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Abstract In this paper, the bifurcation and chaotic threshold of Duffing oscillator with fractional-order
delayed feedback control is studied. The fractional-order delayed feedback control is equivalent to the
approximate integer-order control. It is found that the fractional-order delayed feedback control has the
function of displacement feedback and velocity feedback. Then, the analytically necessary condition for
generating chaos in Duffing oscillator with fractional-order delayed feedback control is obtained by Melnikov
method. The accuracy of the analytically necessary condition by Melnikov method is verified by numerical
simulation and the largest Lyapunov exponents of the system. From the analysis of the numerical simulation
results, it is found that there are two paths leading to the chaos after period-doubling bifurcations due to
different initial values in Duffing oscillator with fractional-order delayed feedback. Finally, the influence of
the parameters of the fractional-order delayed feedback control on bifurcation and chaos is analyzed. The
increase of the fractional-order delayed feedback gain will resist the generation of chaos. Both time delay
and the fractional-order affect the threshold of chaos in the form of trigonometric functions. The better
control performance in the system can be obtained by choosing the reasonable fractional order and time
delay. Those results present some new system characteristics which provide theoretic guidance to design
and control of this kind system.

1 Introduction

It is well known that bifurcation and chaos phenomenon
is a unique motion in nonlinear systems. When bifur-
cation and chaos occur, the dynamical characteristics
of the system will change, such as period, amplitude
and stability. A series of engineering problems in the
system with nonlinear factors will be caused by bifurca-
tion and chaos. The control of bifurcation and chaos is a
technical challenge. At first, scholars generally believed
that chaos could not be controlled [1,2]. Until 1990, Ott
et al. [3] put forward OGY method to control chaos,
which made the research on chaos control become a
hot research field. After that, many control methods on
bifurcation and chaos have been put forward by schol-
ars. Li et al. [4] investigated the dynamical behaviors
of an improved wheelset model with two degrees of
freedom, then the adaptive feedback control and lin-
ear feedback control were used to control the chaos and
bifurcation of the wheelset system. Saghafi et al. [5]
studied a control system to eliminate homoclinic bifur-
cation and chaos of a gear system, and obtained the
analytical solution of the gear system with the exter-
nal control excitation based on Melnikov method. Shiva

a e-mail: wsf39811@163.com (corresponding author)

et al. [6] studied the stability and bifurcation of a new
chaotic fractional-order system, and used linear feed-
back control technology to eliminate the chaotic vibra-
tion of a new fractional-order system. Wang et al. [7]
proposed an adaptive intermittent control method to
realize the synchronization of time-delay chaotic sys-
tem. Chen et al. [8] proposed a nonlinear feedback con-
troller to make the two chaotic Genesio systems syn-
chronize and simplify the stability analysis of the con-
trolled system.

It is well known that time delays are unavoidable. In
the dynamical control system, the time delay is pro-
duced by the delay of signal transmission. This kind
of delay is uncertain, which will change the dynami-
cal characteristic of the system and even lead to the
change of the system phenomena such as bifurcation
and chaos [9–14]. With the development of science and
the demand for high precision in engineering, the model
more closer to the reality is needed to get a higher pre-
cision control effect in dynamics research, so time delay
introduced into the dynamic model is necessary, which
has a wide application background [15]. Yu et al. [16]
analyzed the dynamical characteristics of Van der Pol–
Duffing fast-slow oscillator controlled by parametric
delay feedback. Xu et al. [17] investigated the effect of
time delay on the dynamics of the Van der Pol–Duffing
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oscillator with linear and nonlinear time-delayed posi-
tion feedback. Feng et al. [18] studied the first-passage
failure of Duffing oscillator with the delayed feedback
control under the combined harmonic and white-noise
excitation based on the stochastic averaging method.
Then the effects of time delay on the system dynami-
cal characteristics are investigated. Cai et al. [19] used
Melnikov technique to analyze a nonautonomous time-
delay feedback control system, and obtained the con-
clusion that the delay time of chaotic attractor is inde-
pendent of the period of inherent unstable orbit.

Duffing equation is one of the most common and typ-
ical models, which can simulate a large number of struc-
tures in engineering fields. Scholars have carried out
many researches on the equation itself and its deriva-
tive system, in which the fractional-order system has
attracted more and more attention [20–24]. Fractional
calculus was proposed about 300 years ago. In recent
years, fractional calculus develops extremely fast and
it is widely used in many interdisciplinary branches of
science due to its effectiveness in describing and investi-
gating complicated phenomena [21,25–27]. At present,
the application of fractional calculus in engineering field
can be divided into two categories. The first, fractional
calculus is used to accurately model the engineering
materials between ideal solid and ideal fluid, which can
reflect the constitutive relationship of materials more
truly. The other is the fractional-order control based
on fractional calculus, which can improve the control
effect of the control system based the advantages of
good robustness and strong antinoise ability of frac-
tional calculus feedback. Wang et al. [28] studied the
chaos synchronization between two different uncertain
fractional-order chaotic systems with disturbance based
on fractional-order Lyapunov stability analysis method,
and proposed adaptive sliding mode control design pro-
cedure. Wei et al. [29] proposed a robust adaptive
control scheme through the backstepping procedure to
deal with the time-varying disturbance of asymmetric
fractional-order systems. Chen et al. [30] advanced a
sliding-mode controller for a class of fractional-order
uncertain linear perturbed systems based on the linear
matrix inequality and the stability theory of fractional-
order nonlinear systems.

Melnikov method is a kind of first-order approximate
method to analyze the necessary condition for chaos
in a dynamical system. It was originally used to prove
the existence of homoclinic orbit or heteroclinic orbit,
and now it is widely used to judge the necessary condi-
tion for chaos of the integer-order system. At present,
there is no literature on the analysis of fractional-order
delayed feedback control system by Melnikov method.

In this paper, the chaos threshold analysis of Duff-
ing oscillator with fractional-order delayed feedback
control is presented by Melnikov method. In Sect. 2,
the fractional-order delayed feedback control term is
investigated, and the first-order approximate analyt-
ical results of the fractional-order delayed feedback
control are obtained. The equivalent linear damping
and equivalent linear stiffness are used to transform
the fractional-order term into trigonometric function

and exponential function, so that the fractional-order
system is equivalent to the approximate integer-order
system. In addition, the approximate analytical solu-
tion of the necessary conditions for chaos generation
of Duffing oscillator with fractional-order delayed feed-
back control is derived based on Melnikov method. In
Sect. 3, the threshold value of chaos in Duffing sys-
tem with fractional-order delayed feedback is calculated
by the numerical iteration method, and the results of
the numerical solution are compared with the analytical
results to verify the correctness and satisfactory preci-
sion of the approximate analytical solution. Then, the
influence of fractional-order delayed feedback control
parameters on the bifurcation and chaos of the system
is studied by using the obtained analytical results in
Sect. 4. At last, the main conclusions are made.

2 Approximate analytical solution of the
necessary condition for chaos

In this section, Duffing oscillator with fractional-order
delayed feedback control is considered. The system is
as follows

ẍ − kx + cẋ + αx3 = f cos(ωt) − λDp
t x(t − τ), (1)

where k� c� α� f and ω are the linear stiffness coefficient,
the linear damping coefficient, the nonlinear stiffness
coefficient, the excitation amplitude, and excitation fre-
quency respectively. λDp

t x(t − τ)is the fractional-order
delayed feedback control. It is the p-order derivative of
x(t − τ) to t with the feedback coefficient λ and the
time delay τ in control procedure. All the parameters
of the system are positive and dimensionless. There are
several definitions for fractional-order derivative, such
as Grünwald–Letnikov, Riemann–Liouville and Caputo
definitions [25,26]. In a broad senses, they are equiv-
alent for most mathematical functions. Accordingly,
Caputo’s definition is adopted with the form as

Dp
t [x(t)] =

1
Γ(1 − p)

∫ t

0

x′(u)
(t − u)p

du, (2)

where Γ(n) is Gamma function.
Supposing the solution of Eq. (1) is expressed as

x(t) = α cos(ωt + θ) (3a)
ẋ(t) = −αω sin(ωt + θ), (3b)

and it can be obtained

x(t − τ) = α cos[ω(t − τ) + θ] (3c)
ẋ(t − τ) = −αω sin[ω(t − τ) + θ]. (3d)

Substituting Eq. (3a) into the fractional-order delayed
feedback term based on Caputo’s definition, one could

123



Eur. Phys. J. Spec. Top. (2022) 231:2183–2197 2185

obtain

Dp
t [x(t − τ)] =

−αω

Γ(1 − p)

∫ t

0

sin(ωu + θ)
(t − τ − u)p

du (4)

Define s = t − τ − u, Eq. (4) becomes

Dp[x(t − τ)]

=
−αω

Γ(1 − p)

∫ 0

t

− sin(ω(t − τ − s) + θ)
sp

ds

=
−αω

Γ(1 − p)

∫ t

0

sin(ω(t − τ − s) + θ)
sp

ds

=
−αω cos θ

Γ(1 − p)

∫ t

0

sin(ω(t − τ − s))
sp

ds − αω sin θ

Γ(1 − p)

×
∫ t

0

cos(ω(t − τ − s))
sp

ds

=
−αω cos θ

Γ(1 − p)

{
sin[ω(t − τ)]

∫ t

0

cos(ωs)
sp

ds

− cos[ω(t − τ)]
∫ t

0

sin(ωs)
sp

ds

}

− αω sin θ

Γ(1 − p)

{
[cos[ω(t − τ)]

∫ t

0

cos(ωs)
sp

ds

+ sin[ω(t − τ)]
∫ t

0

sin(ωs)
sp

ds

}

=
−αω

Γ(1 − p)

{
sin[ω(t − τ) + θ]

∫ t

0

cos(ωs)
sp

ds

− cos[ω(t − τ) + θ]
∫ t

0

sin(ωs)
sp

ds

}
(5)

According to the two basic formulas in Ref. [21]

∫ t

0

sin(ωs)
(s)p

ds

= ωp−1

[
Γ(1 − p) cos

(pπ

2

)
− cos ωt

(ωt)p
+ O[(ωt)−p−1]

]

(6a)∫ t

0

cos(ωs)
(s)p

ds

= ωp−1

[
Γ(1 − p) sin

(pπ

2

)
+

sin ωt

(ωt)p
+ O[(ωt)−p−1]

]
.

(6b)

Substituting Eq. (6) into Eq. (5), one can get

Dp
t [x(t − τ)]

= −αω sin[ω(t − τ) + θ]ωp−1

×
[
sin

(pπ

2

)
+

sin ωt

Γ(1 − p)(ωt)p
+

O[(ωt)−p−1]
Γ(1 − p)

]

+ αω cos[ω(t − τ) + θ]ωp−1

×
[
cos

(pπ

2

)
+

cos ωt

Γ(1 − p)(ωt)p
+

O[(ωt)−p−1]
Γ(1 − p)

]

(7)

The steady-state dynamical performance of the system
after repeated vibration is focused in this paper, so the
higher-order terms of Eq. (7) are omitted, and the first-
order approximate result is

Dp
t [x(t − τ)] = −αω sin[ω(t − τ) + θ]ωp−1 sin

(pπ

2

)

+αω cos[ω(t − τ) + θ]ωp−1 cos
(pπ

2

)

= −αω
[
sin(ωt + θ) cos ωτ sin

pπ

2
− cos(ωt + θ)

× sin ωτ sin
pπ

2

]
ωp−1

−αω
[
− cos(ωt + θ) cos ωτ cos

pπ

2
− sin(ωt + θ)

× sin ωτ cos
pπ

2

]
ωp−1

= −αω sin(ωt + θ)ωp−1 sin
(pπ

2
− ωτ

)

+αω cos(ωt + θ)ωp−1 cos
(pπ

2
− ωτ

)
(8)

Substituting the system original parameters into Eq.
(8), one can get

Dp
t [x(t − τ)] = ωp−1 sin

(pπ

2
− ωτ

)
ẋ(t)

+ωp cos
(pπ

2
− ωτ

)
x(t) (9)

To verify the accuracy of the first-order approximate
result of the fractional-order delayed feedback term,
the amplitude–frequency responses of the Duffing oscil-
lator Eq. (1) is investigated based on the numerical
method and the first-order approximate result, respec-
tively, which are shown in Fig. 1. It could be found that
the results of the two methods are consistent, which
verified the correctness of the first-order approximate
result.

Substituting Eq. (9) into Eq. (1), one could obtain

ẍ − kx + cẋ + αx3 = f cos(ωt)

−λ

[
ωp−1 sin

(pπ

2
− ωτ

)
ẋ

+ωp cos
(pπ

2
− ωτ

)
x

]
(10)

From Eq. (9), it could be found that the fractional-order
delayed feedback term can be equivalent to the form of
trigonometric function and exponential function. That
is to say, the fractional-order differential term plays the
role of damping and stiffness at the same time, which
can be equivalent to the equivalent linear damping and
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Fig. 1 The amplitude–frequency curves

equivalent linear stiffness. Using the concepts of equiv-
alent linear damping and equivalent linear stiffness to
rearrange Eq. (10), we can get

ẍ −
[
k − λωp cos

(pπ

2
− ωτ

)]
x +

[
c + λωp−1

× sin
(pπ

2
− ωτ

) ]
ẋ + αx33 = f cos(ωt) (11)

Use the following transformations:

c + λωp−1 sin
(pπ

2
− ωτ

)

= ε
[
c1 + λ1ω

p−1 sin
(pπ

2
− ωτ

)]
(12a)

f = εf1 (12b)

and Eq. (11) becomes

ẍ −
[
k − λωp cos

(pπ

2
− ωτ

)]
x + αx3

= ε
{

f1 cos(ωt) −
[
c1 + λ1ω

p−1 sin
(pπ

2
− ωτ

)]
ẋ
}

(13)

Supposing ε is zero, the undisturbed system is

ẍ −
[
k − λωp cos

(pπ

2
− ωτ

)]
x + αx3 = 0 (14)

Here is a heteroclinic orbit in Eq. (14) which satisfies

1
2
ẋ2 − k − ωp cos

(
pπ
2 − ωτ

)
2

x2 +
α

4
x4 = 0 (15)

Supposing ẋ = 0 at t = 0, one could obtain

x0 = ±
√

2[k − λωp cos(pπ
2 − ωτ)]

α
(16)

After some integral manipulations, Eq. (15) can be
rewritten as follows

∫ x

x0

dx

±√
[k − λωp cos(pπ

2 − ωτ)]x2 − α
2 x4

= t (17)

Calculating Eq. (17), one could get

x±(t) = ±
√

2[k − λωp cos(pπ
2 − ωτ)]

α
sec h

[√
k − λωp cos

(pπ

2
− ωτ

)
t

]
(18)

Then Eq. (13) is transformed into

⇀
x =

⇀

f (⇀
x) + ε

⇀
g (⇀

x, t) (19a)

where

⇀
x =

(
x1

x2

)
=

(
x
ẋ

)
(19b)

⇀

f (⇀
x) =

(
x2

[k − λωp cos(pπ
2 − ωτ)]x1 − αx3

1

)
(19c)

⇀
g (⇀

x, t)

= ε

[
0

f1 cos(ωt) − [c1 + λ1ω
p−1 sin(pπ

2 − ωτ)]x2

]

(19d)

The expression of displacement in homoclinic orbit is

x±
1 (t) = ±

√
2[k − λωp cos(pπ

2 − ωτ)]
α

×sech
[√

k − λωp cos
(pπ

2
− ωτ

)
t

]
(20)

The velocity expression of homoclinic orbit is obtained
through the derivative of Eq. (20) aboutt, and it is

x±
2 (t) = ∓

√
2
α

[
k − λωp cos

(pπ

2
− ωτ

)]

×sech
[√

k − λωp cos
(pπ

2
− ωτ

)
t

]

· tanh
[√

k − λωp cos
(pπ

2
− ωτ

)
t

]

(21)

According to Melnikov method [31], the Melnikov func-
tion could be established
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M(t0) =
⇀

f (⇀
x) ∧ ⇀

g (⇀
x, t)

= ε

∫ ∞

−∞
x±
2 (t)

{
f1 cos ω(t + t0) −

[
c1 + λ1ω

p−1

× sin
(pπ

2
− ωτ

)]
x±
2 (t)

}
dt (22)

The integral in the above formula is divided into two
parts and the two parts are calculated respectively. We
can get

M1(t0) = ε

∫ ∞

−∞
x±
2 (t)f1 cos[ω(t + t0)]dt

= ∓
√

2
α

ε
[
k − λωp cos

(pπ

2
− ωτ

)]

×f1 ·
∫ ∞

−∞
sec h

[√
k − λωp cos

(pπ

2
− ωτ

)
t

]

· tanh
[√

k − λωp cos
(pπ

2
− ωτ

)
t

]

× cos ω(t + t0)dt (23a)

Then, according to the odevity of function, Eq. (23a) is
transformed into

M1(t0)

= ±ε

√
2
α

[
k − λωp cos

(pπ

2
− ωτ

)]
f1 sin(ωt0)

×
∫ ∞

−∞
sec h

[√
k − λωp cos

(pπ

2
− ωτ

)
t

]

· tanh
(√

k − λωp cos
(pπ

2
− ωτ

)
t

)
sin ωtdt

= ±ε

√
2
α

f1ωπ sin(ωt0) sec h

×
[

πω

2
√

k − λωp cos(pπ
2 − ωτ)

]
(23b)

M2(t0)

= −ε
[
c1 + λ1ω

p−1 sin
(pπ

2
− ωτ

)] ∫ ∞

−∞

[
x±
2 (t)

]2
dt

= − 4ε

3α

[
c1 + λωp−1 sin

(pπ

2
− ωτ

)]

·
[
k − λωp cos

(pω

2
− ωτ

)]

×
√

k − λωp cos
(pπ

2
− ωτ

)
(23c)

Combine Eqs. (22) and (23), then the necessary condi-
tion for the chaos in the system will be obtained

√
2
α

εf1πω sec h

[
πω

2
√

k − λωp cos(pπ
2 − ωτ)

]

>

∣∣∣∣− 4ε

3α

[
c1 + λ1ω

p−1 sin
(pπ

2
− ωτ

)]

·
[
k − λωp cos

(pπ

2
− ωτ

)]

×
√

k − λωp cos
(pπ

2
− ωτ

)∣∣∣∣ (24a)

Substitute the parameters of Eq. (12) into Eq. (24a),
then we can get

√
2
α

fω sec h

[
πω

2
√

k − λωp cos(pπ
2 − ωτ)

]
>

∣∣∣∣− 4
3α

×
[
c + λωp−1 sin

(pπ

2
− ωτ

)]

·
[
k − λωp cos

(pπ

2
− ωτ

)]

×
√

k − λωp cos
(pπ

2
− ωτ

)∣∣∣∣ (24b)

The absolute value symbol in Eq. (24b) can be removed
when the equivalent stiffness produced by fractional-
order term is less than the inherent stiffness of the sys-
tem. Finally, the necessary conditions for chaos in Duff-
ing system are obtained.

√
2
α

fω sec h

[
πω

2
√

k − λωp cos(pπ
2 − ωτ)

]

>
4
3α

[
c + λωp−1 sin

(pπ

2
− ωτ

)]

·
[
k − λωp cos

(pπ

2
− ωτ

)]

×
√

k − λωp cos
(pπ

2
− ωτ

)
(25)

3 Numerical simulation and the influence
of the fractional-order delayed feedback
control on chaotic behaviors

In the previous section, the analytical necessary condi-
tion for chaos in Duffing system with fractional-order
delayed feedback control is obtained based on Melnikov
method. In this section, the numerical solution of the
threshold for chaos of Duffing system with fractional-
order delayed feedback control is studied by numerical
iteration method. Then, the influence of the fractional-
order delayed feedback control on chaotic behaviors is
investigated.
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Fig. 2 a Bifurcation diagram for p = 0.5. b The largest Lyapunov exponents diagram for p = 0.5

3.1 Numerical simulation

The numerical results of Eq. (1) are presented to verify
the correctness of the analytical solution. The numerical
formula [24] is

Dp [x (tl)] ≈ h−p
l∑

j=0

Cp
j x (tl−j), (26)

where tl = lh is the time sample points, h is the sample
step, Cp

j is the fractional binomial coefficient with the

iterative relationship as

chaoticthroughperioddoublingbifurcationwiththe

increaseofCp
0 = 1, Cp

j =
(

1 − 1 + p

j

)
Cp

j−1. (27)

A set of system parameters are chosen as k = 1.1,
c = 0.25, α = 1, ω = 1.2, λ = 0.1, τ = 0.2, p =
0.5. The bifurcation diagram of system (1) is obtained
which is shown in Fig. 1 by changing the excitation
amplitude f from 0 to 0.5 and selecting the step size as
0.005. To get the more detailed result, the step size is
selected as 0.001 and the local view of the bifurcation
diagram is shown in Fig. 1a too. The corresponding
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Fig. 3 a1 Phase portrait
of f = 0.26 and p = 0.5. a2
Poincaré map of f = 0.26
and p = 0.5. a3 Time
history of f = 0.26 and
p = 0.5. b1 Phase portrait
of f = 0.275 and p = 0.5.
b2 Poincaré map of
f = 0.275 and p = 0.5. b3
Time history of f = 0.275
and p = 0.5. c1 Phase
portrait of f = 0.285 and
p = 0.5. c2 Poincaré map
of f = 0.285 and p = 0.5.
c3 Time history of
f = 0.285 and p = 0.5. d1
Phase portrait of f = 0.296
and p = 0.5. d2 Poincaré
map of f = 0.296 and
p = 0.5. d3 Time history of
f = 0.296 and p = 0.5. e1
Phase portrait of f = 0.297
and p = 0.5. e2 Poincaré
map of f = 0.297 and
p = 0.5. e3 Time history of
f = 0.297A and p = 0.5
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Fig. 3 continued
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Fig. 3 continued
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largest Lyapunov exponents are shown in Fig. 1b, and
it can be seen from Fig. 2 that the critical excitation
amplitude fmin for generating chaos is around 0.3.

From Fig. 2, it is periodic motion when f is small,
but becomes chaotic through period-doubling bifurca-
tion with the increase of the excitation amplitude f .
Some typical samples in different ranges are taken to
analyze the dynamical motion.

1. The dynamical motion of the system is period-1
when f ≤0.264. Supposing f = 0.26, the phase por-
trait, time history and Poincaré maps are shown in
Fig. 3a.

2. When f ∈[0.265,0.283], the dynamical motion of sys-
tem is period-2. Supposing f = 0.275 in this range,
the phase portrait, time history and Poincaré maps
are shown in Fig. 3b.

3. When f ∈[0.284,0.287], the dynamical motion of
system is period-4. Supposing f = 0.285 in this
range,the phase portrait, time history and Poincaré
maps are shown in Fig. 3c.

4. In the range of f ∈[0.288,0.296] and f ≥ 0.297, sup-
posing f = 0.296 and f = 0.297, respectively. The
phase portrait, time history and Poincaré maps of
the system under the two parameters are shown in
Fig. 3d, e respectively. From Fig. 3e, it could be
found that the motion orbit of the phase trajec-
tory is homoclinic orbit and the mapping points in
the Poincaré maps are disordered, so the system is
completely in chaos in this case. The trajectory of
the phase trajectory in Fig. 3d is not in chaos. At

the same time, the mapping points in the Poincaré
maps show certain regularity in a sense. Therefore,
it is considered that the motion state of the system
at this time is quasi periodic and not completely in
chaos.

Change the initial value of the system, and other
parameters aren’t changed. Another bifurcation path
appeared, which is shown in Fig. 4 by red dots. The
phase portrait, time history and Poincaré map of f =
0.26, f = 0.275, f = 0.285, f = 0.296 and f = 0.297
are shown in Fig. 5 respectively. The initial value of
blue path is ”1,0,0” and the initial value of the red
path is ”-1,0,0”. It could be found that there are two
paths leading to the chaos via different period-doubling
bifurcation. The system dynamical motion are shown in
Fig. 5a–e, respectively, with the different f.

The comparison between the two paths shows that
the positions of bifurcations are the same. So the critical
value of chaos will not change by changing the initial
value.

Compare Fig. 3a with Fig. 5a, Fig. 3b with Fig. 5b,
Fig. 3c with Fig. 5c and Fig. 3e with Fig. 5e, and it
shows that the position of the phase diagram in peri-
odic motion will change due to different initial values.
The two phase diagrams are the left and right half of
the phase diagram in chaos respectively, but the motion
characteristic of the system will not change because of
two different domains of attraction in the phase space
of Duffing system under fractional-order feedback cou-
pling with time delay. When the initial values are differ-
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Fig. 4 a Bifurcation
diagram for p = 0.5 (in
different initial value). b
Bifurcation diagram for
p = 0.5A (local view)
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x
x

ent, the system will enter the different domain of attrac-
tion and form different steady-state solutions. When the
system is in a single period state, there are two steady-
state solutions. With the change of the external excita-
tion amplitude, both the two steady-state solutions can
reach the chaos through period-doubling bifurcation.

3.2 The comparison of two methods and the effect
of the fractional order

The same system parameters k = 1.1, c = 0.25, α = 1,
ω = 1.2, λ = 0.1, τ = 0.2, p = 0.5 are substituted into
Eq. (25) which is the analytical necessary condition for
chaos threshold in Duffing system, then one can get the
critical excitation amplitude fmin = 0.250. Comparing

with the numerical result fmin = 0.297, we could find
there is some error. As is known to all, the obtained
analytical necessary condition by Melnikov method is
the first-order approximate result, so there are errors in
the method itself. The relation curve between the exci-
tation amplitude fmin and fractional order p of system
(1) can be obtained by changing the fractional order
p from 0 to 2, which is represented by a solid line in
Fig. 6, and the numerical simulation results are shown
by small circle in Fig. 6 too. By comparing the results
of the two methods, we can see that the necessary con-
dition of chaos by the analytical solution is smaller than
the numerical solution. But the tendency of analytical
results is similar to the numerical simulation results, so
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Fig. 5 a1 Phase portrait
of f = 0.26 and p = 0.5. a2
Poincaré map of f = 0.26
and p = 0.5. a3 Time
history of f = 0.26 and
p = 0.5. b1 Phase portrait
of f = 0.275 and p = 0.5.
b2 Poincaré map of
f = 0.275 and p = 0.5. b3
Time history of f = 0.275
and p = 0.5. c1 Phase
portrait of f = 0.285 and
p = 0.5. c2 Poincaré map
of f = 0.285 and p = 0.5.
c3 Time history of
f = 0.285 and p = 0.5. d1
Phase portrait of f = 0.296
and p = 0.5. d2 Poincaré
map of f = 0.296 and
p = 0.5. d3 Time history of
f = 0.296 and p = 0.5. e1
Phase portrait of f = 0.297
and p = 0.5. e2 Poincaré
map of f = 0.297 and
p = 0.5. e3 Time history of
f = 0.297 and p = 0.5
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Fig. 5 continued
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the results of the two methods are consistent qualita-
tively.

From the observation of Fig. 6, it could be obtained
that increase of p would make the chaos threshold value
first increase then decrease, and fmin reaches the max-
imum value when p is 1.144. Through analyzing Eq.
(25), when time delay is zero, it could be obtained that
the equivalent linear stiffness decreases and the equiva-
lent linear damping increases when the fractional order
pchanged from 0 to 1, but the equivalent linear stiffness
increases and the equivalent linear damping decreases
when the fractional order pchanged from 1 to 2. From
Fig. 6, we found fmin reaches the maximum, the frac-
tional order p is greater than 1 that is because there
exists time delay. Time delay will affect the system stiff-
ness and damping and it would cause the peak of fmin
move to the right. So when time delay is small, selecting
the fractional order properly can resist the generation
of chaos.

3.3 The effect of the fractional-order delayed
feedback gain

A set of illustrative system parameters are chosen as
k = 1.1, c = 0.25, α = 1, ω = 1.2, τ = 0.2. The frac-
tional order p is changed from 0 to 2. The correspond-
ing p and fmin curves are obtained by chosen different
values of the fractional-order delayed feedback gain λ,
and the results are shown in Fig. 7. From the obser-
vation of Fig. 7, it could be found that the excitation
amplitude fmin for generating chaos will become larger
with the increase of λ. When p is small or large, the
rate of fmin change is not obvious. When p is around
1, the rate of fmin change is larger. In summary, the

0 0.5 1 1.5 2
0
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0.4

0.6

0.8

analytical solutions
numerical solutions

p

f m
in

Fig. 6 The comparisons between the numerical and ana-
lytical solutions

increase of the fractional-order delayed feedback gain λ
can resist the generation of chaos.

3.4 The effect of time delay

The same system parameters are chosen. The corre-
sponding p and fmin curves are obtained by choosing
different values of time delay τ , which is shown in Fig. 8.
From the observation of Fig. 8, it could be found that
the increase of time delay τ would result in the decrease
of fmin when the fractional order p changed from 0 to
1. The increase of time delay τ would result into the
increase of fmin when the fractional order p is close
to 2. When p is around 1, the rate of fmin change is
smaller. That is to say, the maximum of fmin is basi-
cally the same with different p. It shows that the change
of time delay can be offset by choosing the different p. It
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can also be seen from the composition of Eq. (25), both
time delay and the fractional order affect the threshold
of chaos in the form of trigonometric functions. There-
fore, the magnitude of the time delay in fractional-order
feedback control has an important influence on the sta-
bility of the system.

4 Conclusion

A Duffing system with fractional-order delayed feed-
back is studied by the Melnikov method in this paper.
Firstly, the fractional-order delayed feedback control is
studied and replaced with integer-order term equiva-
lently. By defining the equivalent linear stiffness and the
equivalent linear damping, the fractional-order delayed
feedback control is transformed into the equivalent lin-
ear stiffness and the equivalent linear damping. Then,
the Melnikov method is used to study the analytically
necessary condition of the equivalent system for gen-
erating chaos. To validate the accuracy of the pro-
posed analytical method, the numerical results of the
Eq. (1) are solved based on numerical iteration method
and the corresponding largest Lyapunov exponents are
obtained, then the comparison between the numerical
results and the analytical solution is investigated. From
the analysis of numerical simulations, it could be found
that there exist two paths leading to chaos via period-
doubling bifurcation in Duffing system with fractional-
order delayed feedback control. Finally, the effects of

the fractional order, the gain coefficient and time delay
are studied respectively. The fractional order, the gain
coefficient and time delay all can affect the equiva-
lent linear stiffness and the equivalent linear damp-
ing. The increase of the fractional order will make the
chaos threshold value increase before decrease, and the
increase of the gain coefficient can resist the generation
of chaos. Also, both time delay and the fractional order
affect the threshold of chaos in the form of trigonomet-
ric functions, so the change of time delay can be offset
by choosing the different fractional order. These results
are of great significance to the study of the dynamic
behavior of control system. They can provide a refer-
ence for the analysis of other fractional-order differen-
tial systems with time delay, and provide a theoretical
analysis method for the design of the fractional-order
system in engineering practice.
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