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Abstract In this work, we present a set of algorithms that allow the location and identification of birds
through their songs. To achieve the first objective, neural networks capable of reconstructing the position
of the subject are trained from a set of differences in the arrival times of a sound signal to the different
microphones in an array. For the second objective, a dynamical system is used to generate surrogate songs,
similar to those of a given set of subjects, to train a neural network so that it can classify subjects. Taken
together, they constitute an interesting tool for the automatic monitoring of small bird populations.

1 Introduction

In recent years, machine learning and deep learning
techniques have made it possible to attack a multiplic-
ity of problems that until recently were prohibitively
complex. In ecology, for example, one area of interest is
the monitoring of animal populations. Studies in these
areas can be facilitated, in the case of vocally active ani-
mals, by the automatic processing of the sounds that
the animals make. Particularly in the case of birds,
in the past few years much progress has been made
in the automatic recognition of species through song,
which has meant an important advance in the moni-
toring of avian biodiversity [1–4]. The convergence of
two factors has been key to solving this problem. The
first was the development of our calculation capacity,
which has allowed the application of techniques such as
deep learning neural networks to carry out classification
tasks. The second factor has been the creation of inter-
national sound repositories such as Xeno-canto, from
which it was possible to extract the enormous number
of samples necessary to train the networks that perform
the classification [5,6].

A problem somehow linked to the previous one is the
localization and identification of individual wild birds
through their vocalizations. This is relevant if you are
looking to monitor the social behavior of a small popu-
lation, which may be relevant for example, in the case
of threatened species. This type of monitoring is also of
interest in the framework of studying ethological pro-
cesses such as the acquisition of song. In oscine birds,
the song plays a fundamental role in a variety of social
interactions, from territorial defense to partner selec-
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tion. Wild birds under laboratory conditions show a
limited behavioral response. That is why it is ideal to
study these birds in their natural habitat, in which they
show their complete behavioral repertoire. Much of this
natural behavior takes place in a visually challenging
landscape, such as, open foliage-free spaces. For this
reason acoustic localization play an important comple-
ment in the ethological study of birdsong, providing
a spatial context to the social interactions involving
vocalizations.

The identification of subjects through song presents
important challenges, particularly if one aspires to use
methods such as neural networks, which were successful
in identifying species. One of these challenges is the size
of the samples that can be aspired to obtain, such as
to train a network to identify a subject. Typically, it is
possible to achieve the continuous registration of a set of
songs and conclude that they come from a subject. But
unless the individuals are ringed, and the visual code
of the vocalizing subject can be visualized and identi-
fied, it is not possible to put together separate records
and assign them to a single individual. For this rea-
son, it is difficult to train a neural network with songs
from a subject: the bases of songs attributable to a sub-
ject in the field are usually formed by a few examples
[7,8].

In this work, we present a set of algorithms capable
of locating birds through their vocalizations and iden-
tifying the vocalizing subject through certain specific
patterns of their song. The locator algorithm begins
with the processing of the acoustic signals, correspond-
ing to recording a song by means of an array of four
microphones. Taking the difference in arrival times at
these different microphones, a neural network previ-
ously trained with artificially generated time differ-
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ences reconstructs the position of the sound source.
On the other hand, the acoustic pattern identifier algo-
rithm consists of a neural network capable of tak-
ing the image of a spectrogram corresponding to a
song and classifying it among a set of pre-established
classes. To train a neural network so that it can iden-
tify the acoustic patterns of a subject, it is trained
with the images of the spectrograms corresponding
to synthetic songs that emulate the real birdsong of
a group of subjects [9,10]. In this way, it is possi-
ble to generate, from a few songs per subject, many
surrogate songs capable of training the classification
network.

This method of classifying acoustic patterns is used
to classify individuals in those species in which it is
required the exposure to a tutor to learn to vocalize,
managing to crystallize one or more songs of their own,
typically consisting of some combination of whistles
characteristic of the species. An example is explored in
this work, Zonotrichia capensis. This is a South Ameri-
can bird that needs an exposure to a tutor to sing. After
a period of learning, it ends up incorporating a song. In
exceptional cases, it can incorporate two or even three
different themes [11–13]. To illustrate how these algo-
rithms operate, in this work we train a neural network
using surrogate synthetic songs to distinguish between
a set of six different examples of Zonotrichia capensis
songs. Applying the localization method, we find that
three of the analyzed patterns actually corresponded
to three songs generated by a single individual. Sub-
sequent filming allowed to validate the result, highly
unexpected since, according to the literature, only one
out of approximately 500 specimens of this species can
generate three different songs [11,12].

2 Identification of themes using neural
networks

The rufous-collared sparrow, or chingolo (Zonotrichia
capensis) is a highly territorial songbird, which acquires
its song after being exposed, as a juvenile, to a tutor.
His song is a sequence of syllables that he sings for a
period of between 2 and 3 s and is made up of two parts.
The first is an introductory sequence of between 1 and 5
syllables whose frequency is modulated. This first part
is known as a theme, and each individual typically has a
characteristic one, although there are individuals capa-
ble of singing two or three different themes. The second
part is made up of a trill; a rapid repetition of identi-
cal syllables [11–14]. Figure 1 shows a set of spectro-
grams representative of the song produced by the chin-
golos in this study. We analyzed 52 songs correspond-
ing to six different themes, recorded in four different
sites of Parque Pereyra Iraola (Buenos Aires Province,
Argentina).

When we need to automatically identify species by
song, there are databases with hundreds of examples
of song by species that can be used to train a neu-
ral network to perform the task. On the contrary, if

Fig. 1 Six themes analyzed in this work, taken in four dif-
ferent places. The recordings were made with a sampling
frequency of 44.1 kHz. Each spectrogram was found using
a Gaussian window (standard deviation of 128 points), pro-
cessing segments of 1024 samples, with successive overlaps
of 512 samples. For the visualization of the spectrograms,
a clipping of less than 1/600 of the maximum value of the
spectrogram has been considered

the challenge is to identify individuals, for each non-
ringed subject, it is only possible to assume as songs of
the individual those recorded in a continuous record-
ing. Thus, it is difficult in principle to obtain more
than a few dozen examples putatively corresponding to
a given individual. For this reason, it is an important
challenge to train a network to identify subjects. Neu-
ral networks are extraordinary algorithms capable of
classifying patterns (for example, the image of a spec-
trogram corresponding to a song), but the enormous
number of parameters to be adjusted (the connections
between neurons, precisely), requires a significant num-
ber of previously classified patterns to train the net-
work [15].

To overcome this difficulty, in a previous work, it was
proposed the training of the classifying neural network
by means of a set of synthetic songs. They were gener-
ated by integrating a physical model of avian song pro-
duction, which summarizes the biophysics of the avian
vocal organ [8]. These solutions have been shown to
be good enough mimics to achieve responses in highly
selective neurons to the bird’s own song, when used as
auditory stimuli [9,16]. Using the few songs obtained
for each individual and estimating the variability of the
initial and final values of the frequencies of the sylla-
bles of each song, we generated synthetic songs to train
a neural network.
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2.1 Description of the model for synthesizing song

The model that we will use to generate the synthetic
songs used to train our network describes the way in
which song is generated in birds. Song is generated at
the syrinx, which is a structure that supports two pairs
of lips, at the junction between the bronchi and the
trachea. These pairs of lips go into an oscillatory mode
when a sufficiently strong flow of air passes between
them, just like human vocal cords when a voiced sound
is emitted. The oscillations produced modulate the air
flow and generate the sound that is emitted [17].

The basic physiological parameters that the birds
need to control to generate the song are the pressure
of the air sac, which controls the intensity of the air
flow through the lips, and the physiological instructions
sent to the syringeal muscles. The configuration of the
syrinx, which has a certain elasticity, affects the stretch-
ing of the lips and, therefore, the fundamental frequency
of the labial oscillations [17].

The lips are assumed to be in a stationary position
when the bird is silent. Once the parameter representing
air sac pressure is increased, a threshold for oscillatory
motion is reached. If the problem parameters remain
in the phonation region of the parameter space, the
airflow is modulated, and sound is produced. As the
pressure decreases, the sound eventually stops (that is,
the syllable ends). A qualitative change in dynamics
when the parameters are varied is known as a bifur-
cation. Near the values of the parameters where the
bifurcation occurs, the model can be transformed into
simple equations that describe the dynamics of the sys-
tem. For the chingolo, the system of equations that
describes the dynamics of the lips is the one shown in
Eq. (1) [18].

⎧
⎨

⎩

dx
dt = y

dy
dt = kγ2x − γx2y + βγy

(1)

In Eq. (1), x represents the midpoint position of the
lips; k, β are parameters of the system; while γ repre-
sents the time scale of the system. The generation of
sound with this dynamic of the lips, occurs when the
pressure at the entrance of the trachea pi, is shown in
Eq. (2).

⎧
⎪⎨

⎪⎩

pi(t) = Adx(t)
dt + pback(t − L

c )

pback(t) = −rpi(t − L
c )

(2)

In Eq. (2), A is the average area of the lumen; L is
the length of the trachea; c is the speed of sound in the
medium; while r, is the reflection coefficient at tracheal
exit. This leads to the pressure at the exit of the trachea
po = (1 − r)pi(t − L

c ), which forces a Helmholtz oscil-
lator representing the oropharyngeal–esophageal cavity
(OEC).

The OEC behaves like a signal filter, and its opera-
tion is modeled through the set of equations (3) [19].

⎧
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(3)

The set of equations (3) has been rewritten in such
a way that the dynamics of the Helmholtz oscilla-
tor with aperture is represented through an equivalent
circuit. These equations are derived in [19], the final
sound being proportional to the value of the variable
i3. The parameters used for the generation of synthetic
song are (L1, L2, r2, rd, c) = (1/20, 1/104, 0.5 × 107, 24 ×
103, 5/350×108).

For many species, the various acoustic modulations
in song are translated into a set of basic physiologi-
cal instructions called “gestures” [20]. In the case of
the Zonotrichia capensis, these acoustic modulations
can be defined using three frequency modulation pat-
terns: sinusoidal, linear, and exponential down sweep.
The parameters for each modulation pattern are pre-
sented in Table 1.

To synthesize the song using the model, the mod-
ulation pattern of each syllable is identified, and the
necessary parameters (Table 1) for its reproduction are
found. Then for each syllable a list of fundamental fre-
quencies is generated. The values of the system parame-
ter k, which allow the generation of songs with the fun-
damental frequencies w satisfy: k = 6.5×10−8w2+4.2×
10−5w + 2.6× 10−2. The relationship between k and w
was obtained through a series of numerical simulations
in the parameter space of the model, varying the values
of k, and computing for each simulation the fundamen-
tal frequency of the synthesized song w. Then, we pro-
posed a polynomial relationship between w and k, and
used the list of pairs (k,w) to compute the coefficients
of the polynomial through a regression [18]. Thus, the
list of fundamental frequencies is transformed into the
parameters that the model uses to synthesize a realistic
copy of the song. Using the synthetic song generation
model, the spectral content of the sound source
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Table 1 Basic patterns for the gestures used to synthesize the song of the Zonotrichia capensis

Modulation pattern Frequency Parameters

Sinusoidal w(t) = wf + (wi − wf )( t−ti
tf−ti

) wi, wf , ti, tf

Linear w(t) = wav + Asin(αi + (αf − αi)(
t−ti
tf−ti

) wav, A, αi, αf , ti, tf

Exponential w(t) = wf + (wi − wf )e
− 3(t−ti)

(tf−ti) wi, wf , ti, tf

is automatically reproduced, correctly filtered by the
trachea and the OEC. In other words, we fit the fun-
damental frequencies, and the spectral content is auto-
matically reproduced by the model. This is particularly
important when the method is applied to species with
harmonically rich sounds.

We proceeded to integrate the model a large number
of times, varying the values of the parameters presented
in Table 1 to reproduce the basic gestures [18]. The
parameters characterizing the song (the initial and final
values of the fundamental frequency for each syllable,
the duration of each syllable, and the timing between
syllables) varied very little across different repetitions
of the song; never more than 3%. The variations of the
values in the parameters were obtained from a Gaussian
distribution with the means and standard deviations
calculated from the song examples for each of the six
themes of interest. We used ten songs to estimate the
parameters for all the themes but Theme 4 c, for which
we had only two songs.

Thus, a large number of surrogate spectrograms are
generated, all of them differing in random parameters
that are consistent with the biological variability that
exists between different songs produced by a single indi-
vidual [8]. These surrogate spectrograms become the
training set, the validation set and artificial testing set
for the neural network for identifying individuals. We
generated, for each of the six different themes, 3500
spectrograms as surrogate data. From this set of syn-
thetic spectrograms images, 2000 were randomly taken
for model training, 1200 for validation, and 100 for
model testing. None of these sets included any images of
the actual spectrograms of the chingolos corresponding
to the field recordings. Figure 2 shows some of the spec-
trograms generated from the dynamic model, for each
of the themes of interest. The neural network training
procedure was performed with the same hyper param-
eters and network structure shown in [8].

2.2 Description of the neural network used to
identify themes

The theme identification neural network takes the spec-
trograms of the songs as an image and classifies them
with a given probability into one of the six themes of
interest.This neural network is composed of four 2D
convolutional layers that alternate with four MaxPool-
ing layers. The network features a final pair of tightly
connected layers. The 2D convolutional layers have sizes
of 8, 16, 16 and 32 respectively, which are obtained from

Fig. 2 Some of the spectrograms generated from the
dynamic model for each of the six themes of interest

their respective inputs, after performing a convolution
with 3×3 size windows. All MaxPooling layers perform
a dimensionality reduction by a factor of 2, making the
images smaller. This allows to reduce the computational
cost, minimize the possibility of overfitting and increase
the abstraction on the input data. The final two tightly
connected layers consist of 1024 and 6 units, respec-
tively. This last layer has 6 units since it is the number
of classes to identify in our problem.

In the network, another tool to avoid overfitting is to
establish restrictions on the connection values (weights)
of the neurons, so that they take small values. The
procedure, known as regularization, is implemented by
adding a cost to the network loss function, whenever
the weights take large values. In our network, the reg-
ularization parameter was established as l2 = 0.001. In
addition, with the same objective of avoiding overfit-
ting, they were made to drop some weights at random
(setting their values to zero). The dropout value was set
to 0.5, and the learning rate was established at 10−4.
The spectrograms, used as images to train the network,
were grayscale, with a size of 300×200 pixels. The batch
size used was 10 units, while the training was carried
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Table 2 The confusion matrix for the classification of synthetic spectrograms images

Theme 1 Theme 2 Theme 3 Theme 4 a Theme 4 b Theme 4 c

Theme 1 100 0 0 0 0 0
Theme 2 0 100 0 0 0 0
Theme 3 0 0 100 0 0 0
Theme 4 a 0 0 0 100 0 0
Theme 4 b 0 0 0 0 100 0
Theme 4 c 0 0 0 0 0 100

Table 3 The confusion matrix for the classification of the spectrograms images of the real songs recorded

Theme 1 Theme 2 Theme 3 Theme 4 a Theme 4 b Theme 4 c

Theme 1 7 1 0 0 2 0
Theme 2 0 10 0 0 0 0
Theme 3 1 0 9 0 0 0
Theme 4 a 0 2 0 8 0 0
Theme 4 b 4 2 0 0 4 0
Theme 4 c 0 1 0 0 0 1

Table 4 Precision, Recall and f1_score for the classification of the real songs recorded

P R f1_score Support

Theme 1 0.58 0.70 0.64 10
Theme 2 0.62 1.00 0.77 10
Theme 3 1.00 0.90 0.95 10
Theme 4 a 1.00 0.80 0.89 10
Theme 4 b 0.67 0.40 0.50 10
Theme 4 c 1.00 0.50 0.67 2
Macro avg 0.81 0.72 0.73 52

out for 20 epochs, with 220 steps per epoch. For the
validation, 80 steps were used per epoch. The network
uses the Keras library, and in particular the ImageData-
Generator class. In this way, the images become tensors.
Each image was normalized with a factor of 255.

2.3 Results in the identification of themes

The trained network was asked to classify 100 songs
taken randomly, which were not used in previous steps
of the training and validation model. To evaluate the
performance of the neural network in the classifica-
tion of these 100 synthetic spectrograms images, we
calculated the confusion matrix. Table 2 presents the
results obtained for the confusion matrix. In the con-
fusion matrix, each row corresponds to a class (theme
in our case), while the column represents the predicted
class.

The performance of the neural network is obtained
through the classification of spectrogram images corre-
sponding to real songs. For this test, we used the 52
real songs recorded. Noise reduction filters and band
pass filters between 1.5 and 8 kHz were applied to
the field recordings. The spectrograms corresponding to
each recording were calculated using the same parame-
ters as those corresponding to the spectrograms of the

synthetic songs. Each of these spectrograms was used
as input to the trained network. Table 3 presents the
confusion matrix obtained for the classification of the
spectrograms images of the real songs recorded.

The network tends to incorrectly classify the songs
from Theme 4 b with those from Theme 1. This is due
to the similarity that exists between statistical param-
eters and the patterns of frequency modulation in this
two themes, as shown in Fig. 1. The main difference
between these two themes is the duration and frequency
value of the first syllable, varying very slightly between
them. The neural network is not able to differentiate
this characteristic in some of the real spectrograms. In
Table 3 it is also shown that one of the two real songs
corresponding to Theme 4 c, is incorrectly classified as
belonging to Theme 2.

From the confusion matrix it is possible to calcu-
late a group of metrics that summarize the behav-
ior of the network in the classification of each of
the classes. Typical values that are calculated are
Precision, Recall, and f1_score. Precision (P ) indi-
cates the ratio between correctly predicted instances
for a given class, and the all predicted labels for that
class. The Recall (R) value indicates for all instances
that should have an X label, how many of them were
correctly labeled. In turn, f1_score measures the bal-
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ance between the Recall and Precision indices. Table 4
shows the values of these metrics, which were calculated
from the confusion matrix presented in Table 3.

The lowest P is reached for the Theme 1 class with
P = 0.58. The lowest Recall value is for Theme 4 b with
R = 0.4, since, out of a total of 10 songs, only four were
correctly classified. The mean value of f1_score was
f1 = 0.73. This value is considered acceptable, since the
network was trained without ever being exposed to the
spectrograms of the real songs of the field recordings.
The network training process was performed ten times
using the set of artificial spectrogram images. In all
experiments the corresponding confusion matrices were
constructed. The average values and standard devia-
tions in the classification of the 52 real songs recorded
was (Precision, Recall, and f1_score): P = 0.80±0.04,
R = 0.71 ± 0.02, f1_score = 0.71 ± 0.02.

3 Location of sound sources by the method
of time delays

In the case of the common chingolo, each subject typi-
cally has a characteristic theme. A small number of sub-
jects can sing two different themes, and an even smaller
number are capable of singing three different themes
[11–13]. An automatic subject identification procedure
using the song themes as a classification parameter, will
lead to the identification of two or three different indi-
viduals whenever two or three themes are detected. If
each song can be accompanied by an observer who ver-
ifies the identity of the subject, the problem is solved,
but an automatic method based on recordings encoun-
ters an important limitation. One way to solve the prob-
lem is to record the sounds with a set of microphones,
which allow to triangulate the position of the recorded
songs. In this way, themes that can be associated with
subjects capable of singing various themes will emerge
as emitted from the same position. For this reason, we
propose to develop a mechanism (equipment and algo-
rithms) capable of estimating the position from which
a specific song comes.

The strategy used to develop the sound locator is
to simultaneously measure the sound generated by a
source, by means of an array of microphones connected
to a recorder. The microphones are in the array at cer-
tain positions xi, such that when a source at position p
emits a signal at time t0, then the source can be located.

In practice, since the sources are birds, the signal
emission time t0 is unknown. Then the data that can
be extracted from the microphones is the relative arrival
times between pairs of receivers. Obtaining the position
from this information is known as location by time dif-
ference of arrival (TDOA: Time Difference of Arrival).
Equation (4) represents the arrival time of the signal at
microphone i, where c is the speed of sound.

ti =
|p− xi|

c
+ t0 (4)

The equations for the temporal differences in signal
arrival between microphones correspond to Eq. (5).

ti − tj =
|p− xi|

c
− |p− xj|

c
(5)

From four spatially separated microphones, we have
the minimum information necessary to reconstruct the
position of a sound source in three dimensions [21–
25]. There are algorithms that analytically calculate the
position of the source from the position of the micro-
phones and the time differences. These methods have
a poor response to the presence of errors in the calcu-
lation of the temporal differences for the estimation of
the sound source.

These errors can occur for different reasons. In the
first place, there are those associated with the sampling
frequency of the system. As sound travels at approxi-
mately 350 m/s, errors are accentuated when the dis-
tance traveled by sound between two consecutive mea-
surements is comparable to the distance between micro-
phones. Therefore, small microphone arrays produce
time differences that can be very small and on the
order of the sampling frequency range. Other sources
of errors are related to the measurement of the audio
signal in noisy environments, as well as the variability
of the signal intensity, which affects the signal-to-noise
ratio (SNR) of the recording.

An alternative to the analytical methods of calcu-
lating the temporal differences is to overdetermine the
problem and carry out a regression from a set of data
generated by means of numerical simulations. Regres-
sion can be done using deep learning and machine learn-
ing techniques. The strategy consists of exposing the
system, during a previous training phase, to data from
which the result is known. Thus, the position of hun-
dreds of possible sound sources is modeled, and the tem-
poral differences are found. Then, using deep learning
and a neural network, you learn to recognize the posi-
tion of the sound source.

In our case, the input is a vector of dimension
(
N
2

)
,

where N is the number of microphones. The output is
a three-dimensional vector, which corresponds to the x,
y and z positions of the sound source. The training of
the model is carried out with a data set E, where for
each combination of temporal differences Ei we have
the position of the source that generates those temporal
differences.

For our estimation of sound source’s position, we
chose to bound the maximum error to 1 m, for sound
sources at a distance of up to 20 m. This would allow us
to identify a tree for these highly territorial birds. Since
the system has to be small in size and easy to install,
it was decided in a first stage that it should only be
made up of four microphones. The microphones will be
located in the same plane, on the surface of the ground,
and at the ends of a square circumscribed in a circum-
ference. In our measurements, a commercial Zoom H6
recorder was used, which has up to six audio inputs
that are recorded simultaneously.
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3.1 The neural network used to localization

The neural network for the location of individuals takes
as input parameters for training: the maximum radius r
in which it is desired to locate, the speed of sound c, the
sampling frequency fs used in the recordings, and the
positions of the microphones. With these parameters a
set of artificial positions are generated by numeric sim-
ulations up to the maximum location radius indicated.
For each artificial position, we computed the arrival
time to each microphone. We used these times to cal-
culate the difference in the arrival time to each pair
of microphones. We added a uniform random error ζ
between ± 1

fs
to each time difference, to account for the

uncertainties due to the sampling used in the record-
ings. The arrival time to each microphone is calculated
using Eq. (6) as:

ti =

√
(x − xi)2 + (y − yi)2 + (z − zi)2

c
+ ζ. (6)

The set of artificial positions generated and the dif-
ferences in arrival time are randomly divided into the
training data set and the validation data set.This is
the k-fold cross validation method. The amount of data
that passes to each set is determined by the value of the
parameter k. The data are randomly distributed in k
groups of approximately the same size, k−1 groups are
used to train the model and one of the groups is used
as validation. This process is repeated k times using a
different group as validation in each iteration. The pro-
cess generates k estimates of the error, the average of
which is used as the final estimate [15].

The neural network for the location of individuals
uses a sequential model, composed of five dense layers,
where the first four have 64, 128, 128 and 64 units. The
last layer, which is the output layer, has 3 units, which
correspond to the geometric positions (x; y; z) of the
sound source to be located. The activation function of
each layer is the ReLU. The model was compiled using
the RMSprop algorithm as optimizer, and the loss func-
tion parameter used is the mean square error (mse).

The neural network used in this work was trained for
a maximum search radius of 20 m, with a total of 1.6×
105 sources equispaced 0.1 m in the training radius. The
sampling frequency was 44.1 kHz and a sound speed of
350 m/s. Four microphones located at the ends of a
square with a side of 7 m were taken as signal receivers.
The value of k, which divides the data between the
training and validation groups, was set at k = 3. The
network was trained with a batch size of 1 unit, for 1200
epochs.

To test the trained model, we used a set of 14,400
artificial positions. This corresponds to sources equally
spaced 0.3 m in a radius of 18 m. The mean error in
the location is 0.32 ± 0.23 m, with a maximum error of
2.62 m. The median error is 0.268 m. The percentage of
values with an error greater than the mean is 38.40%,
while with an error greater than 1 m is 2.0%.

3.2 Processing of the audio signals

To determine the temporal differences in the arrival of
the signal to each pair of microphones, it is necessary to
precisely find the beginning of a sound in each file corre-
sponding to the microphone. The possibility of finding
the onset of a sound through a threshold is ruled out,
since measurements are made in the field. Therefore,
recordings are variably affected by ambient noise and
the occurrence of various audio signals simultaneously.
In addition, as a result of the degradation of the sig-
nal, the sound reaches each microphone with different
amplitude, making it impossible to carry out an anal-
ysis by determining maximums. All of this makes it
difficult to obtain a signal where there are no differ-
ent points that can be considered as the beginning of a
certain sound [26,27].

To minimize errors in the calculation of temporal dif-
ferences, microphones with equal sensitivity were used,
and the gain of each channel was calibrated on the Zoom
H6 recorder. In addition, a pre-processing of the signal
was performed. This pre-processing consists of apply-
ing noise reduction filters, and band-pass signal filters,
which reduce the bandwidth to the frequencies of inter-
est of the sound in question. In this way, ambient noise
is reduced and overlap in time and frequency is limited,
due to the existence of multiple sounds.

Each signal segment of interest was normalized in
amplitude, and then a 12th-order Butterworth FIR-
type band-pass filter was applied, with cut-off frequen-
cies between 1 and 8 kHz. This bandpass filter has been
implemented using the sosfiltfilt function from the scipy
signal library in Python. A noise reduction filter is then
applied to it using spectral subtraction. This filter esti-
mates the instantaneous signal energy and the noise
floor for each frequency interval, being used to calcu-
late a gain filter with which to perform spectral sub-
traction. The filter implementation uses the pyrooma-
coustics library available for Python. The parameters
used for this filter are a window width of 512 samples, a
noise reduction value of 3 dB, a loopback value of eight
samples, and an overestimate value of the filter’s gain
β of 6 dB. After filtering the signal is normalized again
in amplitude.

Then, for each signal segment where the sound
occurred, the correlation function is determined, so that
the value found corresponds to the number of samples
necessary for the signals to be aligned [28–30]. The cor-
relation function finds the similarity between two sig-
nals for all possible delays τ , as in show in Eq. (7).

corr(τ) =
N−1∑

t=0

s1(t)s2(t + τ) (7)

Equation (8) shows that the peak of the correlation
function occurs at the value that maximizes the similar-
ity between the two signals, which is, in turn, the num-
ber of samples necessary for both signals to be aligned.
Since the number of samples is related to the sampling
frequency fs of the system, we then have the time dif-
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Fig. 3 Test using
metronomes in four
locations

ference between each pair of microphones.

τest = argmax(corr(τ)) (8)

To robustly determine temporal differences, it is neces-
sary to accurately find the peak of the correlation func-
tion. To do this, the correlation must have a distinc-
tive and prominent peak, corresponding to the signal
of interest.

In signal processing, the onset of a sound is deter-
mined by calculating the statistical values of the sig-
nal. First, after filtering and normalizing the signal,
the envelope of the signal is determined. This is done
through the calculation of the absolute value of the
Hilbert envelope. The envelope is smoothed with a But-
terworth low pass filter with cutoff frequency 250 Hz
and order 8. Then, the standard and mean deviation
are calculated for a time window, traversing the sig-
nal in such a way that when the background noise is
overcome, then there is an abrupt increase in the sta-
tistical parameters. This makes it possible to determine
that the sound started at that moment and, therefore,
the correlation between each pair of microphones can
be calculated. The way to detect the distance from the
background noise values is by finding the peak of the
second derivative of the signal. The window width used
for the calculation of the statistical parameters was
1024 samples. The calculation of the cross correlation
was carried out using the correlate function of the scipy
signal library in Python. A full correlation mode and a
window width of 44,100 samples were used, which cor-
responds to 1 s of signal at a sampling frequency of 44.1
kHz.

3.3 Calibration using metronomes

The field tests for the calibration and experimental
validation of the system were carried out using a
metronome located for 10 seconds in pre-established
positions. These positions correspond to the geometric
center of the system (0; 0), (−3.5; 0), (3.5; 0) and (0;
10), where all positions are in meters. Figure 3 shows
the results of calculating the positions from the audio

recordings. For each position, a total of eight audio seg-
ments were analyzed, to which the differences in arrival
time have been calculated.

The results in the location of the sound source are
consistent with the application to be developed. Table 5
shows the statistical results of the calculation of the
positions for the test corresponding to Fig. 3. The loca-
tion error is less than 0.35 m, fulfilling the proposed
objective of an error of less than 1 m. The standard
deviation of the positions on each coordinate axis is less
than 0.3 m, indicating a high repeatability of the algo-
rithm. Therefore, the system developed for the location
can be used to estimate the location of birds in the field.

4 Neural network for the localization of
individuals

The system composed of the neural network for the
identification of individuals and the neural network for
the estimation of positions, was used to process a three
field recordings (approximately 5 min of audio on each
recording) from the site where it is known that there are
chingolos that perform the Theme 4 a, Theme 4 b and
Theme 4 c. The hypothesis tested is that some individ-
ual is capable of generating more than one theme pat-
tern in his song. The four microphones used for record-
ing were located at the ends of a square with a side
equal to 14 m. The neural network for localization was
trained with the same parameters of the network pre-
sented in Sect. 3.1.

The processing of these recordings made it possible
to detect the presence of songs segments separated by
7–8 s, which corresponded to predictions of the neural
network as corresponding to the Theme 4 a, Theme 4
b and Theme 4 c. Table 6 shows the prediction results
returned by the identification network for a segment of
three consecutive songs.

The network returns a series of values that can be
interpreted as the probability that the predicted obser-
vation belongs to each of the possible classes. The high-
est probability represents the class predicted by the

123



Eur. Phys. J. Spec. Top. (2022) 231:185–194 193

Table 5 The results of the test described in Fig. 3

Median (m) Error (m) σ (2D) (m)

Pos1 (0; 0) (0.071; 0.058) 0.091 (0.014; 0.016)
Pos2 (−3.5; 0) (−3.426; 0.264) 0.274 (0.067; 0.094)
Pos2 (3.5; 0) (3.678; 0.3) 0.348 (0.054; 0.039)
Pos3 (0; 10) (−0.258; 9.874) 0.287 (0.041; 0.295)

Table 6 Probability of each song of corresponding to a given theme

Theme 1 Theme 2 Theme 3 Theme 4 a Theme 4 b Theme 4 c

Song 1 0.016 0.173 0.089 0.686 0.024 0.011
Song 2 0.356 0.192 0.027 0.010 0.401 0.013
Song 3 0.208 0.051 0.017 0.084 0.294 0.345

Fig. 4 Estimated
locations of the songs
characterized as Theme 4a,
Theme 4b and
Theme 4c

network. As can be seen in Table 6, Song 1 has a
greater probability of belonging to Theme 4 a with a
P = 0.686, while for Song 2 it corresponds to Theme 4
b with P = 0.401, and for Song 3 it is corresponds to
Theme 4 c with P = 0.345. Given that Song 2 and Song
3 present probabilities of belonging to a class close to
other classes, a visual inspection was carried out. The
presence of these consecutive songs belonging to three
different themes was verified counting syllables in the
spectrograms of the field recordings. As there was lit-
tle time separation between these songs, we proceeded
to calculate the differences in the time of arrival at the
microphones, to estimate the geographic location of the
songs.

Figure 4 shows the location predicted by the network
for Songs 1, 2 and 3 previously processed.

The estimated location of Song 1 is (14.65 m; 6.08
m); for Song 2 it is (14.28 m; 6.29 m); and for Song
3 the position is (14.61 m; 5.46 m). Therefore, it can
be said that the three patterns analyzed for Theme
4 a, Theme 4 b and Theme 4 c, actually correspond
to three songs generated by a single individual. Subse-
quent video footage allowed the validation of the result,
which is highly unexpected since, according to the lit-
erature, only one in 500 specimens of this species can
generate three different themes [11].

5 Discussion

In the present work, we have described a set of algo-
rithms capable of locating and identifying birds by their
songs. The process of identifying songs themes was sup-
ported by the construction and training of a neural net-
work. Unlike what happens with the identification of
avian species through song, the identification of individ-
ual subjects required the generation of a large number
of surrogate songs, which were generated by synthesiz-
ing an avian vocal production model. These models,
based on the dynamic mechanisms associated with the
generation of labial oscillations in the vocal apparatus,
were able to generate songs that were realistic enough
for the networks trained with them to be able to later
identify true songs.

The process of identifying subjects through themes
included the construction of an algorithm capable of
reconstructing, from recordings, the position of the
speaking subject. The algorithm uses a set of times as
a way of calculating the relative times of arrival of a
sound signal to different microphones connected to the
same recording device.

As an example of our workflow, with the combined
use of an automatic system for the identification of
songs themes and a sound localization system, we were
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able to find an individual capable of executing multiple
themes, a rare event in this species (see a video in [31]).
In any case, the algorithms presented here constitute
a powerful tool for the automatic monitoring of avian
populations through their vocalizations; a tool that can
play an important role in the study and monitoring of
small populations, particularly those corresponding to
threatened species.

Data availability statement This manuscript has associ-
ated data in a data repository. [Authors’ comment: All data
included in this manuscript is available upon request to the
corresponding author.]

References

1. A. Thakur, P. Rajan, IEEE J. Sel. Top. Signal Process.
13(2), 298–309 (2019). https://doi.org/10.1109/JSTSP.
2019.2906465

2. D. Stowell, M.D. Wood, H. Pamu�la, Y. Stylianou, H.
Glotin, Methods Ecol. Evol. 10(3), 368–380 (2019).
https://doi.org/10.1111/2041-210X.13103

3. Z.J. Ruff, D.B. Lesmeister, C.L. Appel, C.M. Sullivan,
Ecol. Indicators 124, 107419 (2021). https://doi.org/10.
1016/j.ecolind.2021.107419

4. Y. Maegawa, Y. Ushigome, M. Suzuki, K. Taguchi,
K. Kobayashi, C. Haga, T. Matsui, Ecol. Inform. 61,
101164 (2021). https://doi.org/10.1016/j.ecoinf.2020.
101164

5. S. Kahl, C.M. Wood, M. Eibl, H. Klinck, Ecol.
Inform. 61, 101236 (2021). https://doi.org/10.1016/j.
ecoinf.2021.101236

6. K. Nagy, T. Cinkler, C. Simon, R. Vida, in: 2020 IEEE
SENSORS, (2020), pp. 1–4. https://doi.org/10.1109/
SENSORS47125.2020.9278714
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