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Abstract The chapter is addressed at phenomenological mapping and mathematical analogies of oscillatory
regimes in hybrid discrete-continuum systems of coupled deformable bodies. Systems consist of connected
deformable bodies like plates, beams, belts, or membranes that are coupled through visco-elastic non-linear
layer. The layer is modeled by continuously distributed elements of Kelvin–Voigt type with non-linearity
of third order. Using the mathematical analogies, the similarities of structural models in systems of plates,
beams, belts, or membranes are explained. The mathematical models consist by a set of two coupled
non-homogenous partial non-linear differential equations. The proposed solution is divided into space and
time domains by classical Bernoulli–Fourier method. In the time domains, the systems of coupled ordinary
non-linear differential equations are completely analog for different systems of deformable bodies and
are solved using the Krilov–Bogolyubov–Mitropolski asymptotic method. This paper presents the power
of mathematical analytical calculus which is similar for physically different systems. The mathematical
numerical experiments are a great and useful tool for making the final conclusions between many input and
output values. The conclusions about non-linear phenomena in multi-body systems dynamics are revealed
from the specific example of double plate’s system stationery and no stationary oscillatory regimes.

1 Introduction

The investigation of dynamics and vibration of cou-
pled plates as new qualitative systems has grown expo-
nentially over the last few years due to their practical
importance and the theoretical challenges involved in
their non-linear analysis. As an introduction, a review
of first author’s research results in area of transversal
vibrations of different double-plate systems is presented
(see References [1–7]). Main result of the contribution
[1–7] is analytical approximation of solution of the cou-
pled homogeneous and non-homogeneous partial differ-
ential equations of the free and forced vibrations of the
double rectangular or circular plates system coupled by
elastic or visco-elastic layer. This solution is obtained
by use of the method of Bernoulli’s particular integral
as well as Lagrange’s method of the constant’s varia-
tion. Some numerical examples are presented along with
visualizations of the double-plate free and forced vibra-
tions. Obtained analytical and numerical result is very
valuable for university teaching process for the area of
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structural system elastodynamics as well as of hybrid
deformable body system vibrations.

The paper by Poltorak and Nagaya [8] was concerned
with a method for solving forced vibration problems of
solid sandwich plates with irregular boundaries. The
exact, general solution of the equation of motion in
terms of Bessel functions is found. The boundary prob-
lem is solved using the Fourier expansion collocation
method. Damping properties of an intermediate, visco-
elastic layer are taken into consideration by means of
a concept of a complex shear modulus. The paper by
Poltorak and Nagaya [9] deals with a method for solving
free vibration problems of three-layered isotropic plates
of arbitrary shape with clamped edges. The direct solu-
tion of the Yan and Dowell equation of motion, in terms
of Bessel functions, is found.

Recent technological innovations, especially in micro-
electromechanical systems and nanomaterials struc-
tures, have caused a considerable interest in the study
of components and hybrid dynamical processes of cou-
pled rigid and deformable bodies (plates, beams, mem-
branes, and belts) denoted as hybrid systems. These
coupled structures are characterized by the interaction
between subsystem dynamics, governed by coupled par-
tial differential equations with appropriate boundary
and initial conditions. In the papers [7,10], the method
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for obtaining frequency equations of small oscillations is
presented using hybrid systems with a statical as well as
dynamically coupled discrete subsystem of rigid bodies
and continuous subsystem as an example. Also, series
of theorems of small oscillations frequency equations
are defined. Based on presented examples, the anal-
ogy between frequency equations for some classes of
these systems is identified. Special cases of discretiza-
tion and continouization of coupled subsystems in the
light of these sets of proper circular frequencies and
frequency equations of small oscillations are analyzed
[11,12].

The research of vibrational behavior of an elastically
connected double plates system is important for both
theoretical and pragmatic reasons (see Refs. [1,2,13]).
Many important structures are modeled as composite
structure. As a conceptual model of such structure, it is
convenient to use the model of a visco-elastically con-
nected double plates system. The elements for acoustic
and vibrations’ isolation, such as the walls or grounds,
all can be modeled and analysed with these suggested
coupled structure systems. These models and analysis
are the subjects of our presented research which follows
gradually explained in the next sections.

The obtained results have particular practical impor-
tance especially if the models refer to structures maid
of material with creeping features (see Ref. [14]).

Theory of Petrović Alas, presented in two books
[15,16] in Serbian, contains elements of mathemat-
ical phenomenology and phenomenological mapping.
Since in Serbian, the books have been only approach-
able for a certain number of his disciples. The idea
of mathematical phenomenology of Petrović, was pre-
sented in his works entitled “Phenomenological Map-
ping” [16], containing the following chapters: The map-
ping of facts; General notation of mapping; Conven-
tional mapping; Natural mapping; Mutual particulari-
ties of facts and Elements and properties (essentials) of
facts. Alas’s theory defines two tips of analogies: quali-
tative and mathematical analogy. Since Alas was a stu-
dent of H. Poincaré, P. Painlevé, Ch. Hermite, and É.
Picard and his theory of “Phenomenological Mapping”
can be considered as the continuation of the ideas of
Poincare’s mapping. Poincare was forerunner to mod-
ern researchers of non-linear dynamics and dynamical
systems mapping, especially contributed to nowadays
spreadly used Poincaré section and map. Also, similar
concept of mapping is used by Smale’s horseshoe map-
ping in the vicinity of the homoclinic unstable point.

The similar ideas were later applied in graphical-
computer techniques by Penrose [17], and Glaick [18].
This had a great importance in the time of computer
and software tool expansion.

Based on this theory, it is possible to integrate
the immense contemporary knowledge from the dis-
parate fields of sciences and identify analogous dynam-
ics and phenomena. Phenomenological mapping of phe-
nomenon and models permit the description of dynam-
ics of multiple system models, even of disparate nature,
by a single mathematical model. The recognisable
example is mechanical–electrical analogy of electrical

circuit consisting of a resistor, an inductor, and a capac-
itor, connected in series or in parallel with simple har-
monic oscillator. J. Maxwell brought in analogies of
this sort in the 19th century and Rašković [19,20]
gave a series of examples for electro-mechanical mathe-
matically analogous vibration systems mathematically
described and solved for free vibrations. Additionally,
as electrical network analysis matured, it was realized
that certain mechanical complex problems could be eas-
ily explained through an electrical analogy based on a
prescribed frequency function that is analogue for both
systems.

Based on the Petrović‘s ideas [15,16], an analogy
between vector models of stress and strain states and
model of the state of the body mass inertia moments
were introduced and applied, in the paper [21], for
explanation in the possible phenomenological mapping
of these different kinds of states.

Ideas of phenomenology and phenomenological map-
ping were used for the formulation of the frequency’s
equation theorems of small oscillations, see for instance
[12,21]. These theorems found their application for
investigating the dynamics, and vibration phenomena
of resonance and dynamical absorption. These findings
have great importance in research, understanding, and
control of the dynamics for various kinds of chains and
multi-body systems.

To our knowledge, only a few studies by different
authors are available with discussing phenomenologi-
cal mapping: in mathematics [21–24], from the area of
neuroscience [25] or as a part of string theory and its
applications [26]. String theory is an independent math-
ematical model that explains all elementary forces and
forms of matter.

The undesirable phenomena in vibrational behav-
ior of deformable structures are sudden amplitude
jumps, non-linear hysteresis, modulation, beating, and
phase shifting. Such phenomena originate from inher-
ently non-linear material and geometrical properties
of deformable structures. The most important step in
the description of the dynamics of such a structures
and structural model formulation is an adequate math-
ematical model of mechanical system. Where by the
description of the system represents all the levels of
researching the kinetics characteristics of the systems
and abilities of their improvement, control, regulation,
or some other usage of mechanical systems. Speaking
diversely, mathematical modeling regards on the usage
of mathematical equations to present the behavior of
practical systems. It helps in better understanding of
systems features. Since the non-linearity appears inher-
ently as an object’s natural characteristic, it is impor-
tant to describe, model, solve, and control it by avail-
able methods. The usual linear approximation of the
system does not give the satisfactory results especially
in the contemporary application of micro- and nanos-
tructures where the aforementioned behaviors overcome
the dimensions of the structures and imperil the stable
work conditions. Thus, the issue is to explore and in
some plausible way to control system non-linearities.
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Starting hypothesis is always examined with theoret-
ical models which are useful for presenting the general
conclusions to the simple models. The adjoint numer-
ical calculations give conclusions for specific and even
complicated systems of the observed parameter sets.
However, between the conceptual model and structural
form that consists of a set of mathematical equations
addressing the complex system behaviors, we are forced
to introduce a number of assumptions, simplifications,
neglect, or possible measurement errors. Consequently,
our structural model can have significantly different
dynamics from real physical models. Reasonably, it is
useful to note the similarities in the different physi-
cal phenomena. Mathematical descriptions of that phe-
nomena usually are described with the analogue sets
of equations. Thus, it is possible to take advantage of
the general conclusions from understanding generalized
mathematical models.

In this paper, we will present mathematical models
of several complex mechanical systems, introduce its
analogies, and explain non-linear phenomena of pass-
ing through resonant regions. Systems consist of cou-
pled deformable bodies like plates, beams, or mem-
branes that are connected through discrete-continuum
layer with non-linear elastic and translator and rota-
tor inertia properties. Visco-elastic non-linear layer,
with properties of translation and rotation of added
mass elements, was rheological modeled by continu-
ously distributed elements of Kelvin–Voigt type with
non-linearity of third order with addition of rotatory
elements.

The investigation of dynamics of multi bodies sys-
tems with different rheological coupling steadily enlarges
over the last few years due to their practical impor-
tance especially in microelectromechanical systems and
nanomaterials structures. Moreover, it is evident the
existing considerable interest in the study of compo-
nent and hybrid dynamical processes of coupled rigid
and deformable bodies (plates, beams, membranes, and
belts) (see Refs. [27–30]). Such systems are denoted as
hybrid mechanical systems and are characterized by the
interaction between subsystem dynamics. Their struc-
tural models comprise a set of coupled partial differen-
tial equations with boundary and initial conditions.

The research of small transversal vibrations of
deformable bodies connected with elastic, visco-elastic,
or creep connections has as much theoretical as prac-
tical importance. Their mathematical model can be
used to describe the dynamic behavior of a considerable
number of coupled multi-body systems. The results and
conclusions of the analysis of such mathematical mod-
els are used in the presentation of non-linear dynamics
behavior for a number of real structures. For instance,
in civil engineering for roofs, floors, walls, in thermo
and acoustics isolation systems of walls and floors con-
structions, orthotropic bridge decks or for building any
structural application in which the traditional method
of construction uses stiffened steel.

In this paper, we show that the model of a visco-
elastically connected double deformable bodies system
with non-linearity in the elastic layer is apt for model-

ing sandwich construction behavior. The sandwich con-
structions consist of two or more facing layers that are
structurally bonded to a core made of material with
small specific weight. This type of construction pro-
vides a structural lightweight system that acts as a
crack arrest layer and that can join two dissimilar met-
als without welding. Such construction provides equiv-
alent in-plane and transverse stiffness and strength,
reduces fatigue problems, minimizes stress concentra-
tions, improves thermal and acoustical insulation, and
provides vibration control.

2 Theoretical problem formulation and
governing equations of the basic problem
of double circular plate system vibrations

The example to start consideration is the system of two
isotropic, elastic, thin circular plates. The material and
geometrical properties of plates are denoted as: widths
hi, i = 1, 2, modulus of elasticity Ei, Poisson’s ratios μi,
shear modulus Gi, and plate mass distributions ρi. The
plates are of constant thickness in the z-direction (see
Fig. 1a). The contours of the plates are parallel. The
plates are interconnected by a linear elastic Winkler-
type layer with constant surface stiffness c. This elas-
tically connected double-plate system is a composite
structure type, or sandwich plate, or layered plate, and
here, it is a first considered problem.

The origins of the two coordinate systems are located
at the corresponding centers in the undeformed plate’s
middle surfaces, as shown in Fig. 1a, and have parallel
corresponding axes. The problem at hand is to deter-
mine solutions and the own vibration frequencies for
such a double-plate system elastically connected by an
elastic spring layer distributed along plates contour sur-
faces.

The use of Love–Kirchhoff approximation makes
the classical plate theory essentially a two-dimensional
model, in which the normal and transverse forces and
bending and twisting moments on plate cross sections
(see Ref. [19]) can be found in term of the displacement
wi (r, ϕ, t), i = 1, 2 of the middle surface points, which
is assumed to be a function of two coordinates, r and
ϕ in polar–cylindrical coordinate system, and time t.

The plates are assumed to have the same contour
forms and boundary conditions.

Let us suppose that the plate middle surfaces are
plane in the undeformed state. If the plates transverse
deflections wi (r, ϕ, t), i = 1, 2 are small compared to
the plates thicknesses, hi, i = 1, 2 (see Ref. [19]) and
that plate vibrations occur only in the vertical direc-
tion.

Let us denote with D(i) = Eih
3
i

12(1−μ2
i )

, i = 1, 2 the

bending cylindrical rigidity of plates. On the basis of
previous assumptions, we suppose that plate displace-
ments ui (r, ϕ, z, t), i = 1, 2 and vi (r, ϕ, z, t), i = 1, 2 of
the generic plate point Ni (r, ϕ, z), i = 1, 2 in the radial
and circular direction can be expressed in function of its
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a b c

Fig. 1 a* An elastically connected double circular plate system; b* A visco-elastically connected double circular plate
system; c* Model of visco-elastic standard light element of discrete-continuum interconnected layer

distance z from the corresponding plate middle surface
and its transversal displacement wi (r, ϕ, t), i = 1, 2 in
direction of the axis z, and also the same displacement
of the corresponding point Ni0 (r, ϕ, 0), i = 1, 2 in the
plate middle surface.

The governing equations (see Ref. [1]) are formulated
in terms of two unknowns: the transversal displace-
ments wi (r, ϕ, t), i = 1, 2 in direction of the axis z,
of a point Ni (r, ϕ), i = 1, 2 of the upper plate mid-
dle surface and of the lower plate middle surface. The
system of two coupled partial differential equations is
derived using d’Alembert’s principle or by variational
principle (see Ref. [19]). These partial differential equa-
tions of the elastically connected double-plate system,
by discrete-continuum layer, are in the following forms:

ρ1h1
∂2w1 (r, ϕ, t)

∂t2
+ D1ΔΔw1 (r, ϕ, t)

−c [w2 (r, ϕ, t) − w1 (r, ϕ, t)] = 0

ρ2h2
∂2w2 (r, ϕ, t)

∂t2
+ D2ΔΔw2 (r, ϕ, t)

+c [w2 (r, ϕ, t) − w1 (r, ϕ, t)] = 0, (1)

where c is the constant surface mechanical stiffness of
discrete-continuum elastic layer.

Let us introduce the following notations: a2
(i) = c

ρihi
,

i = 1, 2 and c4
(i) = Di

ρihi
, i = 1, 2. By decoupling

the equations of the previous system (1), we obtain
the corresponding two partial differential equations of
the decoupled plate system, which describe two partial
plates founded on the elastic foundation of the Win-
kler type. These partial differential equations are in the
following forms:

∂2wi (r, ϕ, t)
∂t2

+ c4
(i)ΔΔwi (r, ϕ, t)

+a2
(i)wi (r, ϕ, t) = 0, i = 1, 2. (2)

2.1 Particular solutions of governing basic
decoupled equations of double-plate system
oscillations

Solution of the previous system of partial differential
equations can be looked for by Bernoulli’s method of
particular integrals in the form of multiplication of two
functions, of which the first W(i) (r, ϕ), i = 1, 2 depends
only on space coordinates r and ϕ, and the second is a
time function T(i) (t), i = 1, 2 (see Refs. [1,2,19])

wi (r, ϕ, t) = W(i) (r, ϕ) T(i) (t) , i = 1, 2. (3)

The assumed solution is introduced in the previous
system of Eq. (1), and after transformation, we obtain
the following:

T̈(i) (t)
T(i) (t)

+ c4
(i)

ΔΔW(i) (r, ϕ)
W(i) (r, ϕ)

+ a2
(i) = 0, i = 1, 2. (4)

Thus, we obtain in the space cylindrical–polar coor-
dinates r, ϕ and z the following differential equations:

T̈(i) (t) + ω2
(i)T(i) (t) = 0

ΔΔW(i) (r, ϕ) − k4
(i)W(i) (r, ϕ) = 0, i = 1, 2, (5)

where eigen circular frequencies of the corresponding
basic system of decoupled plates are

ω2
(i) = k4

(i)c
4
(i) + a2

(i) = k4
(i)

D(i)

ρ(i)h(i)

+
c

ρ(i)h(i)
= k4

(i)

E(i)h
2
(i)

12ρ(i)

(
1 − μ2

(i)

)

+
c

ρ(i)h(i)
, i = 1, 2. (6)

It is easy to find the following time functions:

T(i) (t) = A(i) cos ω(i)t + B(i) sinω(i)t, i = 1, 2. (7)
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2.2 Space coordinate eigen amplitude functions

Let us consider the space coordinate amplitude func-
tions W(i) (r, ϕ), i = 1, 2. For the plates in circular form,
the set of the partial differential equations in the space
cylindrical–polar coordinates r, ϕ, and z is

ΔW(i) (r, ϕ) ± k2W(i) (r, ϕ) = 0, i = 1, 2, (8)

where Δ is the differential operator Δ = ∂2

∂r2 + 1
r

∂
∂r +

1
r2

∂2

∂ϕ2 .
We write the solutions of previous equations in the

form W(i) (r, ϕ) = Φ(i) (ϕ)R(i) (r), and after applying
this solution, we obtain the following system of ordinary
differential equations:

Φ′′
(i) (ϕ) ± n2Φ(i) (ϕ) = 0 and

R′′
(i) (r) +

1
r
R′

(i) (r) +
(

±k2
(i)∓

n2

r2

)

R(i) (r) = 0, i = 1, 2. (9)

The second equation of previous system has partic-
ular solutions in the form of Neumann’s and Bessel’s
functions [31], but Neumann’s functions for r = 0 have
infinite value, than particular solutions of this problem
are only Bessel’s function of the first kind with real
argument Jn (x) as well as with imaginary arguments
In (x), where x = kr. Modified Bessel’s function of the
first kind with imaginary arguments In (x), with order
n, is in the following form:

In(x) = (i)−nJn(ix) =
(−1)n

2π

+π∫

−π

ex cos tcos ntdt. (10)

If n is an integer number, than this function satisfies
the following differential equation:

In
′′(ix) +

1
(ix)

In
′(ix) −

(
1 +

n2

(ix)2

)
In(ix) = 0. (11)

Using previous considerations and the study of Eq.
(9), we can write their solutions in the polar coordinates
as follows:

Φ(i)n (ϕ) = C(i)n sin
(
nϕ + ϕ(i)0n

)
and

R(i)nm (r)=Jn

(
k(i)nmr

)
+K(i)nmIn

(
k(i)nmr

)
, i=1, 2.

(12)

Therefore, the solutions for the space coordinate
amplitude functions are in the following forms:

W(i)nm (r, ϕ) =
⌊
Jn

(
k(i)nmr

)
+ K(i)nmIn

(
k(i)nmr

)⌋

× sin
(
nϕ + ϕ(i)0n

)
, i = 1, 2, (13)

which are the space coordinate–eigen amplitude nor-
mal functions for boundary conditions in the form con-
strained along the contour circular plate. The char-
acteristic numbers are roots of the next characteristic
transcendent equation (see Ref. [19])

Δn (kna) = fn (kna) = kn

∣∣∣∣
Jn (kna) In (kna)
J

′
n (kna) I

′
n (kna)

∣∣∣∣
= 0 n = 1, 2, 3, 4, . . . (14)

The family (14) of characteristic equations for each n
has an infinite number of solutions (roots) and we are
going to mark them with knm, m = 1, 2, 3, . . ., denoting
a family of eigen values for each n = 1, 2, 3, 4, . . ., sets
of Eq. (14) of eigen values for each n = 1, 2, 3, 4, . . ., can
be rewritten in the form

Δn(λn) = fn(λn) = kn

∣∣∣∣
Jn(λn) In(λn)
J′

n(λn) I′
n(λn)

∣∣∣∣ = 0. (15)

As the solutions (roots) of this equation are λnm,
n = 1, 2, 3, 4, . . ., n = 1, 2, 3, . . ., so we have knm = λnm

a
where a is the plate radius. The graphics of character-
istic transcendent equations for n = 0, n = 1 and n = 2
are reported in Fig. 2a*–c*.

In Fig. 2a*, we can see from the set with infinite
number of roots, corresponding to various n only a cer-
tain number of solutions (roots) denoted with λnm. For
example in Fig. 2a*, we find the following roots λ01 =
3.196; λ02 = 6.306; λ03 = 9.439, . . ., in Fig. 2b* the fol-
lowing roots λ11 = 4.61, λ12 = 7.8, λ13 = 10.96, . . .,
and in Fig. 2c* the following roots λ21 = 5.9, λ22 =
9.2, λ23 = 12.4, . . .. For those values of characteristic
numbers, the space coordinate eigen amplitude func-
tions are represented in Fig. 3.

Last but not least, we obtain the general solutions
for the transversal plates middle surface point displace-
ment in the following forms:

w(i) (r, ϕ, t) =
∞∑

n=1

∞∑

m=1

⌊
Jn

(
k(i)nm

r
)

+ K(i)nm
In

(
k(i)nm

r
)⌋

× sin
(
nϕ+ϕ(i)0n

)
T(i)mn (t) , i = 1, 2, (16)

or

wi (r, ϕ, t)=
∞∑

n=1

∞∑

m=1

W(i)nm (r, ϕ) T(i)nm (t), i = 1, 2. (17)

The space coordinate eigen amplitude functions
W(i)nm (r, ϕ) , i = 1, 2, n,m = 1, 2, 3, 4, . . . ∞ satisfy the
following conditions of orthogonality:

r∫

0

2π∫

0

W(i)mn (r, ϕ) W(i)sr (r, ϕ) rdrdϕ

=
{

0 nm �= sr
vmnnm nm = sr

, (18)
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Fig. 2 The graph of characteristic transcendent Eq. (14)
for: . . . n = 0, where we can see only eight solutions (roots)
λ0m, m = 1, 2, . . . , 8; of the set with infinite number of roots,
b* n = 1, where we can see only eleven solutions (roots)

λ1m, m = 1, 2, . . . , 11; of the set with infinite number of
roots, and c* n = 2 where we can see only eleven solutions
(roots) λ2m, m = 1, 2, . . . , 11 of the set with infinite number
of roots

where i = 1, 2, n,m = 1, 2, 3, 4, . . . ∞, s, r = 1, 2, 3, 4, . . .
∞, which is easily derived using system equation (9).

2.3 Particular solutions of governing system of
coupled partial differential equations for free system
oscillations

For the solutions of the governing system of the cou-
pled partial differential equations (1) for free double
plates’ oscillations in the form of expansion (17), the
eigen amplitude function W(i)nm (r, ϕ), i = 1, 2, n,m =
1, 2, 3, 4, . . . ∞ are the same as in the case of decou-
pled plates problem and T(i)nm (t), i = 1, 2, n,m =
1, 2, 3, 4, . . . ∞ are unknown time functions describing
their time evolution.

After introducing (17) into the following system of
the coupled partial differential equations for free double
plate’s oscillations:

∂2w1 (r, ϕ, t)
∂t2

+ c4
(1)ΔΔw1 (r, ϕ, t)

−a2
(1) [w2 (r, ϕ, t) − w1 (r, ϕ, t)] = 0

∂2w2 (r, ϕ, t)
∂t2

+c4
(2)ΔΔw2 (r, ϕ, t) + a2

(2) [w2 (r, ϕ, t)

−w1 (r, ϕ, t)] = 0, (19)

we obtain

∞∑
n=1

∞∑
m=1

W(1)nm (r, ϕy) T̈(1)nm (t)

+c4
(1)

∞∑
n=1

∞∑
m=1

ΔΔW(1)nm (r, ϕ) T(1)nm (t)

−a2
(1)

{ ∞∑
n=1

∞∑
m=1

W(2)nm (r, ϕ) T(2)nm (t)

−
∞∑

n=1

∞∑
m=1

W(1)nm (r, ϕ) T(1)nm (t)

}
= 0

∞∑
n=1

∞∑
m=1

W(2)nm (r, ϕ) T̈(2)nm (t)

+c4
(2)

∞∑
n=1

∞∑
m=1

ΔΔW(2)nm (r, ϕ) T(2)nm (t)

+a2
(2)

{ ∞∑
n=1

∞∑
m=1

W(2)nm (r, ϕ) T(2)nm (t)

−
∞∑

n=1

∞∑
m=1

W(1)nm (r, ϕ) T(1)nm (t)

}
= 0.

By multiplying the first and second equation with
W(i)sr (r, ϕ) rdrdϕ, integrating along middle plate sur-
face and taking into account orthogonality conditions
(18) and equal boundary conditions of the plates, we
obtain the mn-family of systems containing two cou-
pled ordinary differential equations for determination
of the unknown time functions T(i)nm (t), i = 1, 2,
n,m = 1, 2, 3, 4, . . . ∞ in the following form:

T̈(1)nm (t) +
⌊
c4
(1)k

4
(1)nm + a2

(1)

⌋
T(1)nm (t)

−a2
(1)T(2)nm (t) = 0

T̈(2)nm (t) +
[
c4
(2)k

4
(2)nm + a2

(2)

]
T(2)nm (t)

−a2
(2)T(1)nm (t) = 0, n,m = 1, 2, 3, 4, . . . ∞,

or in the form

T̈(1)nm (t) + ω2
(1)nmT(1)nm (t) − a2

(1)T(2)nm (t) = 0

T̈(2)nm (t) + ω2
(2)nmT(2)nm (t)

−a2
(2)T(1)nm (t) = 0 n,m = 1, 2, 3, 4, . . . ∞. (20)

Eliminating the time function T(2)nm (t) from previous
mn-family of system of coupled second-order ordinary
differential equations, we obtain the mn-family of one
fourth-order equation in the form of

¨̈T (1)nm (t) +
[
ω2

(1)nm + ω2
(2)nm

]
T̈(1)nm (t)
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Fig. 3 The space coordinate eigen amplitude functions Wnm(r, ϕ) for: a λ11 = 4.61, λ12 = 7.8, λ13 = 10.96, . . .; b
λ21 = 5.9, λ22 = 9.2, λ23 = 12.4, . . . are presented above and the corresponding cross sections are presented below

+
[
ω2

(1)nmω2
(2)nm − a2

(1)a
2
(2)

]
T(2)nm (t) = 0, (21)

with the corresponding mn-family frequency equation
in the form of polynomial, biquadratic equation with
respect to unknown own circular frequencies ω̃2

nm,
n,m = 1, 2, 3, 4, . . . ∞

ω̃4
nm +

[
ω2

(1)nm + ω2
(2)nm

]
ω̃2

nm

+
[
ω2

(1)nmω2
(2)nm − a2

(1)a
2
(2)

]
= 0. (22)

Having the two roots ω̃2
nm(s), n,m = 1, 2, 3, 4, . . . ∞,

s = 1, 2
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ω̃2
nm(1,2) =

[
ω2

(1)nm + ω2
(2)nm

]
∓
√[

ω2
(1)nm − ω2

(2)nm

]2

+ 4a2
(1)a

2
(2)

2
, (23)

or in the form

ω̃2
nm(1,2) =

{
k4
(1)nm

[
c4
(1) + c4

(2)

]
+ a2

(1) + a2
(2)

}
∓
√{

k4
(1)nm

[
c4
(1) − c4

(2)

]
+ a2

(1) − a2
(2)

}2

+ 4a2
(1)a

2
(2)

2
. (24)

Formally, we can write the system equation (20) by the
following matrices of inertia Anm and of quasielastic
coefficients Cnm of the dynamical system correspond-
ing to the mn-family, with two degrees of freedom:

Anm =
(
1
1

)

Cnm =
(

ω2
(1)nm −a2

(1)

−a2
(2) ω2

(2)nm

)
(25)

and using the solutions in the form of
T(i)nm (t) = A(i)nm cos (ω̃nmt + αnm) , i = 1, 2,(26)

where ω̃2
nm, n,m = 1, 2, 3, 4, . . . ∞ are unknown eigen

circular frequencies, A(i)nm unknown amplitudes, and
αnm unknown phases. Then, the frequency equation of
the mn-family is in the form of

fnm

(
ω̃2

nm

)
=

∣∣Cnm − ω̃2
nmAnm

∣∣

=
∣∣∣∣
ω2

(1)nm − ω̃2
nm −a2

(1)

−a2
(2) ω2

(2)nm − ω̃2
nm

∣∣∣∣ = 0,

(27)

which is equal to Eq. (22) with the sets of two roots
ω̃2

nm(s), n,m = 1, 2, 3, 4, . . . ∞, s = 1, 2, (23).
The relations of the amplitudes of each set are in the

form
A

(s)
(1)mn

a2
(1)

=
A

(s)
(2)mn[

ω2
(1)nm − ω̃2

nm(s)

]

= C(s) n,m = 1, 2, 3, 4, . . . ∞, s = 1, 2.(28)

If we take into account that it is A
(1)
(1)nm = A

(2)
(1)nm =

1, then we obtain

A
(1,2)
(2)nm =

{
k4
(1)nm

[
c4
(1) − c4

(2)

]
+ a2

(1) − a2
(2)

}

2a2
(1)

±1
2

√√√√√
⎡
⎣k4

(1)nm

[
c4
(1) − c4

(2)

]
+ a2

(1) − a2
(2)

a2
(1)

⎤
⎦

2

+ 4
a2
(2)

a2
(1)

.

(29)

The solutions of the mn-family mode time functions
T(i)nm (t), i = 1, 2, n,m = 1, 2, 3, 4, . . . ∞ are in the
form of
T(1)nm (t) = Anm cos ω̃nm(1)t + Bnm sin ω̃nm(1)t

+Cnm cos ω̃nm(2)t + Dnm sin ω̃nm(2)t

T(2)nm (t)

= A
(1)
(2)nm

[
Anm cos ω̃nm(1)t + Bnm sin ω̃nm(1)t

]

+A
(2)
(2)nm

[
Cnm cos ω̃nm(2)t + Dnm sin ω̃nm(2)t

]
,

(30)

where the mn-family mode n,m = 1, 2, 3, 4, . . . ∞ con-
tains the set of unknown constants Anm, Bnm, Cnm,
Dnm defined by plates initial conditions.

Then, the particular solutions of the governing sys-
tem of coupled partial differential equations for free sys-
tem oscillations corresponding to plate displacements
read

w1 (r, ϕ, t) =
∞∑

n=1

∞∑

m=1

W(1)nm (r, ϕ)
[
Anm cos ω̃nm(1)t

+Bnm sin ω̃nm(1)t + Cnm cos ω̃nm(2)t + Dnm sin ω̃nm(2)t
]

w2 (r, ϕ, t)=
∞∑

n=1

∞∑

m=1

W(2)nm (r, ϕ)
{
A

(1)
(2)nm

[
Anm cos ω̃nm(1)t

+Bnm sin ω̃nm(1)t
]
+ A

(2)
(2)nm

[
Cnm cos ω̃nm(2)t

+Dnm sin ω̃nm(2)t
]}

. (31)

The initial conditions are

w1 (r, ϕ, 0) =
∞∑

n=1

∞∑

m=1

W(1)nm (r, ϕ) [Anm + Cnm]

= g1 (r, ϕ)

w2 (r, ϕ, 0) =
∞∑

n=1

∞∑

m=1

W(2)nm (r, ϕ)
{

A
(1)
(2)nm

[Anm]

+A
(2)
(2)nm

[Cnm]
}
= g2 (r, ϕ)

∂w1 (r, ϕ, t)

∂t

∣∣∣∣
t=0

=
∞∑

n=1

∞∑

m=1

W(1)nm (r, ϕ)

× [
ω̃nm(1)Bnm + ω̃nm(2)Dnm

]
= g̃1 (r, ϕ)

∂w2 (r, ϕ, t)

∂t

∣∣∣∣
t=0

=
∞∑

n=1

∞∑

m=1

W(2)nm (r, ϕ)
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×
{

A
(1)
(2)nm

[
ω̃nm(1)Bnm

]

+A
(2)
(2)nm

[
ω̃nm(2)Dnm

]}
= g̃2 (r, ϕ) , (32)

where gi (r, ϕ) and g̃i (r, ϕ), i = 1, 2 are initial con-
dition functions for middle plate points displacement
and velocity, satisfying boundary conditions. Then, by
initial conditions (32) and frequency Eq. (27), the
unknown coefficients are defined by no homogeneous
algebra equation system. Using Cramer formula, the
set of the unknown constants Anm, Bnm, Cnm, Dnm for
mn -family mode n,m = 1, 2, 3, 4, . . . ∞ are defined in
the following form:

Anm =

∫
A

∫ [
A

(2)
(2)nmg1 (r, ϕ) − g2 (r, ϕ)

]
W(1)nm (r, ϕ) rdrdϕ

[
A

(2)
(2)nm − A

(1)
(2)nm

] ∫
A

∫ [
W(1)nm (r, ϕ)

]2
rdrdϕ

;

Cnm =

∫
A

∫ [
g2 (r, ϕ) − A

(1)
(2)nmg1 (r, ϕ)

]
W(1)nm (r, ϕ) rdrdϕ

[
A

(2)
(2)nm − A

(1)
(2)nm

] ∫
A

∫ [
W(1)nm (r, ϕ)

]2
rdrdϕ

;

Bnm =

∫
A

∫ [
A

(2)
(2)nmg̃1 (r, ϕ) − g̃2 (r, ϕ)

]
W(1)nm (r, ϕ) rdrdϕ

ω̃nm(1)

[
A

(2)
(2)nm − A

(1)
(2)nm

] ∫
A

∫ [
W(1)nm (r, ϕ)

]2
rdrdϕ

;

Dnm =

∫
A

∫ [
g̃2 (r, ϕ) − A

(1)
(2)nmg̃1 (r, ϕ)

]
W(1)nm (r, ϕ) rdrdϕ

ω̃nm(2)

[
A

(2)
(2)nm − A

(1)
(2)nm

] ∫
A

∫ [
W(1)nm (r, ϕ)

]2
rdrdϕ

. (33)

The solutions (31) are the first main analytical result of
our research of transversal vibrations of elastically con-
nected double circular plates’ system. From analytical
solutions (31), and corresponding expressions (33) of
the constant, we can conclude that for one mn-family
mode n,m = 1, 2, 3, 4, . . . ∞, to one eigen amplitude
function corresponds two own circular frequencies and
corresponding two-frequency time function T(i)nm (t),
i = 1, 2, n,m = 1, 2, 3, 4, . . . ∞. We can conclude that
the elastical Winkler type of discrete-continuum layer
duplicates the number of system circular frequencies
corresponding to one eigen amplitude function of the
mn-family mode n,m = 1, 2, 3, 4, . . . ∞.

3 Theoretical problem formulation and
governing equations of forced oscillation of
the visco-elastically connected double-plate
system

Let us consider the same system of plates, but con-
nected with a visco-elastic discrete-continuum layer (see
Fig. 1b* and external excitation force distributed along
upper and lower surface. This visco-elastically con-

nected double-plate system is a composite visco-elastic
structure type.

If we present the interconnecting discrete-continuum
layer as a model of one visco-elastic element with start-
ing element’s length l0 whose ends have displacements
w1 (r, ϕ, t) and w2 (r, ϕ, t), and velocities ẇ1 (r, ϕ, t) and
ẇ2 (r, ϕ, t), like shown in at Fig. 1c*, using visco-elastic
element’s constitutive relation of force, displacements,
and velocities in that layer (see [1]), we will formulate
governing equations for this problem in terms of two
unknowns: the transversal displacements wi (r, ϕ, t), i =
1, 2 in direction of the axis z of the upper plate middle
surface and of the lower plate middle surface. Then, the

system of two coupled partial differential equations of
the forced visco-elastically connected double-plate sys-
tem is in the following form [4,7]:

∂2w1 (r, ϕ, t)
∂t2

+ c4
(1)ΔΔw1 (r, ϕ, t)

−2δ(1)

[
∂w2 (r, ϕ, t)

∂t
− ∂w1 (r, ϕ, t)

∂t

]

−a2
(1) [w2 (r, ϕ, t) − w1 (r, ϕ, t)] = q̃(1) (r, ϕ, t)

∂2w2 (r, ϕ, t)
∂t2

+ c4
(2)ΔΔw2 (r, ϕ, t)

+2δ(2)

[
∂w2 (r, ϕ, t)

∂t
− ∂w1 (r, ϕ, t)

∂t

]

+a2
(2) [w2 (r, ϕ, t) − w1 (r, ϕ, t)] = q̃2 (r, ϕ, t) , (34)

where we use the same notations as in previous parts
and define: 2δ(i) = b

ρihi
—constant surface damping

coefficient of visco-elastic layer; q̃(i)(r, ϕ, t), i = 1, 2—
function of continual distributed transversal forces
which we use like external excitation of plates.

Solution of the previous system (34) of partial differ-
ential equations can be looked for by Bernoulli’s method
of particular integrals in the form (17) of multiplication
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of two functions, of which the first W(i) (r, ϕ), i = 1, 2
depends only on space coordinates r and ϕ, and the sec-
ond is a time function T(i)nm (t), i = 1, 2. Here, we use
the same space coordinate eigen amplitude functions
W(i) (r, ϕ), i = 1, 2 as in the case of decoupled system
and for the example of mentioned boundary conditions
in form (13).

3.1 Analytical solutions of the time functions of the
forced transversal vibrations of a double circular
plate system with visco-elastic discrete-continuum
layer

Our next defined task is to derive analytical solution
of the governing system of coupled partial differential
equations for forced system oscillations, Eq. (35). We
consider the eigen amplitude functions W(i)nm (x, y),
i = 1, 2, n,m = 1, 2, 3, 4, . . . ∞ expansion with
unknown time functions T(i)nm (t), i = 1, 2, n,m =
1, 2, 3, 4, . . . ∞ describing their time evolution [4,7] as
mentioned above in the case of decoupled plates prob-
lem. Then, after introducing (17) into (34), we obtain
the following system of no homogeneous second-order
ordinary differential equations with respect to the
unknown time functions T(i)nm (t), i = 1, 2, n,m =
1, 2, 3, 4, . . . ∞ for the mn -family mode:

T̈(1)nm (t) + 2δ(1)Ṫ(1)nm + ω2
(1)nmT(1)nm (t)

−a2
(1)T(2)nm (t) − 2δ(1)Ṫ(2)nm (t) = f(1)nm (t)

T̈(2)nm (t) + 2δ(2)Ṫ(2)nm + ω2
(2)nmT(2)nm (t)

−a2
(2)T(1)nm (t) − 2δ(2)Ṫ(1)nm = f(2)nm (t) , (35)

where known time functions f(1)nm (t) and f(2)nm (t)
are defined by the following expressions:

f(1)nm (t) =

r∫
0

2π∫
0

q̃(1) (r, ϕ, t) W(1)nm (r, ϕ) rdrdϕ

r∫
0

2π∫
0

[
W(1)nm (r, ϕ)

]2
rdrdϕ

and

f(2)nm (t) =

r∫
0

2π∫
0

q̃(2) (r, ϕ, t) W(1)nm (r, ϕ) rdrdϕ

r∫
0

2π∫
0

[
W(1)nm (r, ϕ)

]2
rdrdϕ

. (36)

We can obtain the basic linear unperturbed equations
of the coupled system of differential Eq. (35) neglecting
the external excitations. Also, for the linear system, we
can formally define the following matrices: mass inertia
moment matrix A, damping coefficient matrix B, and
quasielastic coefficients matrix C (see Ref. [7]):

Anm =
(

1
1

)
,

B =
(

2δ(1) −2δ(1)

−2δ(2) 2δ(2)

)
,

Cnm =
(

ω2
(1)nm −a2

(1)

−a2
(2) ω2

(2)nm

)
, (37)

and the characteristic equation of the linearized coupled
system is in the following form:

∣∣λ2Anm + λB+Cnm

∣∣

=

∣∣∣∣∣
λ2 + 2δ(1)λ + ω2

(1)nm
−a2

(1) − 2δ(1)λ

−a2
(2) − 2δ(2)λ λ2 + 2δ(2)λ + ω2

(2)nm

∣∣∣∣∣ = 0 (38)

with four roots for every eigen amplitude function mode
nm:

λ1,2nm = −δ̂1nm∓ip̂1nm and

λ3,4nm = −δ̂2nm∓ip̂2nm. (39)

We obtain own amplitude numbers from (see Refs.
[7,19]):

A
(s)
1nm

a2
(1) + 2δ(1)λsnm

=
A

(s)
2mn

λ2
snm+2δ(1)λsnm+ω2

(1)nm

= C̃s or

A
(s)
1nm

K
(s)
21nm

=
A

(s)
2nm

K
(s)
22nm

=Csnm, (40)

and we rewrite the solution of linear coupled system in
the form:

T(1)nm (t) = K
(1)
21nme−δ̂1nmtR01 cos (p̂1nmt + α01)

+K
(2)
21nme−δ̂2nmtR02 cos (p̂2nmt + α02)

T(2)nm (t) = K
(1)
22nme−δ̂1nmtR01 cos (p̂1nmt + α01)

+K
(2)
22nme−δ̂2nmtR02 cos (p̂2nmt + α02) (41)

where amplitudes and phases R0i and α0i are constants,
defined by the initial conditions.

To obtain an approximation of the solution of the
coupled ordinary differential equations (35) for the
forced vibrations by using the Lagrange’s method of
constant variations, we propose solutions in the follow-
ing forms:

T(1)nm (t) = K
(1)
21nme−δ̂1nmtR1nm (t) cosΦ1nm (t)

+K
(2)
21nme−δ̂2nmtR2nm (t) cosΦ2nm (t)

T(2)nm (t) = K
(1)
22nmeδ̂1nmtR1nm (t) cosΦ1nm (t)

+K
(2)
22nme−δ̂2nmtR2nm (t) cosΦ2nm (t) (42)

where two amplitudes Rinm (t) and two phases Φinm (t) =
p̂inmt+φi (t), i = 1, 2 are unknown functions. By intro-
ducing the condition that the first derivatives of the
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time functions Ṫ(i)nm (t):

Ṫ(1)nm (t) = −δ̂1K
(1)
21 e−δ̂1tR1 (t) cos Φ1 (t)

−K
(1)
21 e−δ̂1tR1 (t) p̂1 sin Φ1 (t)

−δ̂2K
(2)
21 e−δ̂2tR2 (t) cos Φ2 (t)

−K
(2)
21 e−δ̂2tR2 (t) p̂2 sin Φ2 (t)

+K
(1)
21 e−δ̂1tṘ1 (t) cos Φ1 (t)

−K
(1)
21 e−δ̂1tR1 (t) φ̇1 (t) sin Φ1 (t)

+K
(2)
21 e−δ̂2tṘ2 (t) cos Φ2 (t)

−K
(2)
21 e−δ̂2tR2 (t) φ̇2 (t) sin Φ2 (t)

Ṫ(2)nm (t) = −δ̂1K
(1)
22 e−δ̂1tR1 (t) cos Φ1 (t)

−K
(1)
22 e−δ̂1tR1 (t) p̂1 sin Φ1 (t)

−δ̂2K
(2)
22 e−δ̂2tR2 (t) cos Φ2 (t)

−K
(2)
22 e−δ̂2tR2 (t) p̂2 sin Φ2 (t)

+K
(1)
22 e−δ̂1tṘ1 (t) cos Φ1 (t)

−K
(1)
22 e−δ̂1tR1 (t) φ̇1 (t) sin Φ1 (t)

+K
(2)
22 e−δ̂2tṘ2 (t) cos Φ2 (t)

−K
(2)
22 e−δ̂2tR2 (t) φ̇2 (t) sin Φ2 (t)

have the same forms as in the case where amplitudes
Rinm (t) and difference of phases φinm (t) are con-
stants:

Ṫ(1)nm (t) = −δ̂1K
(1)
21 e−δ̂1tR1 (t) cos Φ1 (t)

−K
(1)
21 e−δ̂1tR1 (t) p̂1 sin Φ1 (t)

−δ̂2K
(2)
21 e−δ̂2tR2 (t) cos Φ2 (t)

−K
(2)
21 e−δ̂2tR2 (t) p̂2 sin Φ2 (t)

Ṫ(2)nm (t) = −δ̂1K
(1)
22 e−δ̂1tR1 (t) cos Φ1 (t)

−K
(1)
22 e−δ̂1tR1 (t) p̂1 sin Φ1 (t)

−δ̂2K
(2)
22 e−δ̂2tR2 (t) cos Φ2 (t)

−K
(2)
22 e−δ̂2tR2 (t) p̂2 sin Φ2 (t) , (43)

we obtained first two conditions for the derivatives of
the unknown functions Ṙi (t) and Φ̇i (t).

K
(1)
21 e−δ̂1tṘ1 (t) cos Φ1 (t)

−K
(1)
21 e−δ̂1tR1 (t) φ̇1 (t) sin Φ1 (t)

+K
(2)
21 e−δ̂2tṘ2 (t) cos Φ2 (t)

−K
(2)
21 e−δ̂2tR2 (t) φ̇2 (t) sin Φ2 (t) = 0

K
(1)
22 e−δ̂1tṘ1 (t) cos Φ1 (t)

−K
(1)
22 e−δ̂1tR1 (t) φ̇1 (t) sin Φ1 (t)

+K
(2)
22 e−δ̂2tṘ2 (t) cos Φ2 (t)

−K
(2)
22 e−δ̂2tR2 (t) φ̇2 (t) sin Φ2 (t) = 0 (44)

After multiplying first Eq. (44) with cofactors K
(1)
22 or

K
(2)
22 and second with −K

(1)
21 or −K

(2)
21 and summing

these two equation the system of equations follows:

Ṙ1 (t) cos Φ1 (t) − R1 (t) φ̇1 (t) sin Φ1 (t) = 0

Ṙ2 (t) cos Φ2 (t) − R2 (t) φ̇2 (t) sin Φ2 (t) = 0 (45)

The second derivatives T̈(i)nm (t) are in the forms:

T̈(1)nm (t) = δ̂21K
(1)
21 e−δ̂1tR1 (t) cosΦ1 (t)

−δ̂1K
(1)
21 e−δ̂1tṘ1 (t) cosΦ1 (t)

+2δ̂1K
(1)
21 e−δ̂1tR1 (t) p̂1 sinΦ1 (t)

+δ̂1K
(1)
21 e−δ̂1tR1 (t) φ̇1 (t) sinΦ1 (t)

−K
(1)
21 e−δ̂1tṘ1 (t) p̂1 sinΦ1 (t)

−K
(1)
21 e−δ̂1tR1 (t) p̂21 sinΦ1 (t)

−K
(1)
21 e−δ̂1tR1 (t) p̂1φ̇1 (t) cosΦ1 (t)

+δ̂22K
(2)
21 e−δ̂2tR2 (t) cosΦ2 (t)

−δ̂2K
(2)
21 e−δ̂2tṘ2 (t) cosΦ2 (t)

+2δ̂2K
(2)
21 e−δ̂2tR2 (t) p̂2 sinΦ2 (t)

+δ̂2K
(2)
21 e−δ̂2tR2 (t) φ̇2 (t) sinΦ2 (t)

−K
(2)
21 e−δ̂2tṘ2 (t) p̂2 sinΦ2 (t)

−K
(2)
21 e−δ̂2tR2 (t) p̂22 sinΦ2 (t)

−K
(2)
21 e−δ̂2tR2 (t) p̂2φ̇2 (t) cosΦ2 (t)

T̈(2)nm (t) = δ̂21K
(1)
22 e−δ̂1tR1 (t) cosΦ1 (t)

−δ̂1K
(1)
22 e−δ̂1tṘ1 (t) cosΦ1 (t)

+2δ̂1K
(1)
22 e−δ̂1tR1 (t) p̂1 sinΦ1 (t)

+δ̂1K
(1)
22 e−δ̂1tR1 (t) φ̇1 (t) sinΦ1 (t)

−K
(1)
22 e−δ̂1tṘ1 (t) p̂1 sinΦ1 (t)

−K
(1)
22 e−δ̂1tR1 (t) p̂21 sinΦ1 (t)

−K
(1)
22 e−δ̂1tR1 (t) p̂1φ̇1 (t) cosΦ1 (t)

+δ̂22K
(2)
22 e−δ̂2tR2 (t) cosΦ2 (t)

−δ̂2K
(2)
22 e−δ̂2tṘ2 (t) cosΦ2 (t)

+2δ̂2K
(2)
22 e−δ̂2tR2 (t) p̂2 sinΦ2 (t)

+δ̂2K
(2)
22 e−δ̂2tR2 (t) φ̇2 (t) sinΦ2 (t)

−K
(2)
22 e−δ̂2tṘ2 (t) p̂2 sinΦ2 (t)

−K
(2)
22 e−δ̂2tR2 (t) p̂22 sinΦ2 (t)

−K
(2)
22 e−δ̂2tR2 (t) p̂2φ̇2 (t) cosΦ2 (t) (46)

After introducing derivatives, the first Ṫ(i)nm (t), expres-
sions (43) and second T̈(i)nm (t), expressions (46) deriva-
tives of the proposed solutions (42) in the system of
non-homogeneous differential equations (42) we obtain
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two new equations in the derivatives of the unknown
functions Ṙinm (t) and φ̇inm (t):

−K
(1)
21 e−δ̂1tṘ1 (t) p̂1 sin Φ1 (t)

−K
(1)
21 e−δ̂1tR1 (t) p̂1φ̇1 (t) cos Φ1 (t)

−K
(2)
21 e−δ̂2tṘ2 (t) p̂2 sin Φ2 (t)

−K
(2)
21 e−δ̂2tR2 (t) p̂2φ̇2 (t) cos Φ2 (t) = f(1)nm

−K
(1)
22 e−δ̂1tṘ1 (t) p̂1 sin Φ1 (t)

−K
(1)
22 e−δ̂1tR1 (t) p̂1φ̇1 (t) cos Φ1 (t)

−K
(2)
22 e−δ̂2tṘ2 (t) p̂2 sin Φ2 (t)

−K
(2)
22 e−δ̂2tR2 (t) p̂2φ̇2 (t) cos Φ2 (t) = f(2)nm.

After multiplying first equation with cofactor K
(1)
22

or K
(2)
22 and second with −K

(1)
21 or −K

(2)
21 and summing

these two equations the system of equations follows:

Ṙ1 (t) sin Φ1 (t) + R1 (t) φ̇1 (t) cos Φ1 (t)

=
K

(2)
22 f(1)nm − K

(2)
21 f(2)nm

e−δ̂1tp̂1

(
K

(1)
22 K

(2)
21 − K

(2)
22 K

(1)
21

)

Ṙ2 (t) sin Φ2 (t) + R2 (t) φ̇2 (t) cos Φ2 (t)

=
K

(1)
22 f(1)nm − K

(1)
21 f(2)nm

e−δ̂2tp̂2

(
K

(1)
22 K

(2)
21 − K

(2)
22 K

(1)
21

) (47)

Solving the obtained subsystems of four non-homogeneous
algebraic Eqs. (45) and (47) with respect to the deriva-
tives Ṙinm (t) and Φ̇inm (t), we can write the system of
first-order differential equations as follows:

Ṙ1nm (t) = − f(1)nm (t) K
(2)
22nm − f(2)nm (t) K

(2)
21nm

p̂1nm

(
K

(1)
21nmK

(2)
22nm − K

(1)
22nmK

(2)
21nm

)eδ̂1nmt sin Φ1nm (t) ;

φ̇1nm (t) = − f(1)nm (t) K
(2)
22nm − f(2)nm (t) K

(2)
21nm

R1nm (t) p̂1nm (t)
(
K

(1)
21nmK

(2)
22nm − K

(1)
22nmK

(2)
21nm

)eδ̂1nmt cos Φ1nm (t)

Ṙ2nm (t) = − K
(1)
22nmf(1)nm (t) − K

(1)
21nmf(2)nm (t)

p̂2nm

(
K

(1)
22nmK

(2)
21nm − K

(2)
22nmK

(1)
21nm

)eδ̂2nmt sin Φ2nm (t) ;

φ̇2nm (t) = − K
(1)
22nmf(1)nm (t) − K

(1)
21nmf(2)nm (t)

R2nm (t) p̂2nm

(
K

(1)
21nmK

(2)
22nm − K

(1)
22nmK

(2)
21nm

)eδ̂2nmt cos Φ2nm (t) (48)

where we denoted Φinm (t) = p̂inmt + φinm (t).
If we use trigonometrical transformation of men-

tioned solutions (39) and define four more variables like:

A(i) (t) = R(i) (t) cos φi (t) ;
B(i) (t) = −R(i) (t) sin φi (t) , i = 1, 2 (49)

and integrate the system of Eq. (44), using the
obtained solutions we can rewrite the solutions in fol-
lowing final forms:

T(1)nm (t)

= K
(1)
21nme−δ̂1nmt

[
A(01)nm cos p̂1mnt

+B(01)nm sin p̂1nmt
]
+ K

(2)
21nme−δ̂2nmt

× [
A(02)nm cos p̂2nmt + B(02)nm sin p̂2nmt

]

+K
(1)
21nm

∫ t

0

⎡

⎣ f(1)nm (τ) K
(2)
22nm − f(2)nm (τ) K

(2)
21nm

p̂1nm

(
K

(1)
21nmK

(2)
22nm − K

(1)
22nmK

(2)
21nm

)

× eδ̂1nm(τ−t) sin p̂1nm (τ − t)
]
dτ +

+K
(2)
21nm

∫ t

0

⎡

⎣ K
(1)
22nmf(1)nm (τ) − K

(1)
21nmf(2)nm (τ)

p̂2nm

(
K

(1)
22nmK

(2)
21nm − K

(2)
22nmK

(1)
21nm

)

× eδ̂2nm(τ−t) sin p̂2nm (τ − t)
]
dτ

T(2)nm (t)

= K
(1)
22nme−δ̂1nmt

[
A(01)nm cos p̂1mnt

+B(01)nm sin p̂1nmt
]
+ K

(2)
22nme−δ̂2nmt

× [
A(02)nm cos p̂2nmt + B(02)nm sin p̂2nmt

]

+K
(1)
22nm

∫ t

0

⎡

⎣ f(1)nm (τ) K
(2)
22nm − f(2)nm (τ) K

(2)
21nm

p̂1nm

(
K

(1)
21nmK

(2)
22nm − K

(1)
22nmK

(2)
21nm

)

× e−δ̂1nm(τ−t) sin p̂1nm (τ − t)
]
dτ

+K
(2)
22nm

∫ t

0

⎡

⎣ f(1)nm (τ) K
(1)
22nm − f(2)nm (τ) K

(1)
21nm

p̂2nm

(
K

(1)
22nmK

(2)
21nm − K

(2)
22nmK

(1)
21nm

)

× eδ̂2nm(τ−t) sin p̂2nm (τ − t)
]
dτ (50)

The solutions (50) are the main analytical result for
eigen time functions T(i)nm (t), i = 1, 2, n,m =
1, 2, 3, 4, . . . ∞ of forced transversal vibrations of visco-
elastically connected double circular plates system, so
the solutions for middle surface points displacements
in functions of r, ϕ and t are in forms (17) where the
space coordinate eigen amplitude functions W(i) (r, ϕ),
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i = 1, 2 are in forms (13). From the analytical solutions
(50), we can conclude that for one mn-family mode
n,m = 1, 2, 3, 4, . . . ∞, to one eigen amplitude func-
tion corresponds two circular-damped frequencies and
corresponding two-frequency time functions T(i)nm (t),
i = 1, 2, n,m = 1, 2, 3, 4, . . . ∞, in the case of free oscil-
lations of the system, and that for forced oscillations in
those functions contain terms corresponding to different
combinations (sums and differences) between frequen-
cies of forced external excitations and eigen circular-
damped frequencies.

Choosing for external excitation periodic forces, we
can rewrite the functions f(i)nm (t) = h(0i) cos Ωit, i =
1, 2 in the following forms:

f(1)nm (t) =

r∫
0

2π∫
0

F̃(01)
˜̃F (1) (r, ϕ) W(1)nm (r, ϕ) rdrdϕ

r∫
0

2π∫
0

[
W(1)nm (r, ϕ)

]2
rdrdϕ

× cos Ω1t = h(01) cos Ω1t (51)

and

f(2)nm (t) =

r∫
0

2π∫
0

F̃(02)
˜̃F (2) (r, ϕ) W(1)nm (r, ϕ) rdrdϕ

r∫
0

2π∫
0

[
W(1)nm (r, ϕ)

]2
rdrdϕ

× cos Ω2t = h(02) cos Ω2t, (52)

where q̃i (r, ϕ, t) = F̃(0i)
˜̃F (i) (r, ϕ) cos Ωit are known

specific area distributed external transversal excitations
along upper plate upper contour surface as well lower
plate lower contour surface.

In the special observed cases of homogeneous double-
plate system with equal plate mass distributions and
thicknesses, and considering external excitation only in
the upper plate we obtained the following solutions:

T(1)nm (t) =
⌊
A(01)nm cos

(√
ω2

nm − a2
)

t

+B(01)nm sin
(√

ω2
nm − a2

)
t
⌋

+

+e−2δt
[
A(02)nm cos

(√
a2 + ω2

nm − 4δ2
)

t

+B(02)nm sin
(√

a2 + ω2
nm − 4δ2

)
t
]

− h01

2
√

ω2
nm − a2

×
∫ t

0

[
cosΩ1t sin

[(√
ω2

nm − a2
)

· (τ − t)
]]

dτ

+
h01

2
√

a2 + ω2
nm − 4δ2

∫ t

0

[
e2δ(τ−t) cos (Ω1t)

× sin
[(√

a
2

+ ω2
nm − 4δ2

)
· (τ − t)

]]
dτ (53)

T(2)nm (t) =
⌊
A(01)nm cos

(√
ω2

nm − a2
)

t

+B(01)nm sin
(√

ω2
nm − a2

)
t
⌋

−

−e−2δt
[
A(02)nm cos

(√
a2 + ω2

nm − 4δ2
)

t

+B(02)nm sin
(√

a2 + ω2
nm − 4δ2

)
t
]

− h01

2
√

ω2
nm − a2

∫ t

0

[cos (Ω1t)

× sin
[(√

ω2
nm − a2

)
· (τ − t)

]]
dτ

− h01

2
√

a2 + ω2
nm − 4δ2

×
∫ t

0

[
e2δ(τ−t) cos (Ω1t)

sin
[(√

a2 + ω2
nm − 4δ2

)
· (τ − t)

]]
dτ

(54)

3.2 Numerical results

For numerical experiment and analysis, we take into
consideration a homogeneous double-plate system con-
taining two equal circular plates with radius a = 1[m]
and graded from steel material. Using Maple and possi-
bilities of visualizing these numerical results, we present
them as space surfaces of the plate middle surface dur-
ing the time, and also as time-history diagrams of the
plate middle surface points displacements. On the basis
of numerical results, series of characteristic middle sur-
face forms of coupled plates during the time are pre-
sented in the Figs. 4, 5 and 6.

In Fig. 4, characteristic transversal displacements of
the middle surface points of lower and upper plates are
presented in function of r, ϕ and t, in three different
time moments for:

a* one eigen amplitude function form of oscillations
(n = 1,m = 0);

b* two eigen amplitude function forms of oscillations
(n = 0,m = 1 summed with forms for n = 1,m = 1)
and

c* three eigen amplitude function forms of oscilla-
tions (n = 0,m = 1 summed with forms for n = 1,m =
1 and n = 2,m = 1).

In Fig. 5 characteristic transversal displacements of
the middle surface points on characteristic diameters
for lower and upper plates in function of r for ϕj =
const at characteristic forms along time t, three eigen
amplitude function forms of oscillations (n = 0,m = 1
summed with forms for n = 1,m = 1 and n = 2,m = 1)
are presented for: three different values of the external
excitation frequency, when external distributed force is
applied to upper plate a∗Ω ≈ ω̃11 =

√
ω2

11 − a2 ; b∗Ω ≈
ω̃21 =

√
ω2

21 − a2 and c∗Ω ≈ ω̃31 =
√

ω2
31 − a2.

In Fig. 6, characteristic transversal displacements of
the middle surface points are presented:

6.1: on the series of characteristics diameters and
cycles in function of r, ϕ for ϕj = const and r = const,
at characteristic forms along time t;

6.2: on the series of characteristics diameters in func-
tion of r, for ϕj = const at characteristic forms along
time t, for lower and upper plates three eigen amplitude
function forms of oscillations (n = 0,m = 1 summed
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Fig. 4 Characteristic transversal displacements of the
middle surface points of lower and upper plates in function
of r, ϕ and t, in three different time moments, for: a* one
eigen amplitude function form of oscillations (n = 1, m = 0);

b* two eigen amplitude function forms of oscillations (n =
0, m = 1 summed with forms for n = 1, m = 1) and c* three
eigen amplitude function forms of oscillations (n = 0, m = 1
summed with forms for n = 1, m = 1 and n = 2, m = 1)

Fig. 5 Characteristic transversal displacements of the
middle surface points on characteristic diameters for lower
and upper plates in function of r for ϕj = const at charac-
teristic forms along time t, three eigen amplitude function
forms of oscillations (n = 0, m = 1 summed with forms for

n = 1, m = 1 and n = 2, m = 1) for: three different values of
the external excitation frequency, when external distributed
force is applied to upper plate a* Ω ≈ ω̃11 =

√
ω2
11 − a2;

b* Ω ≈ ω̃21 =
√

ω2
21 − a2 and c* Ω ≈ ω̃31 =

√
ω2
31 − a2
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Fig. 6 Characteristic transversal displacements of the
middle surface points: 6.1: on the series of characteristic
diameters and cycles in function of r, ϕ for ϕj = const and
r = const, at characteristic forms along time t; 6.2: on the
series of characteristics diameters in function of r, for ϕj =
const at characteristic forms along time t, for lower and

upper plates three eigen amplitude function forms of oscil-
lations (n = 0, m = 1 summed with forms for n = 1, m = 1
and n = 2, m = 1) for: three different values of the exter-
nal excitation frequency, when external distributed force
is applied to upper plate a* Ω ≈ ω̃11 =

√
ω2
11 − a2 ; b*

Ω ≈ ω̃21 =
√

ω2
21 − a2 and c* Ω ≈ ω̃31 =

√
ω2
31 − a2

with forms for n = 1,m = 1 and n = 2,m = 1)
for: three different values of the external excitation fre-
quency, when external distributed force is applied to
upper plate a* Ω ≈ ω̃11 =

√
ω2

11 − a2 ; b* Ω ≈ ω̃21 =√
ω2

21 − a2 and c* Ω ≈ ω̃31 =
√

ω2
31 − a2.

3.3 Concluding remarks

The analytical solutions of system coupled partial dif-
ferential equations in every of nm-family of correspond-
ing dynamical free (unperturbed by external excita-
tion) processes are obtained using method of Bernoulli’s
particular integral and Lagrange’s method of constants
variations for solution of forced transversal oscillations.

From the obtained ordinary differential equations
and corresponding analytical solutions for time func-
tions corresponding to one eigen amplitude function
mode, we can conclude that they are uncoupled from
other eigen amplitude time functions.

From the analytical solutions for the case of pure elas-
tic layer between plates, we can conclude that for one
mn-family mode n,m = 1, 2, 3, 4, . . . ∞, to one eigen
amplitude function correspond two circular frequen-
cies and corresponding two-frequency time functions

T(i)nm (t), i = 1, 2, n,m = 1, 2, 3, 4, . . . ∞, in the case of
free oscillations of the system, and that for forced oscil-
lations these functions contain terms corresponding to
different combinations (sums and differences) between
frequencies of forced external excitations and eigen cir-
cular frequencies.

We can see that integral part, i.e., particular ana-
lytical solutions of coupled partial differential equa-
tions, of derived solutions corresponds to the coupled
forced and free middle surface vibrations regimes, and
describes multi-frequency vibrations with frequencies
which are different combinations (sums and differences)
between frequencies of forced external excitations and
eigen circular-damped frequencies [see solutions (54)].
These analytical solutions can be used for analyses of
possible regimes of resonances or phenomena of dynam-
ical absorption. Using Maple program, visualizations
of the characteristic forms of the plate middle surfaces
through time are presented.

Obtained analytical and numerical result is very
valuable for university teaching process in the area of
structural system elastodynamics as well as of hybrid
deformable body system vibrations.

Comparison between system of ordinary differen-
tial equations (20) or (35) along eigen time functions
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T(i)nm (t), i = 1, 2, n,m = 1, 2, 3, 4, . . . ∞ in corre-
sponding eigen amplitude function W(i)nm (r, ϕ), i =
1, 2, n,m = 1, 2, 3, 4, . . . ∞ of the plates shape form
of free (or forced) oscillations with corresponding ordi-
nary differential equations of the free (or forced) dis-
placements of mass particle free (or forced) oscillation
in chain system with two degrees of freedom; it is eas-
ier to indicate a mathematical and qualitative analogy.
Then obtained solution for chain system free (or forced
no conservative) oscillations are analogous with solu-
tions f time functions. Also, mathematical and qualita-
tive analogies are between time functions in each of infi-
nite number of eigen amplitude shapes of double beam
system, as well as double membrane system and double
membrane system. Then obtained results for eigen time
functions T(i)nm (t), i = 1, 2, n,m = 1, 2, 3, 4, . . . ∞ in
corresponding eigen amplitude function W(i)nm (r, ϕ),
i = 1, 2, n,m = 1, 2, 3, 4, . . . ∞ in the form (53)–(54)
is possible to use for explanation vibrations of listed
analogous double-body system transversal vibrations.

3.4 Partial differential equations of transversal
vibrations of a double deformable bodies system
containing discrete-continuum layer with inertia and
non-linear properties

For standard rolling visco non-linear elastic element
with translator and rotator inertia properties, Fig. 1c*,
d* lighted on a way of the rheological models [32], we
write the expressions for the velocity of translation for
the center of mass C in the form: ẇC = (ẇ2 + ẇ1)

/
2,

and for the angular velocity around center of mass in
the form: ωC = (ẇ2 − ẇ1)

/
2R. The constitutive rela-

tions for forces on the ends of this element are in the
following form:

F1(2) = ±
(
c +

c1

4

)
(w2 − w1) ± b1 (ẇ2 − ẇ1)

±β (w2 − w1)
3

−1
4
m

〈
(ẅ2 + ẅ1) ∓ i2C

R2
(ẅ2 − ẅ1)

〉
, (55)

where c and c1 are stiffness of linear springs, b1 is
coefficient of damping force, β is stiffness of non-linear
springs, m is mass of disc, and i2C = JC

/
m is the square

of radius of axial mass inertia moment for the rolling
element around central axis. If the rolling element is the
disc, then mass axial moment of inertia is JC = R2m

/
2

and i2C = R2
/
2.

The governing equations of the double body-plate
system [27,28,33], Fig. 7a*, b*, e*, and d*, are for-
mulated in terms of two unknowns: the transversal dis-
placement wi (℘, t), i = 1, 2 in direction of the z axis, of
the upper body-plate middle surface and of the lower
body-plate middle surface, respectively. We present the
interconnecting layer as a model of distributed dis-
crete rheological rolling visco-elastic elements with non-
linearity in the elastic part of the layer and translatory

and rotatory inertia properties, as shown in Fig. 1c*,
d*. Since that elements are continually distributed on
plates middle surfaces, the generalized resulting forces
(55) are, also, continually distributed onto plate middle
surface points. Our assumptions for the plates are: they
are thin with same contours and with equal type of the
boundary conditions and they have small transversal
displacements. The system of two coupled partial differ-
ential equations is derived using d’Alembert’s principle
of dynamic equilibrium in the following forms:

(1 + ãii)
∂2wi (℘, t)

∂t2
+ ã12(i)

∂2wi+1

∂t2
+ c4

(i)

∏
wi (℘, t)

−2δ(i)

[
∂wi+1 (℘, t)

∂t
− ∂wi (℘, t)

∂t

]
−

−a2
(i) [wi+1 (℘, t) − wi (℘, t)]

= ±εβ(i) [wi+1 (℘, t) − wi (℘, t)]3

+q̃(i) (℘, t) for i = 1, 2. (56)

For plates, we have ℘ ≡ r, ϕ space middle surface

coordinates; operator
∏ ≡ Δ2 =

(
∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂ϕ2

)2

.

Reductions of coefficients are ãii = âii

/
ρihi; ã12(i) =

â12

/
ρihi ; a2

(i) =
(
c + c1

/
4
)/

ρihi ; Di = Eih
3
i

/
12

(
1 − μ2

i

)
;

flexural plate rigidity c4
(i) = Di

/
ρihi; 2δi = b1

/
ρihi and

εβ(i) = β
/
ρihi; for i = 1, 2; hi = height of plates. The

form of the external loads on the bodies surfaces are
given as q̃(i) = q(i) (r, ϕ, t)

/
ρihi.

For circular membranes, we have ℘ ≡ r, ϕ space sur-
face coordinates;

∏ ≡ Δ = ∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂ϕ2 is
Laplacian operator. Reductions of the coefficients are:
ãii = âii

/
ρi; ã12(i) = â12

/
ρi; c2

(i) = σi

/
ρi; a2

(i) = ce

/
ρi;

εβ(i) = β
/
ρi ; 2δi = bi

/
ρi; q̃(i) = q(i) (r, ϕ, t)

/
ρi.

For beams, we have ℘ ≡ z line coordinate along neu-
tral line of the beams; operator

∏ ≡ ∂4

∂z4 ; Bi = EiIx

flexural beam rigidity. Reductions of the coefficients are

ãii = âii

/
ρiAi; ã12(i) = â12

/
ρiAi; c2

(i) =
√

Bi

/
ρiAi;

a2
(i) = ce

/
ρiAi; εβ(i) = β

/
ρiAi; 2δi = bi

/
ρiAi; q̃(i) =

q(i) (z, t)
/
ρiAi.

For belts, we have ℘ ≡ x line coordinate along neutral
line length of belts;

∏ ≡ Δ = ∂2

∂x2 is Laplacian operator.
Reduction coefficients are ãii = âii

/
ρi; ã12(i) = â12

/
ρi;

c2
(i) = σi

/
ρi; a2

(i) = ce

/
ρi; εβ(i) = β

/
ρi ; 2δi = bi

/
ρi;

q̃(i) = q(i) (r, ϕ, t)
/
ρi.

For all four cases on has denotation â12 = m
/
4 −

JC

/
4R2 = m

/
8; âii = m

/
4 + JC

/
4R2 = 3m

/
8; E =

Young’s modulus of bodies materials; μi = Poisson’s
coefficient; ρi = density of bodies material.

The sign ± on the right-hand side of partial differen-
tial equations (56) corresponds to the soft (sign +) or
hard (sign −) properties of the non-linear elastic layer.

The asymptotic approximation of solutions, in a sin-
gle eigen-mode of oscillations, where a number of eigen-
modes are n,m = 1, 2, 3 . . . ∞ for plates or membranes,
and n = 1, 2, 3 . . . ∞ for beams or belts for the sys-
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a

c

e f

d

b

Fig. 7 a* Double circular plate system with discrete-
continuum layer; b* multi-plate system with discrete-
continuum layer; c* the rheological model of rolling visco-
elastic and non-linear discrete element with rotator and
translator inertia properties; d* the rheological scheme of

rolling visco-elastic and non-linear discrete element with
rotator and translator inertia properties; e* double mem-
brane system with discrete-continuum layer; f* double beam
system with discrete-continuum layer

tem (56) of partial differential equations are taken in
the form of the eigen amplitude functions Wi(eign) (℘),
generalized form of (31), satisfying the same boundary
conditions and orthogonally conditions, multiplied with
time coefficients in the form of unknown time functions
Ti (t), i = 1, 2 and describing their time evolution (see
References [27,28,33])

wi (r, ϕ, t) = Wk(eign) (℘)T(i)k(eign) (t)

= Wk(eign) (℘)
[
K

(1)
2i,k(eign)e

−δ̂1(eign)tR1(eign) (t)

× cos Φ1(eign) (t) + K
(2)
2i,k(eign)

× e−δ̂2(eign)tR2(eign) (t) cos Φ2(eign) (t)
]
,

(57)

where
* K

(s)
2i,k(eign) cofactors of elements of second row and

corresponding column of determinant corresponding to

basic linear coupled system, for proper eigen character-
istic number (for details, see References [19,27,28,33]),
also see procedure (37)–(40) with different mass inertia
moment matrix A according to the presence of rolling
elements;

* −δ̂i(eign) real parts of the appropriate pair of the
roots of the characteristic equation [33,34];

* Unknown amplitudes Ri(eign) (t) and phases Φi(eign)

(t) = Ωi(eign)t + φi(eign) (t); i = 1, 2; of unknown time
functions T(i)k(eign) (t) which we are going to obtain
using the Krilov–Bogolyubov–Mitropolski asymptotic
method (see References [33,35,36]). We assume that the
non-linearity is small and that the interactions between
the eigen amplitude modes are negligible, and we take
into account the interactions between two time eigen-
modes in the single-amplitude mode.

After substituted this proposed asymptotic approxi-
mation of solutions (57) in system of partial non-linear
differential equations (56), keeping in mind orthogo-
nality conditions of body eigen amplitude functions
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Wi(eign) (℘) and Wj(eign) (℘), i �= j, it turns out sys-
tem of ordinary non-linear differential equations for
eigen time functions T(i)k(eign) (t) of one eigen ampli-
tude mode of considered class of the bodies transversal
oscillations

T̈(1) + κ1T̈(2) − 2δ̃(1)

(
Ṫ(2) − Ṫ(1)

)

+ω̃2
(1)T(1) − ã2

(1)T(2)

= ±εβ̃(1)ℵ (Weign)
[
T(2) − T(1)

]3 + f̃(1)

T̈(2) + κ2T̈(1) + 2δ̃(2)

(
Ṫ(2) − Ṫ(1)

)

+ω̃2
(2)T(2) − ã2

(2)T(1)

= ∓εβ̃(2)ℵ (Weign)
[
T(2) − T(1)

]3 − f̃(2), (58)

where

ω̃2
(i) = ω2

(i)

/
(1 + ãii); i = 1, 2 (59)

ℵ (Weign) =

r∫

0

2π∫

0

W 4
(1)eignrdrdϕ

/ r∫

0

2π∫

0

W 2
(1)eignrdrdϕ

(60)

is coefficient of non-linearity influence of elastic layer

f(i) (t) =

r∫

0

2π∫

0

q̃iW(i)eignrdrdϕ
/ r∫

0

2π∫

0

[
W(i)eign

]2
rdrdϕ

(61)

are the known function of external forces and coeffi-
cients of reduction are

κi = ã12(i)

/
(1 + ãii),

ã2
(i) = a2

(i)

/
(1 + ãii),

2δ̃i = 2δ(i)

/
(1 + ãii),

β̃(i) = β(i)

/
(1 + ãii) and f̃(i)nm = f(i)nm

/
(1 + ãii).

(62)

We introduce denotation of ω2
(i) = k4

(i)eignc4
(i) + a2

(i),
i = 1, 2 for the square of eigen circular frequency of cou-
pled body free linear vibrations, correspond to one eigen
amplitude mode and corresponding time functions, pro-
cedure similar to (37)–(39), obtained form system of
ordinary differential equations (58) by omitting non-
linear terms and terms correspond to external excita-
tion distributed along body middle surface in transver-
sal directions.

The system of ordinary non-linear differential equa-
tions (58) is completely, pure mathematically, the same
type for plate, beam, membrane, or belt system of two
coupled deformable bodies. The mathematical anal-
ogy is complete. Based on phenomenological mapping,

a mathematical analogy between eigen time functions
T(i)k(eign) (t), i = 1, 2 in a single-amplitude mode of
hybrid system dynamics is identified for corresponding
multi-beam, multi-plate, multi-membrane, and multi-
belt system dynamics with layers of same properties.
Summarizes that solutions for one type of dynamics of
a hybrid system can be used for another for qualitative
analysis of linear or non-linear phenomena that have
occurred in dynamics.

It is considered that defined task satisfies all neces-
sary conditions for applying asymptotic Krilov–
Bogolyubov–Mitropolyski method [35,36] concerning
small parameter of discrete-continuum layer between
bodies. We suppose that the functions of external exci-
tation at one eigen-mode of oscillations are the two-
frequency process in the form

q̃(i)eign(t) = h01(eign)cos �Ω1(eign)t	
+h02(eign)+cos �Ω1(eign)t	, i=1, 2; (63)

h(0i) are given in Appendix A. The external force fre-
quencies Ωi(eign), i = 1, 2 are in the range of two corre-
sponding eigen-linear-damped coupled system frequen-
cies Ω1(eign) ≈ p̂1(eign) and Ω2(eign) ≈ p̂2(eign), (39),
of the corresponding linear and free system to system
(58) and that initial conditions of the double-body sys-
tem permit appearance of the two-frequency like vibra-
tions regimes of in one eigen amplitude mode of the
system. p̂i(eign) are frequencies of visco-elastic coupling
obtained like imaginary parts of solution λi,j(eign) =
−δ̂i(eign)∓ip̂i(eign), i = 1, 2 for characteristic equations
of system, (37)–(39), (58). For details, see References
[27,28,33].

The observed case is that external distributed two-
frequencies force acts at upper surfaces of upper body
with frequencies near circular frequencies of coupling
Ωi(eign) ≈ p̂i(eign), i = 1, 2 and that the lower body is
free of excitation q̃(2)eign (t) = 0. Then, the first asymp-
totic averaged approximation of the system of differen-
tial equations for amplitudes Ri(eign) (t) and difference
of phases φi(eign) (t) is obtained in the following general
form [27,28,33,35,36]:

ȧ1 (t) = −δ1a1 (t) − εP1

(Ω1 + p̂1)
cos φ1

= σ1 (a1 (t) , a2 (t) , φ1 (t) , φ2 (t) ,Ω1s,Ω2s)

φ̇1 (t) = (p̂1 − Ω1) − 3
8

α1

p̂1

a2
1 (t) − 1

4
β1

p̂1

a2
2 (t)

+
εP1

(Ω1 + p̂1) a1 (t)
sin φ1

= τ1 (a1 (t) , a2 (t) , φ1 (t) , φ2 (t) ,Ω1s,Ω2s) (64)

ȧ2 (t) = −δ2a2 (t) − εP2

(Ω2 + p̂2)
cos φ2

= σ2 (a1 (t) , a2 (t) , φ1 (t) , φ2 (t) ,Ω1s,Ω2s)

φ̇2 (t) = (p̂2 − Ω2) − 3
8

α2

p̂2

a2
2 (t) − 1

4
β2

p̂2

a2
1 (t)
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+
εP2

(Ω2 + p̂2) a2 (t)
sinφ2

= τ2 (a1 (t) , a2 (t) , φ1 (t) , φ2 (t) ,Ω1s,Ω2s) ,

(65)

where ai (t) = Ri (t) e−δ̂it is the change of variables;
hence, ȧi (t) =

(
Ṙi (t) − δ̂iRi (t)

)
e−δ̂it. The full forms

of constants δi, αi, βi and Pi were presented in [33].
Here, it was underlined that these constants all rely
on coefficients of coupling properties via cofactors K(s)

2i ,
that δi depends of damping coefficients of visco-elastic
layer δ̃(i), εPi depend of excited amplitudes, and αi, βi

of non-linearity layer properties. Coefficients αi, βi are
coefficients of eigen time mode mutual interactions.

It was observed the case when external distributed
two-frequencies force in one eigen-body amplitude
mode acts at normal direction and along middle plain
(line) of upper body with frequencies near eigen cir-
cular frequencies of corresponding coupled linearized
body systems Ωi ≈ p̂i. In that case, the lower body
is free of load. This means that we were observed
the passing thought main resonant states by discrete
changing the values of the forced frequencies. Using the
first asymptotic approximation of the amplitudes and
phases of multi-frequency particular solutions of eigen
time functions of one eigen amplitude shape as well as
of the non-linear system dynamics (64)–(65), we are in
position to make analytical analysis of the stability of
non-linear modes in stationary regimes and to present
results of theirs numerical solutions, for particular eigen
time modes in single eigen amplitude mode of oscilla-
tions, n,m = 1, 2, 3 . . . ∞ for plates (membranes) or
n = 1, 2, 3 . . . ∞ for beams (belts).

3.5 Multi-frequency analysis of the stationary
resonant regimes of transversal vibrations of a
double body system

For the analysis of the stationary resonant regimes
of eigen time function mode oscillations correspond
to one eigen amplitude function, we were used anal-
ysis of amplitudes and phases for system of differential
equations (5) in the first approximation, obtained by
Krilov–Bogolyubov–Mitropolyski method [35,36]. For
that reason, we equal the right-hand sides of differential
equations (64)–(65) in the first asymptotic approxima-
tion along amplitudes Ri(eign) (t), ai (t) = Ri (t) e−δ̂it,
i = 1, 2, and difference of phases φi(eign) (t), i =
1, 2 with null. Eliminating the phases φ1 and φ2, we
obtained system of two non-linear algebraic equations
by unknown amplitudes a1 and a2 (for detail, see Refs.
[7,15]). Also, with elimination of amplitudes a1 and
a2, we obtained the algebraic equations for phases φ1

and φ2 in the case of two-frequencies forced oscilla-
tions in stationary regime of one eigen (nm for plates
or mode n for beams) mode of double bodies’ system
oscillations. Solving these algebraic systems by numer-
ical Newton–Kantorovic’s method in computer pro-

gram Mathematica, we obtained stationary amplitude
and phase-frequency curves of two frequency vibrating
regims. Each curve corresponds to resonant regime of
one of eigen amplitude mode oscillations in double bod-
ies’ system coupled with rolling visco-elastic non-linear
discrete-continuum layer with translator and rotator
inertia properties, depending on frequencies of exter-
nal excitation force in single-amplitude mode and dis-
tributed along upper middle plate surface. If we fixed
the value of one external excitation frequency by two
possible, we obtained amplitude– and phase–frequency
curves of stationary resonant vibration regime in the
following forms:

1* for Ω2 = const proper amplitude and phase–
frequency curves of eigen time function modes in one
amplitude mode are denoted by

a1 = f1 (Ω1) , a2 = f2 (Ω1) , φ1 = f3 (Ω1) and
φ2 = f4 (Ω1) and (66)

2* for Ω1 = const proper amplitude and phase–
frequency curves of eigen time function modes in one
amplitude mode are denoted by

a1 = f5 (Ω2) , a2 = f6 (Ω2) , φ1 = f7 (Ω2) and
φ2 = f8 (Ω2) . (67)

For any different discrete value of external force fre-
quencies, we get characteristic diagram of that ampli-
tude and phase–frequency curves of eigen time function
modes in single-amplitude modes. Figure 8 illustrates
a series of diagrams of the regimes of eigen temporal
functions that represent the passage through discrete
stationary states in resonant frequency intervals. We
may track the changes of amplitude and phase of eigen
time functions in a single-amplitude mode at specific
value of the frequencies of external force which is close
to the value of eigen frequencies of coupling in accom-
panied linearized system of oscillations.

The phenomena of the resonant transition for station-
ary regime are evident from diagrams. These are the
distinctive jumps of the amplitude and phase response
(see Figs. 9 and 10) in the vicinity of the resonant val-
ues Ωi ≈ p̂i, appearance of the new stable and unsta-
ble branches causing the multi-value-system response
and the emergence of two stable solutions of the system
around those new branches, the mutual interaction of
the time harmonics, and the jumps of the system ener-
gies.

From both series of the amplitude–frequency and
phase–frequency curves of eigen time function modes in
single-amplitude mode, Figs. 8 and 9, it is notable that
more than one pair of the resonant jumps exist; some
of them are notified with arrows. Also, these jumps are
followed by the appearance of new instability branches,
which appear at the unstable side of the original curve.
The instable parts of branches are presented by dashed
line in the listed figures. Their onset is followed with
growth and merging, while original curves slowly dis-
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Fig. 8 Amplitude–frequency characteristic curves for the
amplitudes of the first time harmonics a1nm = f1 (Ω1nm)
of eigen time function modes in one amplitude mode on the
different value of the excited frequency Ω1nm for the discrete

value of the excited frequency Ω2nm = const with noted cor-
responding one or more resonant jumps for m = 240 kg. The
arrows designate the directions of the resonant jumps

Fig. 9 Phase–frequency characteristic curve for the phase
of the first time harmonics φ1nm = f3 (Ω1nm) of eigen time
function modes in one amplitude mode on the different value
of the excited frequency Ω1nm, for the discrete value of the

excited frequency Ω2nm = const with noted corresponding
one or more resonant jumps for m = 240 kg. The arrows
designate the directions of the resonant jumps

appear. The newly born branches after resonant region
form the shifted frequency response.

For the case when m = 0 kg that there are no rolling
elements at the connected layer of the two plates, on
Figs. 10 and 11 for the select numerical values of the
system parameters, the interactions between two-time
modes, in single nmth amplitude mode of body two fre-
quency stationary like vibrations regime, are presented.
From Fig. 10, it is noticable that amplitude–frequency
curve of the first harmonic of eigen time function mode
in single-amplitude mode pass through resonant regime
of the second frequency of external excitation with-
out characteristic onsets of new branches. However, the
amplitude response of the second harmonic has reso-
nant jumps in the resonant range of the second fre-
quency of external excitation Ω2nm ∈ [185, 201] s−1

and during resonant passage take changes of both values

and shape. It stems from this that first harmonic has
bigger impact on the second then vice versa. For such
a selection of all other system parameters, the hard-
ening effect, right-side inclination, of non-linearity is
prominent. The hardening or softening effects of non-
linearity in the interconnected layer may be less or more
present which depend also on the other parameters of
the system. For the set of parameters from paper [34],
by changing the value of the amplitude of the exter-
nal excitations or coefficient of damping, we may find
the same phenomena of resonant transition, the reso-
nant jumps, and mutual modes interactions but with
more noticable hardening effect. By looking at the first
and the last diagrams in Fig. 10, we may notice that the
amplitude (same is for phase) responses of the first har-
monic of eigen time function modes in single-amplitude
mode have small changes after transient regime. At the
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Fig. 10 Amplitude–frequency characteristic curves for the
amplitudes of the first time harmonics a1 = f1 (Ω1) of eigen
time function modes in one amplitude mode for hard charac-

teristics of interconnected layer and for the different discrete
values of excited frequency Ω2 = const with noted proper
one or more resonant jumps, for m = 0 kg

Fig. 11 Amplitude–frequency characteristic curve for the
amplitudes of the second time harmonics a2nm = f2 (Ω1nm)
of eigen time function modes in one amplitude mode on
the different value of the excited frequency Ω1nm, for the

discrete value of the excited frequency Ω2nm = const with
noted corresponding one or more resonant jumps for m = 0
kg

same time, Fig. 11, the amplitude (phase) responses
of the second harmonic have significant changes of the
values and the shapes. Therefore, we suggest that the
first time harmonic has a greater influence on the sec-
ond harmonic in the resonant region of the frequencies
Ω1nm of external excitation.

The data of stability or instability of the station-
ary amplitude and phase of eigen time function modes
in single-amplitude mode are explored by linearization
of the system of first approximation of solutions (64)–
(65) in each discrete stationary vibration state and by

composing corresponding characteristic equations and
obtaining corresponding roots. The local stability prob-
lem is defined by Jacobian matrix of system (64)–(65);
the procedure was performed for similar mathematical
model in [33]. For obtaining eigen values of that matrix,
the corresponding characteristic equation is of the form
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Fig. 12 Frequency characteristic curves for the amplitude
of the first time harmonic a1 = f1 (Ω1), for the amplitude of
the second time harmonic a2 = f2 (Ω1), for the phase of the
first time harmonic φ1 = f3 (Ω1), and for the phase of the

second time harmonic φ2 = f4 (Ω1) of eigen time function
modes in single-amplitude mode on discrete value of excited
frequency Ω2 = 132

[
s−1

]
, with marked corresponding five

stationary values by star points A, B, C, D and E

∣∣∣∣∣∣∣∣∣∣

−δ1 − λ εP1 sin φ1s
(Ω1s+p̂1)

0 0
− 3

4
α1
p̂1

a1s − εP1 sin φ1s
(Ω1s+p̂1)a2

1s

εP1 cos φ1s
(Ω1s+p̂1)a1s

− λ − 1
2

β1
p̂1

a2s 0
0 0 −δ2 − λ εP2 sin φ2s

(Ω2s+p̂2)

− 1
2

β2
p̂2

a1s 0 − 3
4

α2
p̂2

a2s − εP2 sin φ2s
(Ω2s+p̂2)a2

2s

εP2 cos φ2s
(Ω2s+p̂2)a2s

− λ

∣∣∣∣∣∣∣∣∣∣
ais,φis,Ωs

= 0, i = 1, 2. (68)

Equation (68) is the polynomial of the fourth-order
λ4+Aλ3+Bλ2+Cλ+D = 0, which coefficients are given
in the Appendix B. If eigenvalues λ have negative real
parts than that stationary two-frequency like non-linear
vibration regimes of eigen time function modes in single
shape mode are stable. The values of these coefficients
have to be checked for any value of Ωis and determined
values of ais for i = 1, 2 from the above diagrams and of
φis from proper diagrams of phase–frequencies’ curves.
For instance, the stared points A, B, C or any else,
on the diagrams at Fig. 12 has coordinate stationary
values (a1;φ1; a2;φ2; Ω1; Ω2). With these values, corre-
sponding coefficients from Appendix B are calculated
and then roots of the characteristic equation (68) are
numerically determined. For point A, the roots are all
complex with negative real parts, and thus, this point
is on the stable part of the frequency curve. All sta-
tionary values were numerically treated, and if all real
parts of the all roots of the characteristic equation are

negative, then stationary resonant regime is stable. The
solution is unstable for at least one positive real part
of all roots. Branches presented with dashed line cor-
respond to the expected unstable stationary vibration
resonant regimes.

Here, we may add that obtained solutions in time
domain of oscillations for couple plates may be used for
description of non-linear phenomenon in any of cou-
pled beams, belts, or membranes systems with layer of
same features. Their mathematical models in the time
domain of their dynamics are just the same.

Using phenomenological analogy approach from [15,
16,37], and comparing the results from the papers
[12,38,39] with results in this paper, there are analo-
gies between non-linear phenomena in particular multi-
frequency stationary resonant regimes of multi-circular
plate system non-linear dynamics and proper resonant
forced regimes in chain system non-linear dynamics.
Also, we underlined here that non-linear phenomena in
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particular multi-frequency stationary resonant regimes
can be analogously explained in the proper forced reso-
nant regimes of multi-beam, membrane, or belt system
non-linear dynamics.

3.6 Concluding remarks

A mathematical model of small transverse oscillations
of the hybrid mechanical system class has been estab-
lished. The hybrid structure of the presented systems
consists of connected deformable isotropic bodies of dif-
ferent shapes connected by a layer of evenly distributed
discrete systems. Discrete layer elements have different
properties of rheological elements by which the forces
on ends are defined from the proposed cases of elements.
The common characteristics of all elements are the pres-
ence of non-linear elasticity of the third order. The gen-
eral system of coupled partial differential equations of
transversal oscillations (56) for systems is derived from
D’Alembert’s principle of dynamic equilibrium. We
apply separation of variables and divide the proposed
solutions into two domains of space and time variables.
The shape of body together with boundary conditions
determines the form of the space domain in the form of
amplitude (shape) functions. The time functions have
the same forms for any of considered class of multi-body
system forced dynamics. The overall analogy of sys-
tems of coupled ordinary non-linear non-homogeneous
differential time equations (58) of inherent time func-
tions in the single-amplitude regime is obvious for dif-
ferent physically connected multiple deformable body
systems. For each possible nmth amplitude mode, it
is possible to determine two related time functions in
double-body systems. The existence of mathematical
analogies of model for different body shapes indicates
the phenomenological analogy too. The whole range
of facts present due to the designed non-linearity in
the resonant regimes of forced oscillation is applica-
ble for different coupled structures, no matter if they
are plates, beams, membranes, or belts. The results of
our research are practicable for the qualitative discus-
sion and clarification of dynamical behavior for whole
range of mechanical systems with analogue non-linear
properties without solving them. In the time domain of
the system of coupled non-linear inhomogeneous ordi-
nary differential equations (58), we used the asymptotic
method Krylov–Bogoliubov–Mitropolski. It enabled us
to analytically determine the first asymptotic approx-
imation of the solution for changes in amplitude and
phase in both interrelated time modes, Eqs. (64-5). This
system is further numerically processed, and as a solu-
tion, we presented the amplitude and phase–frequency
characteristics of eigen time functions in the vibra-
tion mode of single-amplitude function. We then ana-
lyzed the stability of stationary regimes of forced reso-
nant non-linear oscillations for the presented model of
a double-plate system. We gave the representation of
passage through resonant regimes of forced oscillation
for one class of coupled structures, namely the double-
plate system connected with system of non-linear visco-

elastic discrete elements with rolling properties. How-
ever, it is clear that the same phenomena exist within
non-linear forced dynamics of system of coupled beams,
membranes, or belts with modeled non-linearities.

Non-linearity in the interconnected layer is a cause of
resonant jumps in the amplitude and phase–frequency
response of time functions corresponding to the sin-
gle shape mode of oscillation. Among the two jumps,
there is an odd number of singular values of station-
ary amplitudes and phases. They alternate stable and
unstable values and build coupled singularities. The
trigger of coupled singularities comprises two stables
about one unstable stationary value of amplitude or
phase. While the frequencies of the external excitation
pass through resonant regimes, the value of the station-
ary amplitude or phase loses stability and is divided into
a trigger of three connected singularities—two stable
and one unstable saddle-type values. This is a scenario
for a simple case where the interaction of time modes is
insignificant; for example, Fig. 10. However, if there are
mutual interaction between time modes, Figs. 8 and 9,
then more than one pair of coupled singularities exist.
These instabilities of stationary vibration regimes are
related with Hopf bifurcations of the solution (64-65).
The bifurcations of saddle point emerges on inflection
points or on points of resonant jumps at the amplitude–
or phase–frequency curves in system of the averaged
system of Duffing type. These points correspond to the
bifurcation saddle points of periodic orbits of whole sys-
tem, [34]. This is valid also for more complex bifurcation
of multi-parametric system (64-65) of averaged approx-
imations in presented complex structures. Thus, there
exists the unique point from the a,Ω space for which
this system has degenerative fixed point that is sepa-
rable into one, two, or more points. At that point, two
turns of the amplitude (phase)–frequency curves, see
Figs. 8, 9, 10, 11, or 12, unite at the point of vertical
tangent. This means that near that point, the start-
ing system of equations (58) has a bifurcation of three
periodic orbits.

This review paper shows the power of mathematical
analytical calculus which is the same even for physically
different systems. The numerical experiments, allow-
ing numerous parameters changes, are strong and use-
ful tool for making the final conclusions between too
many input and output variables of complex structure
dynamics. The proposed analytical solution for changes
in amplitude and phase in the first asymptotic approxi-
mation of solution for complex systems dynamics is very
useful for in-silico experimentation with different sets of
kinetic parameters, initial conditions, and external exci-
tation properties. Hence, the multi-parametric analysis
of hybrid deformable bodies dynamics is attainable and
conceivable based of our approaches and that opens the
new avenues in potential next research [39].
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Appendix A

h0i =

∫ r

0

∫ 2π

0
F̃(0i)

˜̃F(i)(r, φ)W(i)nm(r, φ)rdrdφ
∫ r

0

∫ 2π

0
[W(i)nm(r, φ)]2rdrdφ

.

Appendix B

A = δ1 + δ2 − ε

(
P1 cos φ1s

(Ω1s + p̂1) a1s
+

P2 cos φ2s

(Ω2s + p̂2) a2s

)
,

B =
3

4

α1

p̂1
a1s

εP1 sin φ1s

(Ω1s + p̂1)

+
ε2P 2

1 sin2 φ1s

(Ω1s + p̂1)
2 a2

1s

− εP1 cos φ1s (δ2 + δ1)

(Ω1s + p̂1) a1s

+
3

4

α2

p̂2
a2s

εP2 sin φ2s

(Ω2s + p̂2)
+

ε2P 2
2 sin2 φ2s

(Ω2s + p̂2)
2 a2

2s

−

−εP2 cos φ2s (δ2 + δ1)

(Ω2s + p̂2) a2s
+

εP2 cos φ2s

(Ω2s + p̂2) a2s

εP1 cos φ1s

(Ω1s + p̂1) a1s

+δ2δ1,

C =

(
δ2 − εP2 cos φ2s

(Ω2s + p̂2) a2s

) (
3

4

α1

p̂1
a1s

εP1 sin φ1s

(Ω1s + p̂1)

+
ε2P 2

1 sin2 φ1s

(Ω1s + p̂1)
2 a2

1s

− εP1 cos φ1sδ1
(Ω1s + p̂1) a1s

)

+

(
δ1 − εP1 cos φ1s

(Ω1s + p̂1) a1s

) (
3

4

α2

p̂2
a2s

εP2 sin φ2s

(Ω2s + p̂2)

+
ε2P 2

2 sin2 φ2s

(Ω2s + p̂2)
2 a2

2s

− εP2 cos φ2sδ2
(Ω2s + p̂2) a2s

)
and

D =
1

4

β1β2

p̂1p̂2
a2sa1s

ε2P2P1 sin φ2s sin φ1s

(Ω2s + p̂2) (Ω1s + p̂1)
+

+

(
3

4

α1

p̂1
a1s

εP1 sin φ1s

(Ω1s + p̂1)
+

ε2P 2
1 sin2 φ1s

(Ω1s + p̂1)
2 a2

1s

− εP1 cos φ1sδ1
(Ω1s + p̂1) a1s

)

(
3

4

α2

p̂2
a2s

εP2 sin φ2s

(Ω2s + p̂2)
+

ε2P 2
2 sin2 φ2s

(Ω2s + p̂2)
2 a2

2s

− εP2 cos φ2sδ2
(Ω2s + p̂2) a2s

)
.
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frequency analysis of the double circular plate system
non-linear dynamics. Nonlinear Dyn. 67(3), 2299–2315
(2012)

28. K.R. Hedrih (Stevanović), J. Simonović, Non-linear
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