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Abstract Inspired by the recent observation of memory effects in the nonlinear optical response of a
coherently-driven micro-cavity, we investigate the effects of varying the memory time on the dynamics of
optical and mechanical resonators. For a memory time that is commensurate with the inverse dissipation
rate, both optical and mechanical resonators display stable limit cycles. In this regime, we evidence a
cascade of period-doubling bifurcations as the memory time increases. For longer memory times, the
mechanical resonator displays a regime of chaotic dynamics associated with a double scroll attractor. We
also analyze the effects of the memory time on the spectrum and oscillation amplitude of the oscillator.
Our results point to new opportunities for nonlinear energy harvesting, provided that a nonlinearity with
memory can be implemented in mechanical systems.

Despite what Newton’s laws suggest, physical systems
do not respond instantaneously. Real systems gener-
ally have a non-instantaneous response, which can be
mathematically described by a time-delayed term in the
equation of motion representing them [1–8]. Already a
simple constant time delay can result in complex behav-
ior, such as delay-induced bifurcations [9–11] and chaos
[12,13]. The more general classes of distributed time
delays [14–18], time-varying delays [19–23] and state-
dependent delays [24,25] can also lead to a rich phe-
nomenology. Beyond their fundamental relevance, time-
delayed systems are also relevant to many applications
in computation and machine learning [26–32], sensing
[33–35], and chaos-based communication [36–38]. While
a number of systems with nonlinear time delay have
garnered strong interest [22,39–42], most efforts in the
field have focused on systems with time delay in their
linear response.

Optical systems, and particularly lasers, have enabled
numerous studies of the physics emerging from a time-
delayed response [43–52]. Recently, coherently-driven
thermo-optical nonlinear cavities have also attracted
strong interest in this context. They offer a convenient
platform for probing the effects of a distributed time
delay, or memory, in the nonlinear optical response
[53–56]. In this case, the nonlinear optical response is
time-delayed because it is coupled to a slow variable,
i.e., the temperature of the nonlinear medium in the
cavity. From the perspective of the full system (opti-
cal plus thermal degrees of freedom), the evolution is
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local in time. Nonetheless, the slow dynamics of the
temperature can lead to a rich phenomenology for the
optical degrees of freedom. For instance, recent experi-
ments with a thermo-optical nonlinear cavity revealed a
universal scaling law for hysteresis phenomena [55], and
an enlarged bandwidth for noise-assisted amplification
of periodic signals [56]. Motivated by these recent find-
ings of fundamental and practical relevance, we hereby
explore the physics emerging as the memory time of
the system is varied. We do this for a thermo-optical
nonlinear cavity as well as for a noise-driven mechan-
ical oscillator with memory in its nonlinear response.
In both cases, we demonstrate the emergence of stable
limit cycles when the delay time is commensurate with
the inverse dissipation rate of the oscillator. For the
mechanical oscillator, we also discover a chaotic regime
associated with a double scroll attractor, occurring for
larger delay times. Our results have implications for
nonlinear vibration energy harvesters [57], which can
be improved by a nonlinear response with memory. We
stress that the type of distributed time delay, or mem-
ory, we consider can be explained fully in terms of an
instantaneous response of a higher-dimensional dynam-
ical system. However, the dynamical variable of inter-
est (optical or mechanical) displays effective memory
effects due to its coupling to a slow variable.

Let us first demonstrate, experimentally, the exis-
tence of a distributed time-delayed optical response of
an oil-filled optical microcavity. Figure 1a illustrates our
experimental setup: a tunable Fabry–Pérot cavity filled
with macadamia oil and driven by a 532 nm continuous
wave laser. The cavity (Fig. 1b inset) is made by a pla-
nar and a concave mirror. The planar mirror comprises
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Fig. 1 a Schematic of our optical setup. Two electro-
optical modulators (EOM) add noise to the laser ampli-
tude and phase. The laser light is then focused on an
oil-filled optical microcavity using microscope objectives.
The transmitted light is measured using a photodetector
(PD). b Transmitted intensity while opening and closing
the cavity (black circles), averaged over 20 cycles, for a
laser power of 7.8 mW at the excitation objective. Yellow
solid (dashed) curves show stable (unstable) steady-state
solutions of Eq. (1). Green solid curve shows a dynamical

simulation while scanning Δ/Γ, with F = 10.7
√

Γ. Inset:
Schematic of an oil-filled optical microcavity. c Transmitted
intensity (black) when the input laser is modulated by a
chopper, creating a step function in the intensity (yellow).
Inset: Zoom of overshoot. Green line indicates the full-width
half-maximum of the overshoot, which is 5 µs. d Simulation
of Eq. (1) when increasing F from 0 to 7

√
Γ at Γt = 5000,

with Δ = 1.4Γ. Inset: Zoom of the overshoot. Green line
indicates the width of the overshoot, which is τ/2

a 60 nm silver layer on a glass substrate. The concave
mirror has a diameter of 7 µm and a radius of curva-
ture of 12 µm. It is fabricated by milling a glass sub-
strate with a focused ion beam [58], and then coating
it with a distributed Bragg reflector (DBR). The DBR
has a peak reflectance of 99.9% at the center of the
stopband, located at 530 nm. Thanks to micron-scale
dimensions of the concave mirror strongly confining the
optical modes, we can probe a single mode when scan-
ning the cavity length across a wide (> 10 nm) range.

In a frame rotating at the frequency of the driving
laser ω, the light field α in our cavity satisfies:

iα̇(t) =
[
−Δ − i

Γ
2

+ U

∫ t

0

ds K(t − s)|α(s)|2
]

α(t)

+i
√

κLF +
D√
2

[ξR(t) + iξI(t)] . (1)

Δ = ω − ω0 is the laser-cavity detuning, with ω0 the
cavity resonance frequency. Γ = γ + κL + κR is the
total dissipation rate, with γ the intrinsic loss rate,
and κL (κR) the input-output coupling rate through
the left (right) mirror. U quantifies the strength of the
cubic nonlinearity, corresponding to effective photon-
photon interactions in optical systems. The memory
kernel K(t) = exp (−t/τ) /τ accounts for the non-
instantaneous nonlinear response of our cavity, with
memory time τ . τ is the time in which the temperature
of the oil relaxes to a steady state when the laser ampli-
tude F changes. The term Dξ(t) = D[ξR(t)+iξI(t)]/

√
2

represents Gaussian white noise with variance D2 in the
laser amplitude and phase. ξR,I(t) each have zero mean
[i.e., 〈ξR,I(t)〉 = 0], and are delta-correlated with unit
variance [i.e., 〈ξR,I(t)ξR,I(t + t′)〉 = δ(t′)]. Moreover,
ξR(t) and ξI(t) are mutually uncorrelated. While (shot)
noise with these properties is inherent to laser light, a

controlled amount of noise with the same characteristics
can be added by passing the laser through amplitude
and phase electro-optical modulators (EOMs) [56]. The
spectral density of the amplitude noise can be directly
assessed by Fourier transforming a time-resolved mea-
surement of the laser intensity. Meanwhile, the phase
noise can be similarly assessed by interfering the laser
light with itself at the detector, with the help of a beam
splitter. Such an interferometric approach translates
phase fluctuations into intensity fluctuations, thereby
allowing for a full characterization of the noise.

The time integral in Eq. (1) implies that the non-
linear optical response of our cavity is non-local in
time. This temporal non-locality arises because we
are restricting our attention to the optical degrees of
freedom, e.g., amplitude and phase of light. However,
Eq. (1) can also be written as a three-dimensional (3D)
system of ordinary differential equations (ODEs). Thus,
by increasing the dimensionality of our system by one
and accounting for the dynamics of a new variable (the
temperature of the oil in our case), the response of the
full system becomes instantaneous. Writing Eq. (1) as
a 3D system of ODEs is also convenient for numerical
simulations. Hence, we rewrite Eq. (1) as follows:

α̇R(t) = −Γ

2
αR(t) + [w(t) − Δ] αI(t) +

√
κF + DξR/

√
2

α̇I(t) = −Γ

2
αI(t) − [w(t) − Δ] αR(t) + DξI/

√
2

ẇ(t) =
{
U

[
α2
R(t) + α2

I (t)
]

− w(t)
}

/τ.

(2)

αR and αI are the real and imaginary parts of α, respec-
tively, such that α = αR+iαI . w =

∫ t

0
ds K(t−s)|α(s)|2

is the new variable, which accounts for the temperature
of the oil in our cavity. Equation (2) can now be solved
numerically using standard techniques for stochastic
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ODEs. We used the xSPDE Matlab toolbox [59] and a
fourth-order Runge–Kutta algorithm for solving Eq. (2)
and other equations ahead.

For strong driving (large F ), the cavity supports opti-
cal bistability: two stable steady states with different
intra-cavity intensity |α|2 at a single driving condition.
To evidence bistability, we measure the transmitted
intensity while scanning the cavity length (and hence
Δ) forward and backward. The black curve in Fig. 1b
shows the result when the laser power is 7.8 mW at the
excitation objective. We observe a large optical hystere-
sis, and bistability occurs in the 1.5 � Δ/Γ � 5 range.
We also observe a large overshoot around Δ/Γ = 1.5,
which is due to the non-instantaneous thermo-optical
nonlinearity of the oil-filled cavity. The solid (dashed)
yellow curve in Fig. 1b shows stable (unstable) steady-
state solutions, obtained by setting α̇ = 0 in Eq. (1).
These steady-state calculations reproduce the bistabil-
ity, but not the overshoot. In contrast, dynamical simu-
lations of Eq. (2), shown as solid green curves in Fig. 1b,
reproduce our experimental observations including the
overshoot. The overshoot arises when the duration of
the scan is similar to or less than the thermal relaxation
time of the oil [55], which is the case in our experiments.

Figure 1c, d further evidence the non-instantaneous
nonlinear optical response of our cavity. The black curve
in Fig. 1c represents the transmitted intensity when
modulating the laser power in a step-like fashion, as
shown by the yellow curve. Prior to the step, the laser
is blocked and the transmission is zero. Immediately
after the step, the transmission first increases to a low
intensity state. Then, the nonlinearity gradually builds
up due to the laser-induced heating of the oil. This
results in a slow increase of the transmitted signal.
Finally, after the nonlinearity has sufficiently built up,
the transmitted intensity displays a large overshoot fol-
lowed by relaxation to a high intensity steady state.
In Fig. 1d we numerically reproduce our experimental
observations using Eq. (2). From our calculations we
find that the full-width at half-maximum of the over-
shoot, indicated by the green line in the Fig. 1c inset, is
τ/2 regardless of the cavity parameters. Based on this
finding, we deduce that τ = 10 µs in our cavity.

Next we explore the effect of changing the ther-
mal relaxation time τ in our optical cavity. This is
much more easily done numerically than experimen-
tally. Hence, we leverage the good agreement between
our model and experiments to investigate this effect
numerically. Figure 2a shows a bifurcation diagram for
Eq. (2) as we vary Γτ for fixed Δ = 6Γ and F = 56

√
Γ.

We plot the values of αR = � [α] where the phase
space trajectory crosses the manifold αI = � [α] = 0
with α̇I > 0. For Γτ � 1 the nonlinearity is effectively
instantaneous and the intracavity field quickly relaxes
to its steady state. However, for Γτ ∼ 1 stable limit
cycles emerge. For Γτ < 0.25 we observe a single point
for all Γτ , indicating a period-1 limit cycle (see Fig. 2c).
Near Γτ = 0.25 and Γτ = 0.5 we observe a period-
doubling bifurcation leading to period-2 (Fig. 2d) and
period-4 (Fig. 2e) limit cycles, respectively. For Γτ 	 1

the system effectively behaves linearly and no limit
cycles are observed. Figure 2b shows a bifurcation dia-
gram as function of F/

√
Γ. Stable limit cycles are only

observed above the bistability range, indicated by the
gray area in the inset.

The results presented above and in References [55,56]
motivate us to explore more generally, beyond the realm
of optics, the effects of a non-instantaneous nonlinear-
ity. In this spirit, we consider a mechanical oscillator
with non-instantaneous Duffing-type nonlinearity. The
Duffing oscillator is a cornerstone of nonlinear dynam-
ics. While the Duffing oscillator has a cubic nonlinearity
identical to the one of our thermo-optical cavity in the
τ → 0 limit, there are important differences between
the two models worth to explore. These differences lead
to qualitatively different behavior, as explained below.

Our nonlinear mechanical oscillator with memory
satisfies the following equation of motion:

mẍ(t) =

(
a − b

∫ t

0
ds K(t − s)x(s)2

)
x(t) − γẋ(t) + Dξ(t).

(3)

m is the mass of the oscillator and γ its dissipation. a
and b define the potential V (x) = −ax2/2+bx4/4 in the
limit τ → 0. We set a > 0 and b > 0, such that V (x) is a
double-well potential. We describe the memory with the
same kernel function K(t) = exp (−t/τ) /τ (memory
time τ) used to describe our oil-filled cavity.

To simulate Eq. (3) it is convenient to define the vari-
ables w = b

∫ t

0
ds K(t − s)x(s)2 and v = ẋ. This allows

us to write Eq. (3) as a set of 3 ODEs, like we did for
the thermo-optical cavity. Hence, we have

ẋ = v,

mv̇ = (a − w) x − γv + Dξ(t),

ẇ =
(
bx2 − w

)
/τ.

(4)

By comparing the above equations to Eq. (2), we can
immediately recognize important differences between
the two systems. First, notice that Eq. (3) describes
a single underdamped oscillator with memory. Conse-
quently, in Eq. (4), the velocity ẋ = v is only coupled to
the acceleration mv̇ but not to w. In contrast, Eq. (2)
shows that a single optical mode corresponds to two
coupled overdamped oscillators. The overdamped (in a
frame rotating at the laser frequency) optical degrees of
freedom are the real and imaginary parts of the field α,
namely αR and αI . Since αR and αI are mutually cou-
pled by the nonlinear term containing the slow variable
w, all three degrees of freedom are directly mutually
coupled in the thermo-optical system. Clearly, the adja-
cency matrices (connectivity) of the mechanical and
thermo-optical systems are different. Hence, we may
expect significantly different phase space structure and
emergent behavior.

Let us now investigate how the dynamics of our
nonlinear mechanical oscillator depend on the mem-
ory time τ . In Fig. 3a we plot a trajectory of x for
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(c) (d) (e)

(a) (b)

Fig. 2 a Bifurcation diagram as function of Γτ . Vertical
yellow lines indicate the phase space trajectories in c–e.
Vertical green line corresponds to the value of Γτ used in b.
Bifurcation diagram as function of F/

√
Γ for Γτ = 1. Inset:

|α|2 as function of F/
√

Γ in the limit τ → 0. Solid (dashed)
line corresponds to stable (unstable) steady-state solutions.
Gray area corresponds to range wherein limit cycles are
observed. Parameters: U=Γ/40, F=56

√
Γ, Δ=6Γ, D=0

(a) (b) (c)

(d) (e) (f)

Fig. 3 Simulations of an oscillator with Duffing-type non-
linearity with memory. γ is the dissipation rate and τ is
the memory time. a–c show position as function of time
for γτ = 10−2, γτ = 3, and γτ = 20, respectively. d–f

show the phase space trajectories for trajectories of duration
γt = 103. The color plot in the x, v plane is a 2D histogram
built from a trajectory of duration γt = 104. Simulation
parameters: γ = 1, a = 1, b = a/10, m = 10aγ−2, D2 = γ

γτ � 1, i.e., in the limit of an instantaneous non-
linear response. This and all calculations ahead are
obtained by solving Eq. (4) numerically with time incre-
ments Δt = γ−1/100. Figure 3a shows random tran-
sitions between the two minima of V (x), located at
x± = ±√

a/b. This is the typical behavior of a bistable
system. Figure 3d shows the corresponding trajectory

in phase space. The projection of that trajectory on
the x, v plane shows the expected behavior for a noise-
driven Duffing oscillator without memory. Figure 3b,
e show a typical trajectory in time and phase space,
respectively, when γτ � 1. In that case, we observe sta-
ble limit cycles with an amplitude far exceeding the dis-
tance between the two minima of V (x). The limit cycles
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(a)

(b) (c) (d)

Fig. 4 a Bifurcation diagram as function of γτ . Vertical yellow lines indicate the phase space trajectories in b–d. Inset:
Zoom of region in the green rectangle. Parameters are as in Fig. 3 with D = 0

(a)

Fig. 5 a Power spectral density of an oscillator with
Duffing-type nonlinearity having distributed time delay. γ is
the dissipation rate and τ is the memory time. b Enhance-

ment of the root-mean-squared displacement with respect
to γτ = 10−2 as function of γτ . Parameters are as in Fig. 3

arise due to a Hopf bifurcation near γτ = 1. Finally, for
certain ranges of γτ > 1, the dynamics become chaotic.
An example of this chaotic regime is shown in Fig. 3c, f.
Notice in Fig. 3f the characteristic shape of the double
scroll attractor, indicative of chaos [60].

Figure 4a shows a bifurcation diagram for our
mechanical oscillator as γτ increases, similar to what
we showed for the optical cavity. We plot the x-values
where the phase space trajectory crosses the mani-
fold v = 0 with v̇ > 0. For γτ < 13.6 we observe
a single point for each γτ , indicating a period-1 limit
cycle (Fig. 4b). Near γτ = 13.6 we observe a bifurca-
tion, whereafter a period-2 limit cycle arises (Fig. 4c).
Finally, for γτ > 16.5 we observe the double scroll
attractor characteristic of deterministic chaos. The fig-
ure as a whole (and the inset in more detail) shows the
typical cascade of period-doubling bifurcations leading

to chaos. Notice that we also observe periodic windows
in between chaotic regimes, occurring within certain
ranges of γτ . We would like to point out that we did not
find chaotic dynamics in the optical resonator, despite
the fact that we searched for them across a wide param-
eter range (not shown here). This may be due to the
fundamental differences in the equations of motion of
the two systems, as we explained above.

Recently, nonlinear oscillators have attracted great
interest for potential applications to vibration energy
harvesting [57,61–65]. Many efforts in this direction
emerged from the seminal work of Cottone et al. [57],
who demonstrated the superior energy harvesting capa-
bilities of a Duffing oscillator relative to a linear oscil-
lator. The enhanced performance was associated with
the wider spectral response of the Duffing oscillator.
Indeed, while the linear oscillator only efficiently har-
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vests energy from noise with frequency close to the
resonance frequency, the nonlinear oscillator can har-
vest energy across a larger bandwidth in the regime
of bistability. This suggests that an oscillator with a
wide frequency response, as expected for example in
a chaotic regime, could be ideal for energy harvesting.
In this vein, we analyze the spectral response and the
root-mean-square (RMS) displacement of our nonlin-
ear oscillator with memory. While previous works have
considered energy harvesting with nonlinear oscillators,
to the best of our knowledge this is the first time that
the effects of memory in the nonlinearity on energy har-
vesting are studied.

Figure 5a shows the spectral response of our nonlin-
ear oscillator for different τ . The spectra are obtained
by Fourier transforming the time traces in Fig. 3. For
γτ = 10−2, the orange curve shows a single shal-
low peak near the resonance frequency ω± for the
τ = 0 case. The peak deviates slightly from ω± = a/m
because of the finite τ in our system. Moving on to
γτ = 3, the black curve in Fig. 5a reveals a strong
peak at f/γ ≈ 0.09. This peak corresponds to the large
amplitude limit cycle oscillations observed in Fig. 3b.
We also notice a peak around f/γ ≈ 0.27, due to
the oscillations not being purely sinusoidal. Moving on
to the chaotic regime (γτ = 20), the green curve in
Fig. 5a no longer shows any well-resolved resonances.
This is expected based on the fact that chaotic dynam-
ics can involve a wide range of frequency components.
However, Fig. 5a shows that the power spectrum for
the chaotic oscillator decays significantly at high fre-
quencies. Thus, it may not necessarily be the case that
chaotic dynamics are advantageous for energy harvest-
ing. To assess the frequency-integrated effect of the
memory time more carefully, let us analyze the RMS
displacement xrms of the oscillator.

Figure 5b shows xrms normalized to the average value
in the small τ limit,

〈
x0
rms

〉
, as function of γτ . We

observe that xrms/
〈
x0
rms

〉 ≈ 1 in the Markovian limit
(γτ � 1), where memory effects are irrelevant. In con-
trast, the RMS displacement is greatly enhanced for
γτ � 1, where the limit cycles emerge. As γτ increases
beyond 1, the RMS displacement decreases. For γτ 	 1
the RMS displacement remains constant as function of
γτ , since the system is effectively linear in this regime.
However, the RMS displacement is still larger than in
the Markovian limit because the system can intermit-
tently make large amplitude excursions and then relax
to the monostable state again. Thus, in summary, we
did not find any advantage for energy harvesting due
to chaotic dynamics. Instead, the regime of large ampli-
tude limit cycle oscillations seems to be, by far, the most
advantageous for energy harvesting. Finally, we would
like to point out that the lack of data points in the range
γτ = 0.2−3 is due to lack of numerical convergence. In
our simulations, the amplitude of the limit cycle oscilla-
tions diverges in this range. While we believe that more
sophisticated numerical methods may resolve this issue,
limit cycle oscillations of very large amplitude are still
likely to be found in that regime.

To summarize, we have demonstrated how a dis-
tributed time delay in a Duffing-type nonlinearity can
lead to a rich phenomenology, including the emergence
of stable limit cycles and chaos. Remarkably, the ampli-
tude of the limit cycle oscillations can be very large
when the delay time is commensurate with the dissi-
pation time. If such a distributed time delay can be
realized in nonlinear energy harvesters [57], our results
could pave the way for massively improving the perfor-
mance of those systems.
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