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Abstract In the present effort, we revist the Levitron’s dynamics in the line of previous works due to
Berry, Dullin and Easton, and Gans. An invariant set in the Eulerian formulation is delivered and a
local study is performed which disclose the dynamics on the invariant manifold which coincides to that
obtained by Dullin and Easton using the yaw–pitch–roll angles. Moreover, we extend the results of Gans,
being able to determine further stable regions for the magnetic levitation of the Levitron. Symmetric and
asymmetric trajectories close to an analytical solution are numerically explored. An asymptotic multiscale
analysis is also carried out with the aim of studying the nonlinear interaction between the traslational
and rotational modes. By recourse to a Hamiltonian approach, we provide the study of the local behavior
of the Levitron near an equilibrium point of the system. Also, the existence of invariant regions in phase
space corresponding to persistent levitation of the top are detected. The performed numerical studies
serve to elucidate the Levitron’s behavior.

1 Introduction

The Levitron is a mechanical device conformed by a
top, namely a magnetized rotationally symmetric rigid
body of uniform mass that behaves as a magnetic
dipole, and a base that provides a permanent magnetic
field which, by interacting with the magnetic dipole,
compensates the gravitational force acting on the top
when put to spin over it. A diagram of the Levitron is
presented in Fig. 1 where B(r̄) is the static magnetic
field of the base and µ is the top magnetic dipole.

Magnetic levitation of spinning bodies was first
explored by Roy Harrigan by means of a device consist-
ing of a square magnetic base and a magnetic top whose
volume and mass needed to be calibrated to achieve the
inertial and magnetic momenta leading to its persistent
magnetic levitation ([1]). The Earnshaw’s theorem [2]
establishes the rules for the magnetic levitation of static
dipoles, but the first theoretical approaches to the Lev-
itron’s dynamics date from 1996 and are given in Ref. [1,
3]. Indeed, Berry [1] delivered a Hamiltonian formula-
tion and an adiabatic theory to prove that the magnetic
levitation is possible only for some ranges of the spin-
ning rates, and his results were confirmed by recourse
to both physical and numerical experiments in Ref. [3].

Later on, in the frame of a Hamiltonian approach,
Dullin and Easton [4] not only studied the local behav-
ior of the Levitron near an equilibrium point of the

a e-mail: claudiagio@gmail.com
b e-mail: aoc@mym.iimas.unam.mx (corresponding

author)

system, but detected invariant regions in phase space
corresponding to persistent levitation of the top. Also
following the guideline drew by Berry [1], Gans [5]
addressed the analysis of numerical simulations by
introducing dimensionless quantities. However, neither
Dullin and Easton nor Gans considered the energy
losses due to friction, which were considered for the
first time in Ref. [6].

In the present effort, whose outline is mostly based
on the works of Dullin and Easton and Gans, the equa-
tions of motion are included at length, and invariant
regions in phase space as well as equilibrium solutions
are thoroughly described. The numerical verification
of the range for the spinning rates given in Ref. [1]
is performed, a persistent levitation of the top being
observed. Furthermore, to enlighten our comprehen-
sion of the nonlinear behavior of the interacting trans-
lational and rotational modes, we perform multiscale
asymptotic computations which provide evidence of the
nutation affecting the spinning body’s translation. Our
main motivation in such a practice is to distinguish
how the varying difference between the rotational and
precession momenta affects at different scales. Let us
notice that a similar though linear asymptotic study
was addressed in Ref. [7].

This paper is organized as follows. First and for the
sake of completeness, a Hamiltonian description of the
problem (which coincides with that in Ref. [5]) is deliv-
ered in Sect. 2. The equations of motion, the adopted
routine for numerical integration, as well as the invari-
ant set and stability regions are presented in Sect. 3, 5
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Fig. 1 Diagram of the Levitron TM : B(r̄) is the static
magnetic field of the base and µ is the top magnetic dipole

and 4 respectively. Symmetric and non-symmetric solu-
tions are analyzed in Sect. 6, and the description of the
phase space configuration for the equations of motion
is provided in Sect. 7. The multiscale asymptotic study
of the Levitron’s stability is included in Sect. 8. The
final section is devoted to present the conclusions of
the overall analysis.

2 Kinetic and potential energies

The kinetic energy of the Levitron can be regarded as
the sum of the translational kinetic energy of its cen-
ter of mass and the kinetic energy associated with its
rotation.

In fact, in terms of the Eulerian angles, the total
kinetic energy of the top of mass m can be recast as
(see [8,9] for details)

T =
1
2

[
m(ẋ2 + ẏ2 + ż2) + Θ1(θ̇2

+ψ̇2 sin2 θ) + Θ2(φ̇ + ψ̇ cos θ)2
]
, (1)

where θ is the tilt, ψ the precession (or the latitude and
the longitude of the rotation axis, respectively), and φ
the rotation or spin, while the coordinates r̄ = (x, y, z)
denote the position of the top’s center of mass. Notice
that due to the axial symmetry of the body, we can
assume that its inertia tensor is Θ = diag(Θ1, Θ1, Θ2).

Meanwhile, the potential energy on a given point
of the configuration space, Ψ(r̄,R), where r̄ and R
describe the translation of the top’s center of mass and
its rigid rotation, respectively, involves two terms: the
one associated with the gravitational force mgz, z being
the height of its center of mass, and the other one due
to the magnetic field of the base that interacts with the
spinning top. If we denote by μ < 0 the magnitude of
the dipole’s force, located at the center of mass of the
spinning body, we have that, following [9] or [8] and
being B(r̄) = −∇V (r̄), the total potential energy of
the Levitron reads

Ψ(r̄,R) = mgz + μ

[
sin θ

(
cos ψ

∂V

∂x
+ sin ψ

∂V

∂y

)

+ cos θ
∂V

∂z

]
. (2)

Let us notice that, accounting to the cylindrical sym-
metry in the top’s flight, the harmonic function V (r̄)
can be written as

V (r̄) = V0(z) + ρV1(z) + ρ2V2(z) + · · · ,

where ρ2 = x2+y2 being ρ � 1, and for n > 0 we have

Vn(z) =
{

0 if n odd,
−n−2V ′′

n−2(z) if n even.

Using the notation

Φk(z) =
dk

dzk
V0(z),

and being

R13 = sin θ cos ψ R23 = sin θ sinψ R33 = cos θ,

(3)

the total potential energy can finally be recast as

Ψ(r̄,R) = mgz − μ

[
1
2
Φ2(z)(xR13 + yR23) +

( − Φ1(z)

+
1
4
(x2 + y

2
)Φ3(z)

)
R33 + · · ·

]
. (4)

The magnetic base over which the spinning top lev-
itates can be regarded as a vertical orientated dipole
distribution in the plane. If this magnetization is uni-
form, since the planar base of the Levitron has cylin-
drical symmetry, the magnetic potential over the z-axis
is given by

V0(z) =
M

4π
z

∫∫
base

l

(l2 + z2)3/2
dγdl, (5)

where γ and l are the angular and radial coordinates of
the base, and M is the magnetization in the z-direction
(see [10]).

Though different shapes of the base have been con-
sidered along the literature (see, for instance, [1] and
[4]), we work with a ring dipole of radius a, so that the
integral (5) becomes

V0(z) =
M

2
za

(a2 + z2)3/2
, (6)

that leads to qualitative outcomes which, near the z-
axis, bearly differ from those obtained with other mod-
els (as claimed in Ref. [5]).
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3 Equations of motion

We deal with the dimensionless equations of motion for
the spinning top, by scaling by the radius of the dipole
ring a and a consistent time scale τ . Therefore, following
[5], we introduce:

x = aX, y = aY, z = aZ, t = (a/g)1/2τ,

so that V can be written as

V =
Me

4πa2

[
f0(Z) + (X2 + Y 2)f2(Z) + O((X2 + Y 2)2)

]

=:
Me

4πa2
Φ, (7)

with

f0(Z) =
Z

(1 + Z2)3/2
, f2(Z) = −3

4
(2Z2 − 3)Z
(1 + Z2)7/2

,

(8)

where Me = 2πMa is the net strength of the dipoles of
the ring and a is the effective radius.

The outcoming Hamiltonian is

H =
1

2

(
p2X + p2Y + p2Z +

p2θ
A

+
[pψ − pφ cos θ]2

A sin2 θ
+

p2φ
C

)

−M
[
sin θ

(
cosψ

∂Φ

∂X
+ sinψ

∂Φ

∂Y

)
+ cos θ

∂Φ

∂Z

]
+ Z,

and the concomitant equations of motion, which have
already been given in Ref. [11] and are included herein
just for the sake of completeness, read

Ẋ = pX (9a)

Ẏ = pY (9b)

Ż = pZ (9c)

θ̇ =
pθ

A
(9d)

ψ̇ =
pψ − pφ cos θ

A sin2 θ
(9e)

φ̇ = − cos θ · pψ − pφ cos θ

A sin2 θ
+

pφ

C
(9f)

˙pX = 2M [f2(Z) sin θ cos ψ + Xf ′
2(Z) cos θ] (9g)

˙pY = 2M [f2(Z) sin θ sin ψ + Y f ′
2(Z) cos θ] (9h)

˙pZ = M [2f ′
2(Z) sin θ(X cos ψ + Y sin ψ)

+ cos θ(f ′′
0 (Z) + (X2 + Y 2)f ′′

2 (Z))
] − 1 (9i)

ṗθ = − (pφ cos θ − pψ)(pψ cos θ − pφ)
A sin3 θ

+ M [2f2(Z) cos θ(X cos ψ + Y sin ψ)

− sin θ(f ′
0(Z) + (X2 + Y 2)f ′

2(Z))
]

(9j)
ṗψ = 2Mf2(Z) sin θ(Y cos ψ − X sin ψ) (9k)
ṗφ = 0, (9l)

where

A =
Θ1

ma2
, C =

Θ2

ma2
, M =

−μMe

4πmga4
, (10)

are positive constants. Notice that both H and pφ are
conserved quantities.

4 Local analysis

As we have already proposed in Ref. [11], an invariant
set for equations (9) is given by

Inv = {X = Y = 0, θ = 0, pX = pY = 0,

pθ = 0, pψ = pφ}.

Let us remark that the proof of our proposition strongly
relies on the assumption that pψ = pφ and that there
is no tilt (i.e., θ = 0). Both ṗθ and ψ̇ are shown to be
null by considering the Taylor series of sin θ and cos θ
to conclude that θ = 0 is just an evitable singularity of
(9) whenever the equality pψ = pφ holds.

Indeed, the existence of such an invariant set allows
us to compare some assumptions and results with those
of previous works. In Ref. [4], for instance, the authors
find the invariant set for the non-singular equations
of motion which encompass the yaw–pitch–roll angles
instead of our Eulerian description of the top’s motion.
Notice should be taken that we are handling a dif-
ferent matrix R from that used in Ref. [4] and, as a
consequence, we are dealing with a different magnetic
potential, but we still get the invariant region which
responds to the physical intuition that when the top
rotates without precession, it is pφ = pψ, the dynamics
of ψ becoming irrelevant from a physical point of view.
In this regard, we obtained numerical evidence that the
spinning top has a stable flight whenever pφ and pψ are
close (see [12]).

The corresponding Hamiltonian function is

HInv =
1
2

(
p2Z +

p2φ
C

)
− M

[
∂Φ

∂Z

]
+ Z, (11)

and the dynamics in this region is described by

Ż = pZ ˙pZ = Mf ′′
0 (Z) − 1 (12)

φ̇ =
pφ

C
= σ ṗφ = 0. (13)

Notice that the equations for Z and φ are uncou-
pled; while the rotation rate φ̇ remains constant on the
invariant set, the local dynamics of Z mimics a har-
monic oscillator.

Let us now introduce through

VInv = −M
[

∂Φ

∂Z

]
+ Z = −Mf ′

0(Z) + Z, (14)
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Fig. 2 Equilibrium points of VInv

the potential energy onto the invariant set.
To linearize the system, we need to find the equilib-

rium points of (12) from

Mf ′′
0 (Z) − 1 = 0 with

f ′′
0 (Z) = −4f2(Z) =

3(2Z2 − 3)Z
(1 + Z2)7/2

, (15)

that is

f ′′
0 (Z) =

1
M . (16)

As μ < 0 and from definitions (10), there results 1/M >
0. Then, Eq. (16) allows for a solution whenever

1
M ≤ max

0≤Z<∞
f ′′
0 (Z),

as shown in Fig. 2.
The critical points of f ′′

0 (or f2) are the roots of

8Z4 − 24Z2 + 3 = 0,

namely,

±
√

6 ± √
30

4
.

The two positive roots correspond to a maximum and
a minimum of f2. On evaluating f ′′

0 in the larger root,
we get that

max
0≤Z<∞

f ′′
0 (Z) =

3
√

30(6 +
√

30)

4
(
5
2 + 1

4

√
30

)7/2
= 0.122131,

and then, Eq. (16) admits a solution if

M ≥ 1
0.122131

= 8.187957392. (17)

Therefore, the equilibrium exists over the invariant
region if condition (17) is satisfied. We will show numer-
ically that stable solutions require M to be big enough.
In fact, since f ′′

0 reaches only one maximum and contin-
ues as a monotone function that decreases to zero, there
are only two values that satisfy the equation for critical
points, Zu < Zs (see Fig. 2). Since these two points
are critical points of the restricted potential VInv, they
satisfy the equation

V ′
Inv = −Mf ′′

0 (Z) + 1 = 0;

Zu and Zs being the unstable and stable equilibrium
points of the system (12), respectively. It is clear that
Zu and Zs coincide when M equals its minimum value,
that is for M = 8.187957392, and then, (16) determines
a unique value of Z

Zc = 1.693848849 . . . (18)

This result, already derived in Ref. [5], will be com-
plemented herein and it will serve to look for stable
regions of the full system. As a consequence, some dif-
ferences between Gans’s and our results are observed in
Sect. 6.

Let us notice that the linearized system of (12) near
the point (Zs, 0) corresponds to a harmonic oscillator

Z̈ + V ′′
Inv(Zs)Z = 0, (19)

and that in the invariant region, Z oscillates with fre-
quency

√
−Mf ′′′

0 (Zs).

Therefrom, a periodic orbit in the phase space of the
complete system is given by

(q,p) = (X,Y,Z, θ, ψ, φ, pX , pY , pZ , pθ, pψ, pφ)
= (0, 0, Zs, 0, 0, σt, 0, 0, 0, 0, C σ,C σ). (20)

Furthermore, the uncoupled dynamical behavior in
the Z-direction follows an ordinary differential equation
of the form

Z̈ = δ1Z + δ2Z
2 + · · · (21)

whose phase space, depicted in Fig. 3, reveals the exis-
tence of two fixed points in agreement with the results
in Ref. [4] (see Fig. 1 therein).

In the vicinity of the elliptic point, the Levitron will
vertically oscillate with a frequency close to that of its
concomitant eigenvalue. Meanwhile, when approaching
the separatrix corresponding to the hyperbolic point,
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Fig. 3 Phase space corresponding to (21)

such a frequency will tend to vanish. Outside from the
libration zone, the Z dynamics is clearly unstable.

These outcomes provide us a starting point to look
for invariant regions by numerical means. The fact that
the system has a coordinate that behaves as a harmonic
oscillator suggests that we could perturb it parametri-
cally, thus simulating a vertical oscillation of the mag-
netic base, as we do in Ref. [12]. With a proper fre-
quency, in the presence of dissipation, this parametric
perturbation would counteract the effect of friction and
then witness a persistent levitation of the spinning top
under more realistic assumptions.

5 Numerical study: general frame and
adopted numerical scheme

For our numerical study, we fixed the parameters A and
C adopting, as in Ref. [5], the values

A = 0.089, C = 0.139,

which correspond to physical measurements; the effec-
tive radius being a = 34.7mm.

As in Ref. [11], we used a Runge–Kutta 7−8 method
(RK78) to cope with the integration in regions of phase
space where the system (9) can turn stiff. To overcome
the fact that Eq. (9e, f and j) becomes singular when-
ever θ = 0 or θ = π, we proceeded to control the numer-
ators in such expressions. Thus, for instance, in the case
of Eq. (9e), we fixed to zero the field entry for ψ when-
ever it was

|pψ − pφ cos θ| ≤ tol.

The same control was kept in the other two equations
and the value of tol was calibrated numerically, not hav-
ing found any significant difference for values lesser than
0.0001.

We verified that to have a stable flight of the spinning
top pφ and pψ should be close (we refer the reader to [11]

Fig. 4 Z-coordinate in the symmetric solution

and [12] for a thorough study). Let us notice that our
results confirmed the ones in Ref. [1], who showed that
both the precession and spin rates must be comparable
in order the top to have a persistent levitation. Despite
the fact that the singularity requires of the extra effort
needed to determine the suitable value for tol, the Eule-
rian angles in the singular equations of motion permit
a straightforward visualization of the top’s motion in
space in comparison to the yaw–pitch–roll angles used
in Ref. [4].

6 Symmetric and non-symmetric solutions

For our first simulation, we adopted equal values for
the angular velocities pφ = pψ. Numerical explorations
were performed to find, as [1] did, that large spinning
velocities do not stabilize the flight of the spinning top.
We took as initial condition

(X,Y,Z, θ, ψ, φ, pX , pY , pZ , pθ, pψ, pφ)
= (0, 0, 3.34, 0.005, 0, 0, 0, 0, 0, 0, 5., 5.)

with pφ = pψ. For this symmetric solution, the coordi-
nate Z evolves, as shown in Fig. 4, while the coordinates
(X,Y ) remain fixed at the origin.

To find stable regions, we performed a thorough
search for the possible values of M and Zs and found
that the value M = 11.022 provides a somewhat major
stability than the value given by Muabs (17) corre-
sponding to (18). Indeed, such a result can be verified
analytically following [5], by proposing a solution with
small precession, namely:

q = (r cos Ωt, r sin Ωt, h, α,Ωt, ωt)T (22a)

p = [−rΩ sin Ωt, rΩ cos Ωt, 0, 0, Ω(A sin2 α + C cos2 α)

+ Cω cos α,C(ω + Ωα)]T , (22b)

where only the spinning velocity ω can be freely fixed.
Indeed, the values of r, α, h, and Ω should be taken so
as (22) satisfies the equations of motion. In particular,
in order the first two equations for p be verified, the
condition
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r = 3
Mh sin α(1 + h2)(h2 − 3)

(12h4 − 63h2 + 9)M cos α + 2(1 + h2)9/2Ω2

(23)

follows. As shown in [5], this expression is positive if

(
21 − √

393
8

)1/2

= 0.3834 < h <
√

3

and

Ω2 ≤ −M cos α(12h4 − 63h2 + 9)
2(1 + h2)9/2

. (24)

Let us notice that in this range of h (that corresponds to
the Z-coordinate of the top), the numerator as well as
the first term in the denominator of (23) takes negative
values. As a consequence of the other bound for the
equilibrium Zs imposed by (18), we have

1.693848849 · · · < Zs <
√

3 = 1.732050808 . . .

However, as already stated in Ref. [11] (and skipped in
[5]), the equation for r is also positive whenever

(
21 +

√
393

8

)1/2

= 2.258988369 < h.

Therefore, if we choose the initial condition Zs = 3.34,
we have from (16) that M = 11.022. These are the final
set of values that we will use in the sequel.

In the case where pφ and pψ are slightly different, we
take the same initial conditions as in the symmetric case
except for pψ = 5.0001, the remaining initial conditions
being X = Y = φ = ψ = pX = pY = pZ = pθ = 0,
Z = Zs, pφ = 5.0, and θ = 0.005.

The results of the integration of (9), which yield the
geometrical description of the Levitron’s dynamics, are
displayed in Fig. 5 and 6 (taken from [11]), where the
abrupt loss of stability can be clearly visualized. Notice
that in the non-symmetric solution, the coordinates
(X,Y ) are no longer fixed at the origin, and the spin-
ning top remains stable for a rather short extent of time,
the flight barely surpassing the 350 time units.

Despite of the neat oscillation observed in the Z coor-
dinate, the motion of the top’s center of mass in the
(X.Y )-plane shown in Fig. 6 displays a rather chaotic
nature, as confirmed by the concomitant MEGNO
behavior which varies linearly with time (see [12] to
disclose this argument).

7 Description of the phase space
configuration

At this point, it has already been stated that we
are dealing with a 12-dimensional phase space when

Fig. 5 Time evolution of the Z-coordinate in a slightly
non-symmetric solution

Fig. 6 (X, Y )-coordinates in a slightly non-symmetric
solution

describing the motion of the spinning top, a dynam-
ics that allows of two first integrals, namely the total
energy and the momemtum pφ. Each one of the coor-
dinates defining the location of the center of mass as
well as the Eulerian angle θ defining the tilt and their
related momemtum remain bounded as long as the Lev-
itron flies in a stable fashion.

The dynamics obtained from initial conditions close
to that of (22) exhibits both in the planes (X, pX) and
(Y, pY ) an almost quasiperiodic nature but character-
ized by different frequencies.

This is also the case for the Z and θ variables. There-
fore, the concomitant dynamics is seen to lie on a torus
T
4. On the other hand, the angles φ angles ψ continue

to increase, since ṗφ = 0 and pψ remains rather close to
pφ. Indeed, according to (9), such a similarity between
both pψ and pφ is required in order the equations of
motion remain regular for |θ| << 1. In sum, the sta-
ble dynamics of the Levitron takes place onto a nearby
manifold to T

4 × R
2.

As soon as stability is lost, the dynamics turns to
be unbounded but integrable, and asymptotically tends
to a parabolic trajectory due to gravity. Far from the
fixed magnetic field, the top behaves as a rigid body
in the absence of torques and the trajectory outcomes
as the intersection between a sphere and an ellipsoid
of revolution (recall that two of the moments of inertia
are equal).
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8 Asymptotics

For gaining some insight in the role, the variables pψ,
pφ, and θ play in maintaining the nonlinear stability of
the solutions of (9); we carried out an asymptotic study
following [7]. Namely, we considered different scales
identified by powers of a given parameter ε to deter-
mine the influence of each scale on the Levitron’s non-
linear stability. The first scale is related to the rotation
period of the spinning top (order ε0) and the second
one corresponds to the period of the vertical oscillation
of the top (order ε1), while the third scale concerns the
horizontal displacements and the top tilt. Notice should
be taken however that we have adopted a different cri-
terion for introducing the multiscale analysis than the
one in Ref. [7] where the authors’ choice is based on the
relative velocities in each direction.

Herein instead, we performed a multiscale analysis
backed by our considering the Lagrange top dynam-
ics in which a rigid body rotates without nutating in
the first place, that is, the vertical or sleeping top, and
then gradually introducing perturbations to the vertical
spinning top. Accordingly, the zeroth-order scale corre-
sponds to the situation in which the spin axis of the
top is vertical and its center of mass lies on the Z-axis,
not undergoing neither vertical nor horizontal displace-
ments. The first-order scale takes into account the ver-
tical displacements of the spinning top, for which pre-
cession and rotation may be decoupled in the absence of
nutation. Therefore, up to the first-order scale, the spin-
ning top is kept in the invariant set Inv. For the second-
order scale instead, the Levitron can experience both
vertical and transversal movements, as well as nutation
and also precession, which can be decoupled from the
top’s spin.

Therefore, our adopted asymptotic representation of
the coordinates and their moments has the following
form:

Z = z0 + εz1 + ε2z2pZ = pz0 + εpz1 + ε2pz2

X = ε2x2pX = ε2px2

Y = ε2y2pY = ε2py2

θ = ε2θ2pθ = ε2pθ2

ψ = ψ0 + εψ1 + ε2ψ2pψ = pψ0 + εpψ1 + ε2pψ2

φ = φ0 + εφ1 + ε2φ2pφ = pφ0 + εpφ1 + ε2pφ2 , (25)

where all the subindex-linked variables concern the con-
comitant order in the multiscale analysis.

Rewriting (9) by recourse to (25), and arranging
terms according to the powers of ε, we can obtain the
equations of motion up to order εn for n = 0, 1, 2. Notice
that in order the negative powers of ε be absent in the
series, we have to fix

pψ0 = pφ0 and pψ1 = pφ1 ,

which are congruent with the region of phase space
where the Levitron shows the more stable flights.

At order ε0, the equations read

ż0 = pz0 ṗz0 = M[f ′′
0 (z0)]0 − 1

ẋ0 = 0 ṗx0 = 0
ẏ0 = 0 ṗy0 = 0
θ̇0 = 0 ṗθ0 = 0
ψ̇0 = 1

Aθ2
2

(pψ2 − pφ2) ṗψ0 = 0
+ 1

2A pφ0

φ̇0 = − 1
Aθ2

2
(pψ2 − pφ2) ṗφ0 = 0,

− 1
2A pφ0 + 1

C pφ0

(26)

where [ · ]n stands for all the terms of order εn. It is
clear that pψ2 = pφ2 to avoid the singularity when θ2 is
close to zero. Clearly, a solution is given by

z0 = Zc pz0 = 0

φ0 = (
−1
2A

+
1
C

)pφ0t pφ0 = const.

ψ0 =
pφ0

C
t pψ0 = const.

The vertical momentum pz0 is null, since Zc is the stable
equilibrium point (18).

At order ε1, we have the equations

ż1 = pz1 ṗz1 = ω2z1
ẋ1 = 0 ṗx1 = 0
ẏ1 = 0 ṗy1 = 0
θ̇1 = 0 ṗθ1 = 0
ψ̇1 = − 1

2A pφ1 ṗψ1 = 0
φ̇1 = 1

A pφ1 ṗφ1 = 0

(27)

whose solutions read

z1 = A sin(ωt + β) pz1 = ωA cos(ωt + β)

φ1 = −pφ1

2A
t pφ1 = const.

ψ1 =
pφ1

A
t pψ1 = const.

Therefore, notice should be taken that up to the first-
order scale, the spinning top is kept in the invariant set
Inv.

Finally, the set of equations at order ε2 are

ż2 = pz2 ṗz2 = −ω2z2 + 1
2f

(iv)
0 (Zc)z21

ẋ2 = px2 ṗx2 = 2θ2 cos ψ0 − f ′′′
0 x2

ẏ2 = py2 ṗy2 = 2θ2 sinψ0 − f ′′′
0 y2

ψ̇2 = 1
2A pφ2 ṗψ2 = 0

φ̇2 = − 1
2A pφ2 ṗφ2 = 0

+(pψ2 − pφ2)

(28)

θ̇2 = 1
Apθ2

ṗθ2 = − 1
4Apφ0pψ0θ2 − 2(x2 cos ψ0 + y2 sin ψ0) − Mf ′

0θ2.
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Fig. 7 Numerical solution of (28) in the (x2, y2) plane for
the adopted parameter values μ = −32.75, a = 0.089, and
pψ0 = 100

At this order, we apply the Taylor expansions of f0 and
f2 with z = Zc + εz1 + ε2z2 to obtain

f ′
0(z) = f ′

0(Zc) + f ′′
0 (Zc) εz1

f ′′
0 (z) = 1

M + f ′′′
0 (Zc) εz1

and, renaming Mf ′′′
0 (Zc) = −ω2, there results

4f ′
2(z) = −f ′′′

0 (z) = −f ′′′
0 (Zc) − f iv

0 (Zc)

εz1 =
ω2

M − f
(iv)
0 (Zc) εz1. (29)

Therefore, the terms [f ′
2]n, [f2]n and [f ′

0]n in the
asymptotic equations of motion can easily be computed.

According to the asymptotic theory, in order the
solutions of the original Eq. (9) be either periodic or
quasiperiodic, the solutions of the equations at any
order in ε have to be bounded. Since the equations
obtained at order ε2 admit no analytic solutions, we are
compelled to numerically integrate (28). The outcom-
ing trajectory in the (x2, y2) plane seems to be bounded
as Fig. 7 shows (compare with Fig. 11 in Ref. [13]).

The solutions of the asymptotic equations (26), (27),
and (28) are consistent with those solutions obeying
some kind of symmetry such as those of (12) or the one
given by (22). Since ṗψi

= ṗφi
= 0 for i = 0, 1, 2, 3,

setting p2φ2
= −4AMf ′

0, we get Mf ′
0f

′′′
0 + 1 = 0 and

the concomitant value of Zc as well as the limiting value
r >

√
x2
2 + y2

2 verifying r = 2α
/
(Ω2 + f ′′′

0 ), with α
given in (22).

Equations (28) provide a linear system for (x2, y2, z2,
θ2, ψ2, φ2) and their related momenta, which depends
on time through ψ0 that evolves linearly with time,
which should be addressed by means of the Floquet
theory. The z2 variable is the solution of a driven linear
equation. Nonetheless, as in Ref. [4], we could consider

Fig. 8 The maximum amplitude onto the horizontal plane
is depicted in red versus pψ0 (represented in the horizon-
tal axis); the vertical axis on the left corresponding to
log(R(T )), with R = |x2| + |y2|

that ψ0 is constant in the invariant set and thus obtain
a reduced autonomous linear system by putting aside
the equations for z2, φ2 and their momenta. Then, the
reduced system reads

Ẇ = DW

W = (x2, y2, θ2, ψ2, px2 , py2 , pθ2 , pψ2)
T ,

the matrix D being

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 1
A

0

0 0 0 0 0 0 0 − 1
2A

− 1

−f ′′′
0 0 2 cosφ0 0 0 0 0 0
0 −f ′′′

0 2 sinφ0 0 0 0 0 0

−2 cosψ0 −2 sinψ0 − pφ0pψ0
4A

− Mf ′
0 0 0 0 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

so that it can be written in the fashion

D =
(O I

D O
)

with O and I denoting the 4×4 null and (after the due
distance and time rescaling) identity matrices, respec-
tively, and D is the antisymmetric matrix

D =

⎛
⎜⎝

α 0 β 0
0 α γ 0

−β −γ δ 0
0 0 0 0

⎞
⎟⎠
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with α = −f ′′′
0 , β = 2 cos ψ0, γ = 2 sin ψ0 and δ =

−pφ0pψ0
4A − Mf ′

0. The corresponding eigenvalues are

λ2
1 = 0, λ2

2 = α, λ2
3,4 =

α + δ

2
± 1

2

√
(α − δ)2 − 16,

and stability takes place for α < 0 and λ2
3,4 < 0, i.e.,

|α − δ| > 16, α + δ < 0 and |α + δ| > 1
2

√
(α − δ)2 − 16.

Moreover, if ψ0 is a linear function of time, from Flo-
quet’s theory, we know that the sum of the Floquet
exponents vanishes, since the trace of D is null.

Let us notice that, as δ depends on pψ0 and pψ0 =
pφ0 , whenever pψ0 tends to 0 stability is lost (as it can
be observed in the forthcoming Fig. 8).

Let us now consider two further terms in the expan-
sion for pψ, namely

pφ = pφ0 + εpφ1 + ε2pφ2 + ε3pφ3 + ε4pφ4 ,

in (25); such a practice leads us to ṗψi
= 0 for i = 0, 3,

and, consequently, to pψi
= pφi

for i = 0, 3. Nonethe-
less, ψ4 is no longer constant, but evolves according to

ṗψ4 = Mθ2(3600z20 − 72) (y2 cos ψ0 − x2 sinψ0) ,

and pψ4 departs from pφ4 which continues to be a
constant of motion at this order. Due to the quasi–
oscillatory behavior of coordinates x2 and y2 shown in
Fig. 7, we could conclude that pψ4 beholds a quasiperi-
odic nature. Let us notice that it is necessary to go as
far as the fourth power in the parameter to detect a
slight variation in pψ.

Let us remark then that in our asymptotic study,
we obtain pψi

= pφi
, i = 0, 1, 2, 3, which guarantees

the regular and bounded behavior of the equations of
motion up to such an order (we refer to [12] for a
detailed analysis of the |pψ − pφ| behavior as θ → 0,
which should remain bounded in order the equations
of motion be stable). Indeed, it is not up to the fourth
order that the momentum pψ4 is decoupled from pφ4 .

After some numerical exploration, we disclose pψ0

to be the main bifurcation parameter for (28), which
besides is equal to pφ0 . In fact, the numerical integration
allows for the computation of R(t) = |x2(t)| + |y2(t)|
for the total integration time T and, consequently, the
realization of the bifurcation diagram for (28); the out-
coming bifurcation diagram is given in Fig. 8 which dis-
plays the value of log(R(T )) as a function of pψ0 . Let
us notice that stability is lost when pψ0 tends to 0, as
expected from our second-order analysis, δ depending
on pψ0 and pψ0 = pφ0 .

With the aim of studying the Levitron’s behavior
when the dissipation due to air friction is taken into
account, as in Ref. [11,12], at least two positive con-
stants are needed, namely CT and CR corresponding
to both translation and rotation, i.e., the two different
types of motion involved in the flight of the spinning
top. Furthermore, two mechanical schemes which corre-
spond to forcing the vertical location of the permanent
magnetic base by small motions are proposed to inject

energy into the system. Indeed, a parametric perturba-
tion of the magnetic base can be introduced by forcing
the equilibrium point of the system (19) to vary in the
fashion

Zs �−→ Zs(1 + β cos ωt), (30)

whereas a hysteretic perturbation can be modeled just
by changing the equilibrium point according to

Zs �−→ Zs + β cos ωt. (31)

On the other hand, the dissipative terms −CT pX ,
−CT pY , and −CT pZ are to be added to Eq. (9g–i)
in ṗX , ṗY , ṗZ , respectively. Besides, and since the rota-
tional velocity is very high compared to the transla-
tional velocity, a quadratic term would be to model
the concomitant friction, the dissipative terms added
to the Eq. (9j–l) being −CRpθ|pθ|, −CRpψ|pψ| and
−CRpφ|pφ|, respectively.

Let us then incorporate both parametric and hys-
teretic perturbations as well as the damping forces (see
[12] for details) in our asymptotic scheme. The excita-
tion forces should be introduced at order ε1, by means
of (31) or (30) being applied in the Z-equation in ref.
(25), but with β rescaled as εβ, such that the former εβ
coefficient is actually of order ε2. In the same direction,
the dissipation parameters are rescaled in the fashion
ε2CT and ε2CR. It is clear that these damping forces
contribute to Eq. (28), causing the amplitude of R(T )
to be reduced but leaving the bifurcation point unal-
tered. The hysteretic and parametric forces have a sim-
ilar solution to that of the Mathieu equation, the z1
coordinate being able to grow in case ω is resonant to
(27). The coordinates x2, y2 and θ2, however, are not
modified. We can thus conclude that the hysteretic and
parametric forces cannot restore the energy loss in the
rotational terms at least at order ε2.

The stability of Eqs. (26), (27), and (28) requires that
pψn

= pφn
, for n = 0, 1, 2, 3. This result agrees with

that of the numerical integration of the original equa-
tions (9), the Levitron undergoing a stable levitation as
long as the quotients in the right hand of (9e, f and j)
remain bounded (i.e., for |pψ −pφ| << 1 and |θ| << 1).
Therefore, the spinning top preserves its stable flight,
even though the rotation frequency reduces its value
due to the energy losses of the system, but there exists
a bifurcation point from which (24) is no longer fulfilled.
Unfortunately, our asymptotic study does not manage
to detect such bifurcation point when considering the
asymptotic behavior up to order ε2.

9 Conclusions

The present effort, which follows the guideline of the
works of Dullin and Easton, and Gans, concerns the
study of the dynamics of the Levitron. Not only has a
local study been performed which disclose the dynamics
on an invariant manifold in phase space, but a periodic
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solution for the complete system has been obtained as
well. Moreover, we have extended the results of Gans,
being able to determine further stable regions for the
magnetic levitation of the Levitron. Symmetric and
asymmetric trajectories close to an analytical solution
have been numerically explored.

Furthermore, to elucidate the nonlinear behavior of
the interacting translational and rotational modes, mul-
tiscale asymptotic computations have been carried out,
which provide evidence of the nutation affecting the
spinning body’s translation. Our main motivation in
such a practice has been to distinguish how the vary-
ing difference between the rotational and precession
momenta affects at different time scales.

Our asymptotic analysis allows us to conclude that
neither parametric nor hysteretic perturbations (see
[12]) can prevent the loss of energy of the Levitron,
but, through the reduction of the flying body nutation,
they delay the energy loss due to friction.
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