry
of the body we can assume that its inertia tensor is
Θ = diag(Θ1, Θ1, Θ2). We denote by μ < 0 the magni-
tude of the dipole’s force, located at the center of mass
of the spinning body and M is the magnetization in the
z-direction (see [7]).

On scaling by the radius of the dipole ring a and a
consistent time scale τ , and introducing (as in [4]):

x = aX, y = aY, z = aZ, t = (a/g)1/2τ,

we obtain the dimensionless equations of motion for the
spinning top. Indeed, the potential V can be written as

V =
Me

4πa2

[
f0(Z)+(X2+Y 2)f2(Z)+O((X2+Y 2)2)

]

=:
Me

4πa2
Φ, (1)

where

f0(Z) =
Z

(1 + Z2)3/2
, f2(Z) = −3

4
(2Z2 − 3)Z
(1 + Z2)7/2

,

(2)

and Me = 2πMa is the net strength of the dipole, the
outcoming Hamiltonian being

H =
1
2

(
p2X + p2Y + p2Z +

p2θ
A

+
[pψ − pφ cos θ]2

A sin2 θ
+

p2φ
C

)

−M
[
sin θ

(
cos ψ

∂Φ

∂X
+ sin ψ

∂Φ

∂Y

)
+ cos θ

∂Φ

∂Z

]
+ Z

(see [6,10] for a thorough description of the potential
and kinetic energies of the spinning top). Therefore, the
concomitant equations of motion, already given in [10]
and included herein just for the sake of completeness,
read

Ẋ = pX (3a)

Ẏ = pY (3b)
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Ż = pZ (3c)

θ̇ =
pθ

A
(3d)

ψ̇ =
pψ − pφ cos θ

A sin2 θ
(3e)

φ̇ = − cos θ · pψ − pφ cos θ

A sin2 θ
+

pφ

C
(3f)

˙pX = 2M [f2(Z) sin θ cos ψ + Xf ′
2(Z) cos θ] (3g)

˙pY = 2M [f2(Z) sin θ sin ψ + Y f ′
2(Z) cos θ] (3h)

˙pZ = M [2f ′
2(Z) sin θ(X cos ψ + Y sin ψ)

+ cos θ(f ′′
0 (Z) + (X2 + Y 2)f ′′

2 (Z))
] − 1 (3i)

ṗθ = − (pφ cos θ − pψ)(pψ cos θ − pφ)
A sin3 θ

+ M [2f2(Z) cos θ(X cos ψ + Y sin ψ)

− sin θ(f ′
0(Z) + (X2 + Y 2)f ′

2(Z))
]

(3j)
ṗψ = 2Mf2(Z) sin θ(Y cos ψ − X sin ψ) (3k)
ṗφ = 0 (3l)

where

A =
Θ1

ma2
, C =

Θ2

ma2
, M =

−μMe

4πmga4
, (4)

are positive constants and where m denotes the mass
of the top. Notice should be taken that both H and pφ

are conserved quantities.
Let us remark, however, that the Hamiltonian becomes

singular for θ = 0. To overcome this issue several
authors ([3,5,11]) use a different set of angular coor-
dinates other than the Eulerian angles. These are the
yaw-pitch-roll angles which do not lead to singular
equations and the concomitant rotation matrix reads
R(ψ, θ, φ) = Rz(ψ)Ry(θ)Rx(φ), where ψ is the angle
between the axis of the top and the x-axis of the sys-
tem, θ is measured to the y-axis and φ describes the
angle to the z-axis.

Since we will be integrating either one or the other
set of equations according convenience, we also recast
the non singular equations of motion given in [3], but
herein in its dimensionless version:

Ẋ = pX (5a)

Ẏ = pY (5b)

Ż = pZ (5c)

θ̇ =
pθ

A
(5d)

φ̇ =
pφ − pψ sin θ

A cos2 θ
(5e)

ψ̇ = − sin θ · pψ sin θ − pφ

A cos2 θ
+

pψ

C
(5f)

˙pX = M [f2(Z) sin θ/2 + Xf ′
2(Z) cos θ cos φ/2] (5g)

˙pY = M [f2(Z) cos θ sin φ/2 + Y f ′
2(Z) cos θ cos φ/2]

(5h)

˙pZ = M [f ′
2(Z)(X sin θ + Y cos θ sin φ)/2

− cos θ cos φ(f ′′
0 (Z) + (X2 + Y 2)f ′′

2 (Z)/4)
] − 1

(5i)

ṗθ = − (pψ sin θ − pφ)(pφ sin θ − pψ)
A cos3 θ

M [f2(Z) cos θ/2 − Y sin θ sin ψ/2)

− sin θ cos φ(−f ′
0(Z) + (X2 + Y 2)f ′

2(Z)/4)
]

(5j)

ṗφ = M [Y f2(Z) cos θ cos φ − cos θ sin φ(−f ′
0(Z)

+(X2 + Y 2)f ′
2(Z)/4)

]
(5k)

ṗψ = 0 (5l)

Now, the Hamiltonian equations are regular for θ = 0
and the singularity is shifted to θ = π/2, which causes
no problem since before reaching such a value the top
has fallen already. Moreover, the associated Jacobian
matrix, needed for the stability analysis of the system
remains non singular (see Sect. 7 for related discussion).
The Eulerian angles in (3) instead, have the benefit of
providing a clear physical interpretation of the top’s
motion.

3 Numerical study: general frame and
suitable numerical schemes

In our numerical experiments we adopted for the
parameters A and C the same values used in [4],
namely,

A = 0.089, C = 0.139,

which correspond to physical measurements, while a =
34.7mm was the adopted value for the effective radius.

As in [10] we used a Runge-Kutta 7–8 method
(RK78) to integrate the equations of motion (3) in
regions of phase space where the system can turn stiff.
As the equations (3e), (3f) and (3j) become singular
whenever θ = 0 or θ = π, we needed to overcome such
an issue by controlling the numerators in the concomi-
tant expressions. Therefore, for instance, we fixed to
zero the field entry for ψ in (3e) whenever it was

|pψ − pφ cos θ| ≤ tol,

with the value of tol calibrated numerically, not having
found any significant difference for values smaller than
0.0001. The same control was kept in the other two
equations.

At this point let us mention that our results con-
firmed the ones in [1], who showed that both the pre-
cession and spin rates must be comparable in order for
the top to have a persistent levitation. In fact, we ver-
ified that pφ and pψ should be close in order to have a
stable flight of the spinning top.

Even if the singularity in (3) requires of an extra
effort to determine the suitable value for tol, the Eule-
rian angles in the singular equations of motion allows
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for a straightforward visualization of the top’s motion
in space.

Alternatively, we can integrate the non singular equa-
tions of motion (5) which include the yaw-pitch-roll
angles to describe the rotation of the top with respect
to a local reference frame.

As a result of our profuse numerical experimenta-
tion concerning the integration of the equations of
motion, we observed that the RK78 scheme’s perfor-
mance is convenient when the concomitant variational
equations (involved in the stability studies) are also
integrated as the number of equations in the system
gets twice as large. Nonetheless, the fact that equations
(3) become singular whenever θ vanishes suggests the
Runge-Kutta-Gauss implicit method as a more suitable
tool for their numerical integration. In fact, (3) were
integrated by means of a sixth order such a scheme.
The RK78 instead resulted far more efficient for the
integration of the non-singular equations (5) and its
variationals.

Our numerical experiments encompass stability stud-
ies based on the evaluation of the maximum Lyapunov
characteristic exponent (mLCE) which accounts for the
exponential divergence of nearby trajectories. Notwith-
standing, the computation of the mLCE is computa-
tionally expensive and, since the flying time of the
Levitron varies drastically under the change of either
the parameter values or the initial conditions, it is
extremely useful to count with a fast alternative for
estimating the mLCE, such as the Mean Exponential
Growth factor of Nearby Orbits (MEGNO), (see [2] for
details).

Therefore, let us now revisit the MEGNO’s behavior
as a quick dynamical indicator and its relationship with
the mLCE for a given trajectory ϕ(t). The associated
mLCE, σ(ϕ), is defined as

σ(ϕ) = lim
t→∞ σ1(ϕ(t)), σ1(ϕ(t)) =

1
t

ln
‖δ(ϕ(t))‖

‖δ0‖ ,

(6)

where δ(ϕ(t)) and δ0 are “infinitesimal displacements”
from ϕ at times t and 0, respectively—, and ‖·‖ denotes,
for instance, the usual Euclidean norm (though any
other norm would serve as well). Then, the computa-
tion of the mLCE requires the long-term integration of
the variational equations along with the equations of
motion.

Meanwhile, the MEGNO, usually denoted as Y (ϕ(t)),
is a fast chaos indicator which allows to determine the
character of the motion, either regular or chaotic, by
integrating both the equations of motion and the varia-
tionals during rather short motion times. Furthermore,
the asymptotic behavior of its temporal average over
the orbit, Y (ϕ(t)), can be condensed as

Y (ϕ(t)) ≈ aϕt + bϕ (7)

where aϕ = σϕ/2 and bϕ ≈ 0 for chaotic motion, while
aϕ = 0 and bϕ ≈ 2 for stable quasiperiodic motion.

Slight departures from the value bϕ ≈ 2 indicate that ϕ
is close to some periodic orbit, being bϕ � 2 and bϕ � 2
for stable or near–unstable periodic orbits, respectively.

Thus, we will take advantage of the fact that in the
case of chaotic motion, Y grows linearly with time at a
rate equal to σϕ/2. Therefore, a fairly accurate estimate
of the mLCE can be obtained in rather short times by
means of a linear least-squares fit on Y (ϕ(t)). This is
the procedure that we apply in the sequel to derive the
mLCE for characterizing the dynamics of the Levitron.

4 Dissipative equations

A more realistic model for the Levitron should include
the dissipation due to air friction. Since the spinning
top undergoes both translation and rotation, at least
two positive constants are needed, CT and CR, to model
its flight. The dissipative linear terms −CT pX , −CT pY

and −CT pZ are to be added to the equations (3g)–
(3i) in ṗX , ṗY , ṗZ , respectively, while, since the rota-
tional velocity is very high compared to the transla-
tional velocity, quadratic terms would be required to
model the concomitant friction. Therefore, the dissi-
pative terms −CRpθ|pθ|, −CRpψ|pψ| and −CRpφ|pφ|
should be added to the equations (3j)–(3l) respectively.
(The absolute value preserves the sign of the rotation
velocity ensuring that all three terms act against the
rotation of the spinning top.) The values of the dissi-
pation constants outcomes from numerical calibration.

For our first simulation we adopted equal values for
the initial angular velocities pφ = pψ, the adopted ini-
tial conditions being

(X,Y,Z, θ, ψ, φ, pX , pY , pZ , pθ, pψ, pφ)
= (0, 0, 3.34, 0.005, 0, 0, 0, 0, 0, 0, 5.0, 5.0). (8)

In the absence of dissipation, these initial conditions
lead to a trajectory in which the coordinate Z oscillates
around the stable initial value Zs = 3.34 while the coor-
dinates (X,Y ) remain fixed at the origin. The result
of the integration of the equations of motion including
dissipative terms with CT = CR = 0.1 are displayed
in Figs. 2 and 3. In particular, Fig. 3 shows how the
stable position in the (X,Y )-plane is lost, the spinning
top falling after a short period of time, namely 60 time
units. In the more realistic case corresponding to the
values CT = 0.2 and CR = 0.01, the numerical experi-
ments reveal that the top falls after ∼ 23 time units.

Since the Z-coordinate could have a larger variation
due to air friction than that of the X or Y -coordinates,
a different third dissipative constant could be intro-
duced to add a larger dissipation in the vertical direc-
tion. In fact, our numerical simulations using a third
dissipation constant for the Z-coordinate revealed that
even more longer periods of time of stable flight of the
spinning top are feasible.
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Fig. 2 Time evolution of the Z-coordinate

Fig. 3 (X, Y )-coordinates

The top’s stability strongly depends on the evolution
of the momentum associated with the spin and preces-
sion angles, pφ and pψ, particularly on their proximity.

In the absence of friction, whenever the behavior of
the |pφ − pψ| are alike and θ is close to zero, Eq. (3)
remain stable even through the singularity, as Fig. 4
illustrates.

Indeed, only if the inequality |pφ − pψ| << 1 is sat-
isfied, will the quotient (pψ − pφ cos θ)/sin2 θ in (3) not
diverge for |θ| → 0.

Let us notice that, even in the dissipative case, both
pφ and pψ remain close to each other during the levita-
tion as Fig. 5 shows. In fact, those quantities are very
similar up to the very moment in which the stability is
lost, that is to say till the top falls to the ground.

Summing up, the Levitron ’s stability strongly depends
on the spin and precession dynamics; namely, even
though pψ and pφ change due to friction, as long as
their difference remains small the mechanical stability
of the system is assured.

5 Forced equations

In the past, several strategies to force the equations of
motion by recourse to electromagnetic fields that intro-

Fig. 4 Temporal evolution of log(|pψ −pφ|) in the absence
of friction

Fig. 5 Evolution of log(|pψ − pφ|) when losses due to air
friction are taken into account

duce torques in the system were extensively applied
(see for instance [11]). Herein instead, we propose two
mechanical schemes to force the vertical location of the
permanent magnetic base by small motions so as to
inject energy into the system.

The due procedure and the outcoming linearized
equation for the Z coordinate for either parametric or
hysteretic forcing are outlined in the forthcoming sub-
sections.

To such an aim let us recall that, as we obtained in
[10], the equations of motion allows for the invariant
set

Inv = {X = Y = 0, θ = 0, pX = pY = 0,

pθ = 0, pψ = pφ},

and the dynamics in this region is given by

Ż = pZ ˙pZ = Mf ′′
0 (Z) − 1 (9)

φ̇ = − pφ

2A
+

pφ

C
= σ ṗφ = 0. (10)

This system has two fixed points, one stable and the
other unstable, which are defined by the relationship

f ′′
0 (Z) =

1
M (11)
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(See [6] for details). Further, the linearized system of
(9) near the point (Zs, 0) is a harmonic oscillator:

Z̈ + V ′′
Inv(Zs)Z = 0, (12)

where

VInv = −Mf ′
0(Z) + Z. (13)

5.1 Parametric forcing

A parametric perturbation of the magnetic base of the
Levitron can be modelled just by changing the equilib-
rium point of (12) according to

Zs �−→ Zs(1 + β cos ωt). (14)

Therefore, the linearized equation near the point (Zs, 0)
can be recast as

Z̈ + V ′′
Inv

[
Zs(1 + β cos(ωt))

]
Z = 0, (15)

where, from (13), it is

V ′′
Inv = −Mf3(Z) = −Mf ′′′

0 (Z)

= −M 90Z2(1 + Z2) − 9(1 + Z2)2 − 105Z4

(1 + Z2)9/2
.

(16)

By taking only up to the linear term in the Taylor
expansion of (16) near Zs, Eq. (15) reads

Z̈ − M[
f3(Zs) + f4(Zs)Zsβ cos(ωt)

]
Z = 0, (17)

where f3(Z) is defined through (16) and f4(Z) by

V ′′′
Inv(Z) = −Mf4(Z) = −Mf

(iv)
0 (Z)

= −M 225Z(1 + Z2)2 − 1050Z3(1 + Z2) + 945Z5

(1 + Z2)11/2
.

(18)

Notice that (17) is a Mathieu equation which can be
integrated by numerical means just by substituting (14)
directly into (12).

Since from this setting the parametric oscillation of
the base locally gives rise to a Mathieu equation in the
Z-coordinate, we expect that the parameters β and ω
yield a stability diagram for the solutions of the Levit-
ron with an Arnold’s tongue structure.

On adding a dissipative term to the equation we
expect that the perturbation applied to the magnetic
base, with a suitable calibration of amplitude and fre-
quency of the perturbation, will inject energy leading to
a steady levitation of the spinning top for a long time.
The parameters β and ω will be found numerically since
the local analysis could turn rather complicated.

5.2 Hysteretic forcing

Let us now model a hysteretic perturbation of the mag-
netic base by forcing the equilibrium point of the system
(12) to vary in the fashion

Zs �−→ Zs + β cos ωt, (19)

and there results

Z̈ + V ′′
Inv

[
Zs + β cos(ωt)

]
Z = 0. (20)

Once again, on considering up to the linear term in
the Taylor expansion of (13), (20) reads

Z̈ − M[f3(Zs) + f4(Zs)β cos(ωt)]Z = 0,

where f3 and f4 are given by (16) and (18) respectively.
As in the parametric case, we can numerically inte-

grate Eq. (20) by doing the change (19) directly in
the Eq. (12). Besides, just as for the parametric per-
turbation, the hysteretic oscillation of the base is
locally described by a Mathieu equation in the Z -
coordinate. Therefore, again, we would expect that the
stability portrait for the Levitron’s solutions presents
an Arnold’s tongue structure in the parameter space
(β, ω).

The equations of motion (3) plus the dissipative term
introduced in Sect. 4 provide a realistic model for the
flight of the spinning top. In this subsection we intro-
duce the forced equations by simulating a small vertical
motion of the magnetic base to inject energy into the
system. We will show by numerically means that con-
sidering such a perturbation results in a long–period
stable flight of the Levitron and, as expected, a sta-
bility diagram showing an Arnold’s tongue structure is
obtained (see [9]).

6 Bifurcation diagrams

With the aim of studying the flying time variation while
changing the perturbation parameters in both the para-
metric and the hysteretic case, we performed numerical
experiments taking 2000 equispaced values of β in the
range [0, 2], and 1000 values of the oscillation frequency
in the interval [0, 4] for each β, which accounts for a
total of two millions different trajectories correspond-
ing to a unique initial condition in different scenarios.
All the simulations were carried out on the GPU-cluster
of IIMAS-UNAM.

We will unfold the description of our numerical exper-
iments which concern both sets of equations of motion
revisited in Sect. 2.

In the first place, we will refer to those involving the
Eq. (3), for which we adopted the initial condition (8)
taken in Sect. 4, the values CT = 0.2 and CR = 0.01 for
the damping parameters and M = 32.75367. Besides
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the damping forces we considered a mechanical pertur-
bation to inject energy into the system, either paramet-
ric or hysteretic.

The numerical integration of the equarions of motion
was performed by means of a Runge-Kutta 7–8 scheme,
the initial step-size being 0.001 and the local tolerance
used for selecting the successive steps of order 10−14.
The stop condition used for the numerical integration
is

|X| + |Y | + |Z − Zs| > 2, (21)

where Zs is the equilibrium point given in Sect. 4.
Figure 6 displays the value of the flight time, in a

logarithmic scale, in the (ω, β) plane for the parametric
perturbation, the largest flight time being ∼ 96u.t.1.

The plot 6 displays Arnold’s tongues structure that
characterizes the bifurcation diagram for the nonlin-
ear Mathieu equation. The solutions subjected to expo-
nential damping evolve during short flying times since
they promptly leave the equilibrium region and then
the top falls to the ground; at this point the integra-
tion is stopped. On the other hand, solutions with large
flying times correspond to the cases in which a delicate
equilibrium is preserved between the excitation and dis-
sipative forces while integrating the perturbed nonlin-
ear Eq. (3). Figure 6 shows that the largest flying times
correspond to the perturbation parameters in the region
0 < ω < 1.0 and 0 < β < 2.0.

The parametric excitation can not restore the loss of
the rotational energy. Nevertheless, the stable regions in
the Arnold’s tongues correspond to solutions for which
the quotients

pψ − pφ cos θ

sin2 θ
and

(pφ cos θ − pψ)(pψ cos θ − pφ)
sin3 θ

,

(22)

remain finite even when θ is close to zero.
The values of |pφ| and |pψ| reduce their value in

a monotonic fashion, while the quotients (22) remain
bounded in the stable regions in Fig. 6. Indeed, the dif-
ference |pφ − pψ| stays small and exhibits a behavior
somewhat similar to that displayed in Fig. 5, even in
the dissipative case in which pφ is no longer a constant
of motion.

To estimate the Levitron’s flying time by recourse to
a low cost technique other than numerically integrat-
ing the equations of motion until the top falls to the
ground, we propose the computation of the MEGNO
values corresponding to the whole set of perturbation
parameters and a given initial condition. Let us remark
that in the case of Eq. (3) it is requisite to deal with
a reduced set of the variational equations of the carte-
sian coordinates and their associated momentum vari-
ables and discard those corresponding to the angular
variables and their corresponding momenta due to the
behavior of the quantities (22). Indeed, the full system

1 u.t. = Units of time.

Fig. 6 Parametric case. The axes correspond to the per-
turbation frequency (ω) and amplitude (β). The flight time
is represented in a logarithmic scale according to the colour
code on the side

turns very unstable when θ → 0, since the concomi-
tant Jacobian matrix Λ(ϕ(t)) becomes singular in such
a case. This is a rather severe shortcoming of Eq. (3)
which is neared with the hope of having a clear visu-
alization of the top’s motion in space instead. Alterna-
tively, we should resort to the integration of the regular
Eq. (5), which we have done and discuss later on in the
present section.

With our aim in mind we computed the bifurcation
diagram of the mLCEs obtained from the Y values and
compared the outcoming portrait with that shown in
Fig. 6 for the parametric case. In Fig. 7 the mLCE
values are given in a logarithmic scale and again an
Arnold’s tongues structure is observed.

On dealing with an hysteretic perturbation, we con-
sidered the domain [0, 1.3] × [0, 4] in the (ω, β) plane.
Again, Figs. 8 and 9 display, in logarithmic scale, the
value of the flight time and that of the mLCE derived
from the MEGNO respectively. Let us notice that for
the hysteretic case we obtained a structure where the
Arnold’s tongues are not so clearly distinguished and
the long flight time zones are somewhat smaller than
those corresponding to the parametric case. It is worth
mentioning though that with an hysteretic perturbation
we obtained stable flight times of an order of magni-
tude larger than those observed in the parametric case,
namely as long as ∼ 103 u.t.

Therefrom, we can conjecture that MEGNO would
well serve as an early indicator of the levitation time. To
reinforce this claim, in Fig. 10 we illustrate the results of
numerical experiments concerning the parametric per-
turbation already discussed in [10]. Our outcomes are
restrained to a small region of the bifurcation diagram
in Fig. 6. Indeed, panel (a) displays the flying time lim-
ited to t < 15 u.t., and no structure at all can be dis-
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Fig. 7 Parametric case. The axes correspond to the per-
turbation frequency (ω) and amplitude (β). The colour scale
on the side corresponds to the logarithm of mLCE values
obtained from the MEGNO

Fig. 8 Hysteretic case. The axes correspond to the pertur-
bation frequency (ω) and amplitude (β). The flight time is
represented in a logarithmic scale according to the colour
code on the side

tinguished. It is by extending the total limit time up to
t ≤ 100 u.t., that the expected Arnold’s tongues struc-
ture previously disclosed shows up, as panel (c) shows.

On the other hand, in the bifurcation diagram
obtained through the MEGNO, already for t < 15 u.t.
an early formation of the Arnold’s tongues can be
detected, as seen in panel (b). Such a structure is clearly

Fig. 9 Hysteretic case. The axes correspond to the pertur-
bation frequency (ω) and amplitude (β). The colour scale
on the side corresponds to the logarithm of mLCE values
derived from the MEGNO

defined in Fig. 10d, which displays the Y bifurcation
diagram obtained for t ≤ 100 u.t..

In sum, we can state that the MEGNO provides an
early indication of the stability of any solution of the
Levitron’s equations; regular solutions being good can-
didates to have very long flying times.

Let us now outline the highlights of the bifurcation
diagrams that we obtained when dealing with the alter-
native set of variables introduced in Sect. 2. For inte-
grating the perturbed nonsingular equations (i.e. (5)
plus a perturbation) for the same initial conditions of
the concomitant variables used in [3], namely

(X,Y,X, θ, ψ, φ, pX , pY , pZ , pθ, pψ, pφ)
= (0.0, 0.0, 1.2436, 0.03, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 21.500, 0.0),

we adopted the values CT = 0.001 and CR = 0.0001 for
the damping parameters, and M = 0.033. Notice that
these values are different from the ones taken for the
previous experiments concerning the singular equations
of motion.

Our main interest in dealing with this set of equations
is to take advantage of the larger freedom due to their
regular character that allows the exploration of a wider
spectrum of dynamical conditions, which are thought
of cumbersome physical interpretation.

In Fig. 11 we clearly observe that the spinning top
levitates during a larger lapse of time for the pertur-
bation parameter values close to the parabola in the
(ω, β) plane with vertex at ω = 0.3. There exists a small
region where the longest levitations take place centered
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Fig. 10 Bifurcation diagrams for the parametric pertur-
bation (taken from [10]); ω and β are represented in the
horizontal and vertical axes respectively. In a and c the
bifurcation diagram depicts the flying time according to the

colour scale on the side bars. Plots on b and d panels show
the bifurcation diagram obtained through MEGNO. Experi-
ments illustrated in a and b are limited in time to t < 15 u.t.;
for those presented in c and d the limit time is t < 100 u.t.

in the values (0.8, 0.8) and another tiny one close to
(1.2, 0.8). From values of ω > 1.5 and β ∼ 0.8 a hor-
izontal thin region exhibiting large flight times can be
observed. For values of the parameters enclosed within
the parabola the motion becomes very unstable and the
top promptly falls down.

Meanwhile, in Fig. 12 we present the contour–plot
of the mLCE computed at the very moment in which
the top’s stability is lost. Therein a similar structure is
observed, the smaller values of the mLCE correspond-
ing to the largest levitation times.

For the sake of comparison, we include in Fig. 13
a contour plot of the MEGNO’s slope which gives an
indication of the mLCE as already mentioned. In par-
ticular, for 0.5 < β < 1.0 similar values as in Fig. 12 are
obtained and the same overall structure is observed.

7 Lyapunov characteristic exponents

The Lyapunov Characteristic Exponents (LCEs) are a
well-known suitable tool for determining the asymp-
totic behavior of dynamical systems. For a measure-
preserving flow the sum of the LCEs equals zero, while
for an attractor of a dissipative system, contraction
must overweigh expansion and the sum must be nega-
tive. Therefrom, when friction forces are considered the
dynamical picture of the system would entail the com-
putation of the whole set of LCEs, since the only esti-
mation of the mLCE might not yield a proper descrip-
tion of the associated dynamics.

The determination of the Lyapunov spectrum requires
the integration of the first variational equations along
with the equations of motions (i.e. a total of 24 first-
order differential equations are to be integrated for the
Levitron). This computation is rather expensive since
the integration must cover long time-spans (in con-
trast to MEGNO’s requirement, which is a fast dynam-

Fig. 11 Parametric case for Eq. (5). The axes correspond
to the perturbation frequency (ω) and amplitude (β). The
flight time is represented in logarithmic scale by the colour
code aside

ical indicator that also allows the determination of the
mLCE).

Indeed, we needed to numerically integrate the non
singular equations of motion (5) and their variationals
in order the 12 × 12 Jacobian matrix be non singular
and as a consequence the concomitant LCEs be prop-
erly estimated. Instead, when dealing with the singular
equations of motion (3), only could the variationals cor-
responding to the spacial location of the top’s center of
mass be integrated.

Let us restate that the numerical integrator plays a
fundamental role in the stability study. Indeed, while

123



338 Eur. Phys. J. Spec. Top. (2022) 231:329–339

ω
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Fig. 12 Parametric case for Eq. (5). The axes correspond
to the perturbation frequency (ω) and amplitude (β). The
logarithm of mLCE is represented following the colour scale

Fig. 13 Parametric case for Eq. (5). Bifurcation diagram
obtained by recourse to the Y (ϕ(t)) slope according to the
colour scale on the side. Take notice particularly of the val-
ues corresponding to 0.5β < 1.0

the non-singular set of equations could be integrated
by a variable-step Runge-Kutta 7–8 method obtaining
satisfactory results, the singular system (3) requires the
application of some other suitable integrator. In fact,
the integration of a stiff problem by means of a Runge-
Kutta 7–8 for a rather short time interval could demand
an extremely huge number of steps, in contrast to the

39.0 78.0 117.0 156.0

1.5

0.8

−0.8

−1.5

0.0

time

lyap i

Fig. 14 LCE’s spectrum vs. time for (3). Notice that their
sum practically vanishes

few thousands required by an implicit method such as
the Runge-Kutta-Gauss (even of rather low order).

The obtained results for the same initial conditions
adopted in the previous section while considering either
the reduced or the complete Jacobian matrix depending
on the chosen set of unperturbed equations of motion,
are presented in Figs. 14 and 15 respectively. In the
latter, also has the sum of the whole spectrum of LCEs
been included, which is seen to tend to zero as expected
for a Hamiltonian flow.

In Figs. 14 the LCEs experience an abrupt increase
in the vecinity of the singularity, that is for θ → 0.
It is worth remarking that, even when dealing with the
reduced 6×6 matrix encompassing only the coordinates
and momenta of the center of mass for (3), the sum of
the computed LCEs approximately vanishes as it should
for a conservative system.

This test validates our results obtained in the pre-
vious section for the perturbed Eq. (3), where the
MEGNO values were computed integrating just the
reduced set of variational equations to avoid the singu-
larity. Thus, we could say that the adopted procedure
is suitable to perform a stability study for the Levit-
ron’s dynamics, the MEGNO allowing to obtain a clear
dynamical picture in rather short motion times in con-
trast to the computationally very expensive evaluation
of the LCEs, which requires the long-term integration of
the first variational equations along with the equations
of motions.

8 Conclusions

In this effort, we studied the Levitron’s dynamics deal-
ing with two different sets of equations of motion, one

123



Eur. Phys. J. Spec. Top. (2022) 231:329–339 339
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Fig. 15 log10 |lyapi| vs. time for the set of non singular Eq.
(5). The lower dotted curve corresponds to log10 |

∑
lyapi|

using the Eulerian angles given in (3), and the other
one, the non singular Eq. (5), which include the yaw-
pitch-roll angles to describe the rotation of the top with
respect to a local reference frame. Even if the integra-
tion of (3) requires of an extra effort to surpass the
singularity arising for θ → 0, the Eulerian angles allows
for a straightforward visualization of the top’s motion
in space.

In particular, we addressed the effect upon the fly-
ing time as a result of introducing dissipation in the
concomitant equations of motion. In fact, for the real-
istic case studied in 4 where air friction is taken into
account, the flying time of the spinning body is limited
to t < 23 u.t.

It is with the aim of extending this limit time that
we introduced a mechanical, either parametric or hys-
teretic, perturbation to the magnetic force field at low
frequencies, Such a mechanical excitation results from
the periodic vertical motion of the permanent magnet,
the perturbation frequency being of the same order as
that of the Levitron’s vertical oscilation (i.e. less than 2
Hz). As a consequence we found that the flying time can
be enlarged from five to ten times that corresponding
to the solely dissipative case.

On performing an extensive systematic study of the
flying time as a function of the two parameters involved
in the perturbation, we obtained detailed bifurcation
diagrams displayed in Figs. 6 and 8, which show the
formation of Arnold’s tongues where the flying time
almost reaches a hundred time units.

We also analysed the stability of these solutions by
means of the MEGNO, a fast technique to compute the
maximum Lyapunov exponent, and thus obtained suit-
able bifurcation diagrams (Figs. 7 and 9) that repro-
duced such Arnold’s tongue structure at short motion
times.

Since the computation of the MEGNO as well as
that of the Lyapunov Characteristic Exponents require
of our integrating the first variationals along with the

equations of motion, the whole concomitant 12 × 12
Jacobian matrix should be non singular. This is the case
for Eq. (5) but when dealing with the singular equations
of motion (3), only could the variationals correspond-
ing to the spacial location of the top’s center of mass be
integrated. However, by computing the whole spectrum
of the LCEs in absence of perturbations, we verified
that, even when dealing with the reduced 6 × 6 matrix
encompassing only the coordinates and momenta of the
center of mass for (3), the applied scheme for the sta-
bility study of the Levitron’s dynamics by recourse to
the MEGNO is suitable.

Our numerical experiments confirmed that the
MEGNO serves as an early indicator of the stability
of the Levitron’s flights, regular solutions being good
candidates to allow for very long flying times.
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