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Abstract Strong positive feedback is considered a necessary condition to observe abrupt shifts in ecosys-
tems. A few previous studies have shown that demographic noise—arising from the probabilistic and
discrete nature of birth and death processes in finite systems—makes the transitions gradual. In this
paper, we investigate the impact of demographic noise on finite ecological systems. We use a simple cel-
lular automaton model with births and deaths influenced by positive feedback processes. We present our
methods in a tutorial like format. Using the approach of van Kampen’s system-size expansion, we derive
a stochastic differential equation that describes how local probabilistic rules scale to stochastic population
dynamics in finite systems. We illustrate that as a consequence of enhanced demographic noise, finite-sized
ecological systems can show an ‘effective abrupt transition’ even with weak positive interactions. Numer-
ical simulations of our spatially explicit model confirm this analytical expectation. Thus, we predict that
small-sized populations and ecosystems, in response to environmental drivers, are prone to abrupt collapse
while larger systems—with the same microscopic interactions—show a smooth response.

1 Introduction

Several ecosystems exhibit alternative stable states [1–
4]. For example, in semi-arid ecosystems, a vegetated
state and a bare (or low-vegetation) state can co-exist
at similar values of mean annual precipitation. Simi-
larly, lakes can exist in turbid or clear states for the
same nutrient loading rates. Such systems with bistable
(or multiple stable) states can abruptly shift from one
state to another when they cross a threshold value
of the external driver. These systems also show hys-
teresis, i.e. the reverse transition occurs at a driver
value different from the conditions that caused the ini-
tial transition [1,2]. Therefore, restoration is often dif-
ficult and sometimes even impossible. To explain this
phenomenon, strong positive feedback within ecosys-
tems is often invoked as a necessary condition [5–
8]. Here, we illustrate how demographic noise arising
in finite systems can give rise to a bimodal distribu-
tion of ecosystem states—even without strong positive
interactions.

Organisms display positive interactions which enhance
(or reduce) each other’s fecundity (mortality). Many
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analytical and numerical simulation models incorporate
ecosystem specific positive interactions [5,8–15]. For
example, in semi-arid ecosystems, plants increase local
infiltration of surface water and reduce evapotranspira-
tion: the chance of germination and growth of a plant
in the vicinity of another plant is higher than that of
plant in a bare region. Such positive density dependence
on the growth rates—also called Allee effect—is an
important factor in maintaining multiple stable states
and in driving abrupt transitions between these states
[5–8].

Besides positive interactions, stochasticity also plays
an important role in determining ecosystem dynam-
ics and stability. Broadly, stochasticity is of two types:
environmental (extrinsic) stochasticity arising from
random fluctuations in the environmental drivers and
demographic (intrinsic) stochasticity arising from prob-
abilistic and discrete nature of birth and death of indi-
viduals in finite systems. We now understand that envi-
ronmental stochasticity can alter resilience and induce
shifts between bistable systems [3,16–19]. The effect of
demographic stochasticity on the resilience of ecosys-
tems has received less attention [18,20–24]. For exam-
ple, demographic noise may smoothen out abrupt tran-
sitions [21,22]. In contrast, some studies make an oppo-
site prediction too, i.e. demographic noise promotes
alternative stable states [24] and abrupt transitions [20].
Although demographic noise is now relatively well stud-
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ied in a number of ecological contexts [25–30], the pre-
cise role of finite population size on ecosystem dynam-
ics is not much explored. Furthermore, few studies show
how local interactions scale to demographic noise or dis-
entangle the effects of spatial interactions from demo-
graphic stochasticity on the stability and resilience of
ecosystems (but see [20,31–33]).

In this paper, we use a simple model of vegeta-
tion dynamics to explore how finite system size affects
ecosystem dynamics; we refer to the finite size descrip-
tion as mesoscopic dynamics. The manuscript is organ-
ised as follows, with an effort to make it pedagogical
and accessible to anyone familiar with the basics of
stochastic processes. In Sect. 2, we present a minimal,
cellular automaton model which incorporates local pro-
cesses of birth and death and positive feedback inter-
actions among individuals [8,34,35]. We then present
van Kampen’s system-size expansion method in Sect. 3
which yields a mesoscopic model, i.e. a stochastic dif-
ferential equation governing the system dynamics while
accounting for finite-size stochastic effects. Using this
method, we are able to relate microscopic interaction
rules to the structure of demographic noise at meso-
scopic scales. In Sect. 4, we show the results of the
model in the deterministic mean-field (i.e. infinite size)
limit. In Sects. 5 and 6, using analytical calculations
and numerical simulations, we show that strong demo-
graphic stochasticity caused by finite system size can
give rise to a bimodal distribution of densities, even
with relatively weak positive interactions. Finally, we
discuss various implications.

2 A minimal individual-based model for
ecosystem transitions

Our model is based on a statistical-physics inspired
cellular-automaton model of tricritical directed perco-
lation [34] that has been adopted in ecological con-
texts [4,8,35]. A two dimensional space is divided into
L × L = N discrete sites. Each site can take one of
the two states: empty (denoted by 0) or occupied (by
an organism; denoted by 1). We update these states at
discrete time steps using probabilistic rules of birth and
death, described below (see Fig. 1 for a schematic of the
update rules of the model).

2.1 Baseline reproduction

During each discrete time step, a site is selected ran-
domly, henceforth called the focal site. If the focal site
is empty, we make no update and choose another site
randomly. However, if the focal site is occupied by an
organism, one of its four nearest neighbours is selected
at random. This neighbour may be occupied or empty.
If it is empty, we implement the baseline reproduction
rule: the focal plant reproduces with a probability p and
establishes a new plant at the neighbouring empty site
(resulting in a transition represented as 10 → 11). In

addition, the focal plant may die with a probability d
(represented as 10 → 00).

The baseline birth probability p of the plants (or
more generally an organism) per unit time can be
thought of as a parameter representative of external
factors like precipitation; we also refer to p as the envi-
ronmental driver and a reduction in p as increased
environmental stress. We interpret d as the density-
independent death rate; this is in contrast to the pre-
vious models where the death rate was assumed to be
1 − p [4,8,34,35].

2.2 Positive feedback

If the neighbouring site of the focal site is occupied,
we implement the positive feedback rule: we randomly
pick one of the six neighbours of the pair as the third
site. If the third site is empty a plant germinates there
with a probability q (represented as 110 → 111) or
the focal plant dies with a probability d (represented
as 11 → 01); the latter rule is implemented only if
there is no germination at the third site. The positive
feedback (i.e. q > 0) has two effects: (1) it enhances
the birth rate of the plants, (2) it reduces the death
rate of the focal plant when its neighbouring sites are
occupied.

Therefore, a discrete step update may involve (i)
nothing if the focal site is empty, (ii) a basic repro-
duction rule if the chosen pair is 10, leading to
one of the four outcomes shown in the left panel
of Fig. 1 or (iii) a positive feedback rule if the
chosen pair is 11, leading to one of the two out-
comes shown in the right panel of Fig. 1. One time
unit completes after L2 discrete updates such that
all the cells are selected, on average, once for an
update.

This model relates to the contact process, a well
known spatial stochastic process studied in the con-
text of infectious disease spread and population dynam-
ics [36,37]. Unlike the contact process, we assume that
reproduction by the focal plant and its death are not
mutually exclusive. We model birth and death as inde-
pendent processes and both can happen in the same dis-
crete time step, corresponding to the update 10 → 01
which occurs with a probability pd. Likewise, there is
a finite chance of neither of these events occurring,
corresponding to the update 10 → 10 with a prob-
ability (1 − p)(1 − d). Therefore, the update rules of
our model do not converge to the discrete formula-
tion of the contact process by setting q = 0 and
d = 1 − p.

However, we stress that 10 → 10 and 10 → 01 tran-
sitions have no effect on the macroscopic density of
plants on the landscape. See Sect. 3 and Appendix A.
Hence, in the mean-field limit, our model with q = 0
and d = 1−p is equivalent to the contact process. Like-
wise, these transitions do not affect the doublet den-
sities either; therefore, the pair-approximation for the
contact process and our model with q = 0 and d = 1−p
are identical (see Appendix B).

123



Eur. Phys. J. Spec. Top. (2021) 230:3389–3401 3391

Fig. 1 Schematic of the model update rules. Left panel
shows the baseline reproduction process as implemented
when the neighbouring site of a focal plant is empty. Right
panel shows the positive feedback process which is imple-

mented when the neighbouring site of a focal plant is occu-
pied. (This schematic adapted with modification from Fig.
1 in the Supporting Information for [8])

3 Mesoscopic dynamics: coarse-grained
population level model with demographic
noise

Mean-field approximation of stochastic cellular-
automaton models is constructed in the macroscopic
limit (N → ∞); thus, apart from spatial interactions,
it fails to account for the stochasticity arising from finite
system sizes. We use van Kampen’s system-size expan-
sion method to address this limitation [25,38,39]. We
note that our model exhibits an absorbing state at zero
density, i.e. when all cells are unoccupied. See [40,41] for
improvements over van Kampen’s system size expan-
sion in describing the dynamics of a system close to an
absorbing boundary.

We further remark that the dynamics of the cellular-
automaton can be described by a state variable n which
is the the absolute number of occupied sites on the lat-
tice, and hence n ∈ [0, N ]. Here N is the size of the sys-
tem, i.e. the number of sites on the lattice. We define
density as ρ = n/N and hence can take discrete val-
ues in the range 0 and 1, separated by 1/N . Below,
we consider an approximation to obtain the mesoscopic
dynamics of the density under the assumption that it
can be approximated as a continuous variable ρ.

3.1 Deriving the mesoscopic model with system-size
expansion

We wish to describe the dynamics of a scalar variable ρ,
representing the proportion of occupied cells or density
of the landscape. Assuming that in a finite system of
size N the stochastic update rules are ‘birth’ or ‘death’
like events, which may change ρ to ρ + 1

N or ρ − 1
N ,

the master equation to describe the temporal evolution
of the probability distribution of ρ at time t [42,43],
denoted by P (ρ, t) is

∂P (ρ, t)
∂t

=
∑

ρ′ �=ρ

[T (ρ|ρ′)P (ρ′, t) − T (ρ′|ρ)P (ρ, t)]

= T

(
ρ|ρ +

1
N

)
P

(
ρ +

1
N

, t

)

+T

(
ρ|ρ − 1

N

)
P

(
ρ − 1

N
, t

)

−T

(
ρ +

1
N

|ρ
)

P (ρ, t)

−T

(
ρ − 1

N
|ρ

)
P (ρ, t), (1)
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where T (ρ|ρ′) is the transition rate from the state ρ′ to
state ρ, which in turn depends on the stochastic update
rules of the model.

To simplify the above master equation, we follow
[28,39] and define the step operators ε+ and ε− that
have the following effect on a continuously differentiable
single variable function h(ρ)

ε+h(ρ) = h

(
ρ +

1
N

)
ε−h(ρ) = h

(
ρ − 1

N

)
.

For brevity, we denote the transition rates that corre-
spond to birth and death as T+ and T−, respectively,

T+(ρ) = T

(
ρ +

1
N

|ρ
)

T−(ρ) = T

(
ρ − 1

N
|ρ

)
.

Using these operators and the abbreviated notation
for transition rates, we rewrite the master equation (1)
as

∂P (ρ, t)
∂t

= (ε− − 1)T+(ρ)P (ρ, t)

+(ε+ − 1)T−(ρ)P (ρ, t). (2)

Assuming large N , the step operators are approxi-
mated with a second-order Taylor series:

ε±h(ρ) ≈
[
1 ± 1

N

∂

∂ρ
+

1
2N2

∂2

∂ρ2

]
h(ρ). (3)

Substituting Eq. (3) in Eq. (2), distributing terms
and rearranging, we have

∂P (ρ, t)
∂t

≈ − 1
N

∂

∂ρ

[(
T+(ρ) − T−(ρ)

)
P (ρ, t)

]

+
1

2N2

∂2

∂ρ2
[(

T+(ρ) + T−(ρ)
)
P (ρ, t)

]
.

To ease the notation, we make the following substi-
tutions

f(ρ) = T+(ρ) − T −(ρ) g(ρ) =
√

T+(ρ) + T −(ρ). (4)

Next, we rescale time as t = Nt′ and drop the prime
to obtain

∂P (ρ, t)

∂t
= − ∂

∂ρ
[f(ρ)P (ρ, t)] +

1

2N

∂2

∂ρ2

[
g(ρ)2P (ρ, t)

]
.

(5)

This is the Fokker–Plank equation (FPE). For a given
stochastic process, FPE describes the time evolution
of the state variable’s probability distribution P (ρ, t).
The function f(ρ) and g(ρ)2 are called the drift and

diffusion coefficient, respectively. If we wish to analyse
individual trajectories, we must construct a stochastic
differential equation (SDE) for the state variable. For a
given stochastic process, the SDE and FPE are closely
related [42,43]. The Ito sense SDE corresponding to the
the FPE (5) is given by [42,43]

dρ

dt
= f(ρ) +

1√
N

g(ρ)η(t), (6)

where η(t) is a Gaussian white noise with 〈η(t)〉 = 0
and 〈η(t)η(t′)〉 = δ(t − t′). Equation (6) together with
Eq. (4) constitute the mesoscopic description of the
microscopic stochastic model. The stochastic term in
this description has two features: First, the noise is mul-
tiplicative, i.e. the strength of noise depends on the cur-
rent value of the state variable ρ. Second, the strength
depends inversely on the system size N .

3.2 Mesoscopic dynamics (SDE) of our model

For a well-mixed system, specifying the transition rates
is a straightforward application of the law of mass
action: the rate of reaction is proportional to the con-
centration of the reacting species. Applying the approx-
imation of well-mixed system to our model, we obtain
the following transition rates:

T+(ρ) = T

(
ρ +

1

N
|ρ

)
= ρ(1 − ρ)p + ρ2(1 − ρ)q, (7)

T −(ρ) = T

(
ρ − 1

N
|ρ

)
= ρ(1 − ρ)d + ρ2(1 − q)d. (8)

In Eq. (7) we have used the fact that the density
can change from ρ to ρ + 1

N in two ways: 01 → 11
with a probability p or 011 → 111 with a probability
q. Similarly, in Eq. (8) the density can change from ρ
to ρ − 1

N in two ways: 10 → 00 with a probability d or
11 → 01 with a probability (1 − q)d. See Appendix 1
for further detailed steps on well-mixed or mean-field
approximation.

We emphasise that reactions 01 → 01 and 01 → 10
have no effect on ρ, hence they do not appear in the
master equation.

Substituting Eqs. (7) and (8) in Eq. (6), we obtain
the mesoscopic SDE for our model, interpreted in an
Ito sense,

dρ

dt
= (p − d)ρ − (p − q − qd)ρ2 − qρ3

+
1√
N

√
(p + d)ρ − (p − q + qd)ρ2 − qρ3 η(t), (9)

where η(t) is a Gaussian white noise with zero mean
and a unit variance.

The mesoscopic SDE (9) has two terms: The first
term is the deterministic part and is same as the mean-
field approximation (see Appendix 1). The second term
is the stochastic part, where the strength of noise
depends on the state of the system (ρ) and is inversely
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related to the system size N . Therefore, via Eq. (9) we
are able to capture the defining feature of demographic
noise—discrete and probabilistic nature of birth and
death in finite systems.

3.3 Solving the Fokker–Planck equation

In the above derivation, we have assumed that the drift
and diffusion coefficients are not time dependent. In
such a case, we can in principle obtain the steady-state
probability distribution function Ps(ρ)—if it exists—by
setting ∂Ps(ρ,t)

∂t = 0 in Eq. (5) and invoking appropriate
boundary conditions. If we have natural boundaries at
the edges of the interval of our interest (i.e the vari-
able is restricted to this interval), we can then solve
the resulting ordinary differential equation under the
no current condition at the boundary. This yields

Ps(ρ) = N exp
(

− 2
σ2

U(ρ)
)

, (10)

where U(ρ) is referred to as effective potential and is
given by [43,44]

U(ρ) = −
∫ ρ

ρ0

f(ρ′) − σ2g(ρ′)g′(ρ′)
g(ρ′)2

dρ′, (11)

where ρ0 is an arbitrary point in the domain on which
we wish to study the stochastic process. N is a normal-
ization constant.

Bifurcation diagrams that show the steady states
of the system are typically described for mean-field
deterministic systems (but see [16]). When we have
a stochastic process, we can only speak in terms of
most probable/least probable states of the steady-state,
assuming a steady-state exists for the system. Following
[44], we find the most probable/least probable states via
extrema of Ps(ρ). If an extremum is a mode of Ps, it cor-
responds to a most likely state which can be considered
equivalent to a stable state subject to perturbations. On
the other hand, if an extremum is a minimum of Ps, it
may be interpreted as an unstable state from which the
system is kicked out, so to speak, by stochasticity.

However, the model we have presented here and the
associated mesoscopic SDE describe a stochastic pro-
cess that has an absorbing boundary at ρ = 0, i.e once
the system reaches this boundary, it cannot reflect back
into the region from which it arrived. The other bound-
ary is at ρ = 1, which is a reflecting boundary. Tech-
nically, for such systems, a steady-state normalisable
probability density function does not exist. However,
we can still use this function to gain insight into the
dynamics of the system sufficiently far from the singu-
larity at ρ = 0; we will denote the non-trivial solution
of the FPE for our model as F (ρ) in all subsequent
invocations.

In this spirit, we plot the extrema of Fs as a function
of p, for different values of N (Fig. 3). The modes are
shown (each with a different color) as solid lines while
the minimum is shown as a red dashed line.

4 Mean-field approximation shows that
positive feedback promotes alternative
stable states in infinitely large systems

Considering the macroscopic limit, i.e. N → ∞, the
stochastic differential equation converges to an ordinary
(deterministic) differential equation given by

dρ

dt
= (p − d)ρ − (p − q − qd)ρ2 − qρ3. (12)

The equilibria and associated stability of the mean-
field model is found by setting dρ/dt = 0 and perform-
ing linear stability analysis [45] on the resulting steady
states (see Appendix A). One of the equilibria is a bare
state ρ∗ = 0. The bare state is stable when p < d and
unstable for p > d. In other words, when the baseline
birth rate p exceeds a critical threshold of pc = d, the
system in bare state undergoes a transition to a vege-
tated state (ρ∗ > 0).

The nature of the transition as a function of p, how-
ever, depends on the value of the positive feedback
parameter q. The transition from a bare state to a vege-
tated state, as a function of p, is a continuous transition
for 0 ≤ q < d

1+d , i.e. low values of q. In other words, for
ecosystems with weak positive interactions, the transi-
tion from a vegetated to a bare state with deteriorating
environmental conditions is gradual (Fig. 2A).

For systems with strong positive feedback, specif-
ically q > qt = d

1+d , the transition between bare
state and the vegetated state is a discontinuous func-
tion of p (Fig. 2B). Here, for a range of driver values

pc1 < p < pc2 , where pc1 = d− (pc1−q−qd)2

4q and pc2 = d,
we find three equilibria; a stable bare state (solid black
line in Fig. 2B), an unstable intermediate vegetated
state (dotted red line in Fig. 2B) and a stable large
vegetated state (solid blue line in Fig. 2B). The value
of parameter p at which the stable and unstable veg-
etated states meet and cease to exist, denoted pc1, is
referred to as a saddle-node bifurcation.

If a system is in the vegetated state and the driver
value reduces below the critical threshold of pc1 (< d),
the system collapses from a vegetated state to the bare
state. Likewise, when the driver increases above the
threshold pc2 = d, a system in bare state undergoes an
abrupt transition to a vegetated state. These transitions
are also referred to as abrupt regime shifts, catastrophic
shifts, tipping points or critical transitions [2,46]. We
also note that the system exhibits hysteresis; i.e. the two
abrupt transitions occur at different threshold values of
p. Furthermore, depending on the initial condition, the
system may reach either the bare state or the vegetated
state.

The threshold value of positive feedback at which
the type of transition changes from smooth to abrupt
(q = d

1+d ) is called the tri-critical point. The region of
bistability, i.e. the range pc1 to pc2 , increases with the
strength of positive feedback q.
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(A) (B) (C)

Fig. 2 Mean-field model shows continuous transition (A)
or abrupt transition (B), depending on the value of the pos-
itive feedback parameter q. Black, blue and red curves show
the three equilibrium densities. Solid lines are the stable
states and dotted lines are the unstable states. For low val-
ues of positive feedback (q < qt), the system shifts from
a vegetated state to a bare state (ρ = 0) continuously at
pc = d. For strong positive feedback (q > qt), two stable
states exist for a range of parameter value: pc2 − pc1. When

p is reduced below a threshold (pc1 = d− (pc1−q−qd)2

4q
, hence

lower than d), the system shifts from a vegetated state to
bare state abruptly. The reverse transition occurs at the
pc2 = d (C) shows the stability diagram of the mean-field
model for all values of p and q. Solid line shows the critical
thresholds (pc1) below which only bare state is stable. Black
dot represents the tri-critical point at which the nature of
transition changes from continuous to abrupt. The region
between the solid line and the dotted line has two states.
Here, d is kept fixed as 0.3

Figure 2C summarises the mean-field predictions of
our model, as a function of environmental driver (base-
line birthrate p) and positive feedback parameter (q).
It shows that vegetated systems with strong positive
feedback can survive in harsher environmental condi-
tions (i.e. for lower values of p than the critical thresh-
old of continuous transitions; note that pc1 < d). How-
ever, systems with strong positive feedback are also
prone to collapse as a function of changing environ-
mental conditions. In other words, large positive feed-
back among individuals promotes bistability in ecosys-
tems. These mean-field approximation results and inter-
pretations of our model are consistent with the litera-
ture on spatial ecosystem models with positive feedback
[7,9,47,48], which often incorporate models of ecosys-
tems with many more parameters (but see [4,8]).

5 Demographic noise can lead to a bimodal
distribution of densities even with weak
positive feedback

To investigate the effects of demographic noise in finite
systems, we solve for Fs(ρ) (see Sect. 3.3) for the case of
our model where q = 0. We use Fs(ρ) instead of Ps(ρ)
to emphasize that Fs(ρ) is a non-normalizable function.
In the FPE,

∂F (ρ, t)
∂t

= − ∂

∂ρ

[(
(p − d)ρ − pρ2

)
F (ρ)

]

+
1

2N

∂2

∂ρ2
[(

(p + d)ρ − pρ2
)
F (ρ)

]
(13)

the strength of demographic noise is proportional to
1√
N

. In the mean-field limit of the q = 0 case, the
escape time [43] from both the active phase (stable,
when p > d) and the absorbing phase (stable, when
p < d) is infinite, i.e. they are asymptotically stable in
the respective ranges.

However, when N is finite, we find the following: (i)
the threshold value of p at which the vegetated state
(the non-zero mode of Fs(ρ)) ceases to exist is larger
than the mean-field threshold (i.e pc(N) > d), and
(ii) the absorbing phase is asymptotically stable for the
entire range of p.

This has the following implications: (1) a finite sys-
tem has a non-zero probability of collapse from a vege-
tated state to the bare state, and (2) for a given value
of p and d that sustain a non-zero mode for Fs, the
probability of collapse from the vegetated to the bare
state is higher for a smaller system.

Therefore, due to finite-size effects that manifest
via enhanced demographic noise, we predict small sys-
tems exhibit a bimodal distribution of densities and an
abrupt collapse of the system from the non-zero density
to a bare state.

We caution that we have not demonstrated that this
abrupt collapse is equivalent to a first order phase tran-
sition. However, we demonstrate that the bimodal dis-
tribution of density leads to an ‘effectively discontinu-
ous transition’.

6 Numerical simulations show similar
effects of demographic noise

To verify if we observe these effects in spatially
explicit systems that are finite, we conducted numer-
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(A) (B) (C)

Fig. 3 The vegetated state and the bare state can coexist
via a bimodal distribution of densities in finite systems. For
finite N , the trivial steady-state solution of the FPE is a
delta-function at ρ = 0 for all values of p (solid black line
in A and B). When we consider the non-trivial solution Fs

(see text) of the FPE, a non-zero mode—denoting a veg-
etated state (solid blue lines in A and B)—appears when

the baseline birth probability p is greater than a thresh-
old value. This mode co-exists with the divergence at ρ = 0;
they are separated by a minimum denoted with a red-dashed
line. In the N → ∞ limit (C), steady-state density shows a
continuous transition, which is consistent with the transcrit-
ical bifurcation that can be obtained from a linear stability
analysis of the mean-field model. Here, d = 0.3 and q = 0

Fig. 4 Numerical simulations of the spatially-explicit
individual-based model confirm bimodality for finite-size
systems. A L=16 (or N = 16×16). Region between p = 0.45
to p = 0.5 shows bi-modality. Furthermore, a range of den-
sities with zero-probability of occurrence is evident between

the non-zero mode and the mode at zero. B L=128 (or
N = 128 × 128). There is no sign of bi-modality and the
transition from ρ∗ = 0 to ρ∗ > 0 is much smoother. C, D,
E and F show phase diagram constructed from numerical
simulations for different system sizes in two dimensions
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ical simulations of our cellular automaton model using
the stochastic update rules described in Sect. 2. We
display the results in Fig. 4 for many system sizes
N = L×L. For all parameter values (except for p > 0.65
in L = 512, where we simulated 10,000 time steps), we
run the simulation for 1 million time steps. We chose
four system sizes: 16×16, 32×32, 128×128 and 512×512
for the purpose of illustration in Fig. 4. For the system
size 16 × 16 (i.e. L = 16), for each value of p we con-
struct a normalized frequency distribution of density
based on 10,000 independent realizations (Fig. 4A). For
L = 128 (hence, N = 128 × 128), due to computational
constraints, we calculate frequency distribution based
on 100 realisations only (Fig. 4B). We then plot the
average density for L = 16 (Fig. 4C), 32 (Fig. 4D), 128
(Fig. 4E), 512 (Fig. 4F) based respectively on 10,000,
2000, 100 and 100 realisations as follows: for each p, the
upper arm was constructed by culling the realizations
that fell into the absorbing phase (ρ = 0) and calculat-
ing the mean of the densities of the remaining realisa-
tions. The lower arm (ρ = 0) was plotted if at least one
realization with ρ = 0 was reported. This method gives
a well defined bimodal region for each L.

Our numerical simulations confirm the qualitative
predictions of the analytical results based on system-
size approximation: (1) small systems exhibit bimodal
frequency distribution of density (Fig. 4A, C, D), (2)
the vegetated state abruptly ceases to exist when p is
less than a threshold value (Fig. 4C–E); this thresh-
old value is larger for smaller system sizes, (3) the
region of bimodality reduces with increasing system size
(Fig. 4C–D).

We observe a sizeable range of p in which the absorb-
ing phase is never reached, even in systems as small
as L = 16. Although this may be attributed to finite
runtime of our simulations, it is nevertheless a plausi-
ble feature of real ecological systems when the time to
reach a steady state is large. For large systems, the tran-
sition from vegetated to bare state is much less abrupt,
and for L = 512, becomes continuous for all practical
purposes (Fig. 4B, F).

7 Discussion

In this study, we used a spatially explicit individual-
based model to investigate the role of demographic
stochasticity in ecological transitions. Using analytical
methods and numerical simulations, we showed that
finite-size effects on demographic noise can result in a
bimodal distribution of densities, thus potentially caus-
ing stochasticity-driven abrupt transitions, even with
weak positive feedback mechanisms.

Our conclusions are broadly consistent with the
results in the ecology literature, which has extensively
looked at the role of stochasticity in population extinc-
tions. Specifically, these studies conclude that demo-
graphic stochasticity can induce Allee-like effects, in
which populations smaller than a threshold size are
likely to go to extinction [20,32,33]. However, these

studies write a continuum description for the system.
In contrast, using the system-size expansion, we show
how the local microscopic update rules scale to meso-
scopic dynamics of the population. This allowed us to
explicitly capture the effect of finite system size in the
stochastic term. Our derivations show that the stochas-
tic term is multiplicative, depending on both the state
variable density (ρ) and the system size (N); this is
of the form 1√

N

√
ρ + O(ρ2). However, most previous

studies include density effects via a
√

ρ term alone
[21,49–52] and do not consider the effect of system size.

The variance of the white noise process driving the
mesoscopic dynamics is proportional to 1/N , the small-
est possible increment/decrease in density in a finite
system of size N. Decreasing N increases the rela-
tive role of stochasticity in determining trajectories
by reducing the range and increasing step-size of the
stochastic process associated with n (the absolute num-
ber of individuals). Finiteness brings the vegetated
state closer to the absorbing boundary at ρ = 0. Trajec-
tories that are closer to the absorbing boundary lead to
a higher probability of a collapse to a bare state. Thus,
apart from finite system-size, considering the effect of
boundary conditions on the dynamics of the system is
important.

Environmental noise is another form of stochasticity
important for determining ecosystem dynamics. Sev-
eral studies have shown that large environmental noise
can induce abrupt transitions in ecosystems before it
reaches the critical threshold [3,16,53,54]. However, in
some cases [50], environmental fluctuations can change
the stability landscape and induce resilience. The com-
bined effect of demographic noise and environmen-
tal noise needs to be carefully investigated to obtain
insights for the management of ecosystems [55].

Abrupt transitions in our model must not be confused
with a first-order phase transition occurring at a criti-
cal point. In the physics literature, phase transitions are
defined at the thermodynamic limit while our focus here
is on finite systems. We think that explicitly accounting
for finite system sizes is important for gaining insights
into ecological applications, for no ecological system is
infinitely large. Furthermore, habitat fragmentation is
likely to lead to many patches of small sizes where finite-
size induced demographic noise can not be ignored. By
virtue of having their dynamics restricted closer to an
absorbing state (bare state in our model), these sys-
tems are prone to an abrupt collapse. In the absence
of early mitigation, restoration would in principle have
to ensure a non-negligible re-establishment seeding and
a significant improvement of environmental conditions,
to ensure that the system is pushed back into a growth
dominated regime.

A plethora of recent studies have investigated the
possibility of forecasting abrupt transitions, using the
idea of early warning signals [17,23,46,56–63]. Can sim-
ilar early warning signals be constructed for systems
with demographic noise? Investigating this and other
related questions is a possible future direction.
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Appendix A: Mean-field approximation

To write the mean-field equation for the dynamics of the
model, we assume infinite size and no spatial structure in the
ecosystem, meaning each site in the system is equally likely
to be occupied. The probability of any site being occupied
is same as the global occupancy. Therefore, the transition
rates in this model are as follows. Transition rate for a site
to change from 1 to 0 :

ω(1 → 0) = d(1 − ρ) + (1 − q)dρ

(Here d is the death rate, not the symbol for a differential).
Similarly, transition rate from 0 to 1:

ω(0 → 1) = pρ + qρ2.

Probability of finding a site in occupied(1) state : P (1) = ρ
and probability of finding a site in state in empty(0) site:
P (0) = (1 − ρ)

The master equation can then be written as:

dP (1)

dt
= ω(0 → 1)P (0) − ω(1 → 0)P (1).

Substituting the above transition rates,

dρ

dt
= f(ρ) = (p − d)ρ − (p − q − qd)ρ2 − qρ3. (14)

For simplicity, the above equation can be written in terms
of a, b and c as:

f(ρ) = aρ − bρ2 − cρ3, (15)

where a = p − d, b = p − q − qd and c = q. At equilibrium,
dρ
dt

= 0. This gives the following equilibria:

ρ* = 0, ρ* = − b

2c
+

√
b2

4c2
+

a

c
and ρ* = − b

2c
−

√
b2

4c2
+

a

c
.

We call these solutions as ρ0 , ρA and ρB respectively. For
the above equilibria to be stable, f ′(ρ*) < 0.

From (15), we get:

f ′(ρ) = aρ − bρ2 − cρ3

f ′(ρ)|ρ0 = a

f ′(ρ)|ρA = −2a − b2

2c
+ b

√
a

c
+

b2

4c2

f ′(ρ)|ρB = −2a − b2

2c
− b

√
a

c
+

b2

4c2
. (16)

In this analyses, we consider c > 0 because c = q in our
model which is a probability. From the above three equilib-
rium densities, only real and positive solutions are realistic.
Therefore, we will reject the negative solutions. For the non-

zero solutions to be real, a > − b2

4c

Case 1: b > 0

In this parameter region, given a > − b2

4c
, ρB is always neg-

ative. Therefore, the mean-field equation has only two solu-
tions ρ0, which is stable for a < 0 and ρA, which is stable for
a > 0. At a = 0, ρA = 0 and it increases monotonically after
that. The mean-field system undergoes a continuous tran-
sition (also called second-order transition or trans-critical
bifurcation) at a critical point a = 0 for all values of b > 0.

Case 2: b < 0

In this parameter regime, ρ0 is stable for a < 0 and unstable

for a > 0. ρB is real and positive only when −b2

4c
< a < 0 and

it is unstable in this regime. ρA is stable for a ≥ −b2

4c
. At a =

−b2

4c
, ρA = |b|

2c
. The mean-field system shows a saddle-node

bifurcation at the point (a, ρ∗) = (−b2

4c
, |b|
2c

). The transition
from an active phase (vegetated state) to absorbing phase
(bare state) is discontinuous.

In the mean-field approximation, our model undergoes
a continuous transition when b > 0 and a discontinuous
transition when b < 0. The system has a tri-critical point
at a = 0, b = 0 where the nature of transition changes from
continuous to discontinuous. Now, translating it back to our
system (Eq. 14) with parameters p, q and d,the tri-critical
point occurs at pt = d and qt = d

1+d
. For q < qt, continu-

ous phase transition occurs at pc = d. However, the critical
point (pc1) decreases as a function of q when q > qt. There-
fore, in discontinuous regime, the vegetated state can sus-
tain harsher conditions represented by low values of p when
strength of positive feedback among plants is high. However,
when the external conditions pass a threshold, the system
collapses abruptly to the bare state.

Appendix B: Pair approximation

In the mean-field approximation, we assumed that each site
on the lattice has equal probability of being occupied by
a plant and that there are no spatial fluctuations in the
system. We now incorporate the local spatial effects in the
master equation. We assume that the probability of occu-
pancy of a site depends on the state of its nearest neigh-
bours. Therefore, we introduce conditional probability qi|j
defined as probability that a site is in state i given its nearest
neighbour is in state j. In this approximation we have sin-
glet density ρ1 (same as mean-field approximation) and an
additional doublet density (ρij) defined as the probability of
a site being in state i and its neighbour being in state j. The
pair ij has the following properties in this approximation.

ρij = ρji ρij = ρi qj|i qj|i = 1 − qi|i. (17)
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Note that i and j can be 0 or 1. For singlet density (ρ1),
the master equation can be written as:

dρ1

dt
= ω(0 → 1)ρ0 − ω(1 → 0)ρ1. (18)

The transition rates ω(0 → 1) and ω(1 → 0) are defined
as follows:

ω(0 → 1) = p q1|0 + q q1|0 q1|1
and ω(1 → 0) = d q0|1 − (1 − q) d q1|1. (19)

Here p is the baseline birth probability, q is the positive feed-
back parameter and d is the death probability. Substituting
Eq. (19) in Eq. (18) and using the fact that ρij = ρji and
ρij = ρi qj|i (Eq. 17) we obtain the following form for the
master equation

dρ1

dt
=

{
p q0|1 + q q1|1 q0|1 − d q0|1 − (1 − q) d q1|1

}
ρ1.

(20)

Similarly, for the doublet density (ρ11), the master equa-
tion can be written as

dρ11

dt
= ω(10 → 11)ρ10 + ω(01 → 11)ρ01

−ω(11 → 01)ρ11 − ω(11 → 10)ρ11

= 2{ω(10 → 11)ρ10} − 2{ω(11 → 10)ρ11}. (21)

The transition rate ω(10 → 11) is defined as

ω(10 → 11) =
1

z
p +

z − 1

z
p q1|0

+
1

z
q q1|1 +

z − 1

z
q q1|0 q1|1. (22)

Here z is the number of nearest neighbours. The first term
represents the rate of the event in which the 1 in the pair
10 reproduces at 0 with probability p. The second term rep-
resents the rate of the event in which a neighbour of 0 in
the pair 10 other than the 1 in the pair is also 1 (we call
such neighbours as non-pair neighbours; this occurs with
probability q1|0) and it reproduces at 0 with probability
p. The next two terms represent the growth rate due to
positive feedback. The third term represents the event in
which a non-pair neighbour of the 1 in 10 is also occupied
(this occurs with probability q1|1) and a birth occurs with
enhanced probability q at 0 of the pair. The last term rep-
resents the event in which a non-pair neighbour of the 0
in 10 is occupied (this occurs with probability q1|0) and its
next neighbour is also occupied (this occurs with probability
q1|1) and a birth occurs at the 0 of the pair with enhanced
probability q.

Similarly, we define the transition rate ω(11 → 10) as

ω(11 → 10) =
1

z
(1 − q) d

+
z − 1

z
(1 − q) d q1|1 +

z − 1

z
d q0|1. (23)

The first term represents the rate of the event in which a
1 in the pair 11 dies with a diminished probability (1 − q)d
due to the facilitative interaction with the other 1 of the
pair. The second term represents the rate of the event in
which a non-pair neighbour of 1 in the pair 11 (which we
call focal to distinguish it from the other 1 of the pair) is

occupied (this occurs with probability q1|1) and the focal 1
dies with a diminished probability (1 − q)d due to the facil-
itative interaction with this non-pair neighbour. The third
term represents the rate of the event in which a non-pair
neighbour of the focal 1, is 0 (this occurs with probability
q0|1) and the focal 1 dies with probability d.

Substituting Eqs. (22) and (23) in Eq. (21), the master
equation for the doublet density takes the following form

dρ11

dt
= 2

{
{1

z
p +

z − 1

z
p q1|0

+
1

z
q q1|1 +

z − 1

z
q q1|0 q1|1}ρ10

}

−2

{
{1

z
(1 − q) d +

z − 1

z
(1 − q) d q1|1

+
z − 1

z
d q0|1}ρ11

}
. (24)

We are interested in two dimensional landscapes modelled
by a square lattice. We use a von-Newmann neighbourhood
(z = 4) in all our analyses. Note that using the properties
in Eq. (17), we may write ρ10 = (q0|1/q1|1)ρ11. Further, we
may write q1|1 = 1 − q0|1. Substituting these in Eqs. (20)
and (24) we obtain

dρ1

dt
= M1ρ1

dρ11

dt
= M11ρ11

M1 and M11 are defined as follows

M1 = p q0|1 + q (1 − q0|1) q0|1
−d q0|1 − (1 − q)d (1 − q0|1) (25)

M11 = 2

(
1

4
p

q0|1
(1 − q0|1)

+
3

4
p q1|0

q0|1
(1 − q0|1)

+
1

4
q q0|1 +

3

4
q q1|0 q0|1

)

−2

(
1

4
(1 − q) d +

3

4
(1 − q) d (1 − q0|1)

+
3

4
q0|1 d

)
(26)

ρ1 = 0 and ρ11 = 0 give the trivial equilibria. In addition,
M1 = 0 and M11 = 0 provide other equilibria of the system.
To ease the notation, we substitute q0|1 = a in Eq. (25), set
M1 = 0 and simplify to obtain a quadratic equation in a

qa2 − [p + q(1 − d)]a + d(1 − q) = 0. (27)

Assuming q �= 0, the two solutions a+ and a− are:

a+ =
p + q(1 − d) +

√
[p + q(1 − d)]2 − 4q(1 − q)d

2q
, (28)

a− =
p + q(1 − d) −

√
[p + q(1 − d)]2 − 4q(1 − q)d

2q
. (29)

Now, we substitute q0|1 = a and q1|0 = b in Eq. (26), set
M11 = 0 and simplify to obtain a solution for b assuming
3a[p + q(1 − a)] �= 0

b =
(1 − a){(1 − q)d [1 + 3(1 − a)] + a (3d − q)} − pa

3a[p + q(1 − a)]
.

(30)
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(A) (B) (C)

Fig. 5 Bifurcation diagram obtained by pair approxima-
tion analysis. A and B show the continuous and discontin-
uous transitions at q < qt and q > qt respectively. C is the
full phase diagram as a function of q and p.The black dot

represents the tri-critical point q = qt at which the nature
of transition changes from continuous to discontinuous. The
region between solid and dotted black lines is the bistable
region

Density (ρ1) can be calculated from q0|1 and q1|0 as fol-
lowing

ρ1 =
ρ10

q0|1
=

ρ01

q0|1
=

ρ0 q1|0
q0|1

ρ1 q0|1 = (1 − ρ1) q1|0

ρ1 =
q1|0

q0|1 + q1|0
=

b

a + b
. (31)

Therefore, the steady-state density can be calculated from
Eq. (31) where a and b can be obtained from Eqs. (28), (29)
and (30).

Case 1: No positive feedback (q = 0)

The master equation for the singlet and doublet density
reduces to the contact process when q = 0 [64]. We know
that the contact process model undergoes a continuous
phase transition [65], where density of active cells (vege-
tation density in our case) decreases to zero continuously.
Therefore, at the critical point (pc), the density (ρ1) goes to
zero. Substituting q = 0 and p = pc in Eq. (27)

−pca + d = 0 =⇒ a =
d

pc
.

Because ρ1 = 0 at p = pc, Eq. (31) implies b = 0. Sub-
stituting q = 0, p = pc, a = d/pc and b = 0 in Eq. (30),
assuming d �= 0 and simplifying we get

pc =
4

3
d. (32)

Thus, given that the contact process exhibits a continuous
phase transition, the pair approximation predicts a critical
point pc = 4d

3
. This result is consistent with the results of

[64].

Case 2: With positive feedback (q > 0)

Now, we investigate the role of positive feedback on phase
transition in our model. For q > 0, a will have two solutions
given by Eqs. (28) and (29). Therefore, substituting these
in Eq. (30) to obtain b and then substituting a and b in
Eq. (31), vegetation density will have two non-zero values
for some values of p and d. From mean-field approximation,

we know that one of these solutions is stable and the other
is unstable. The region in parameter space where these two
solutions (one stable and one unstable) coexist and are pos-
itive will show the discontinuous transition. Indeed for a
fixed d = 0.3, the system shows continuous transition for
low values of q and discontinuous transition for high values
of q.

We define the critical point p = pc as the point where
vegetation density drops to zero. At the critical point for
discontinuous transition, two non-zero solutions of ρ1 (one
stable and one unstable) meet. This occurs where determi-
nant in Eq. (28) or Eq. (29) vanishes.

[pc + q(1 − d)]2 − 4q(1 − q)d = 0.

Since pc, q and d are non-negative, we have

pc =
√

4q(1 − q)d − (1 − d)q.

At the tri-critical point (q = qt), the transition changes
from continuous to discontinuous (see 5). Therefore, at this
point, the critical density (defined as the density at which
transition occurs) is zero. Substituting these values in Eq.
(30) for d = 0.3, we get, (pt, qt) = (0.27, 0.36).

In the continuous transition regime (q < qt), unlike the
mean-field approximation, critical point decreases as a func-
tion of q. This shows that in our model, positive feedback
in the systems with local spatial interactions helps the sys-
tem sustain its vegetated state in harsh conditions which
are represented as low values of p. Note that we did not
perform stability analysis for this model. However, it is rea-
sonable to assume that the stability of the equilibria will
remain the same as the mean-field model. The bifurcation
diagram obtained by the pair approximation is shown in
Fig. 5. It is qualitatively same as the output of mean-field
model. However, it is clear that the vegetated state is sus-
tained for harsher conditions because there is a reduction
in the area of the bare state region. The region of bista-
bility is also reduced in this approximation. Therefore, it
can be concluded that local spatial interactions increase the
resilience of the system as compared to well-mixed system.
This effect of local spatial interactions is the opposite of
the effect of the demographic noise as shown in Fig. 3. The
real system with both the local interactions and finite-size
can show the dynamics resulting from the interplay between
these two effects.
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