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Abstract Coarsening algorithms have been successfully used as a powerful strategy to deal with data-
intensive machine learning problems defined in bipartite networks, such as clustering, dimensionality reduc-
tion, and visualization. Their main goal is to build informative simplifications of the original network at
different levels of details. Despite its widespread relevance, a comparative analysis of these algorithms and
performance evaluation is needed. Additionally, some aspects of these algorithms’ current versions have
not been explored in their original or complementary studies. In that regard, we strive to fill this gap,
presenting a formal and illustrative description of coarsening algorithms developed for bipartite networks.
Afterward, we illustrate the usage of these algorithms in a set of emblematic problems. Finally, we eval-
uate and quantify their accuracy using quality and runtime measures in a set of thousands of synthetic
and real-world networks with various properties and structures. The presented empirical analysis provides
evidence to assess the strengths and shortcomings of such algorithms. Our study is a unified and useful
resource that provides guidelines to researchers interested in learning about and applying these algorithms.

1 Introduction

A broadly pervasive class of networks are bipartite
(two-layer or two-mode) networks, with two types of
nodes, each type is at a “layer” and every link must
connect nodes of different layers. Such networks are a
realistic model of real-world systems, being widely used
in science and technology to represent pairwise relation-
ships between two categories of entities or phenomena,
e.g., documents and terms [1], patient and gene expres-
sion (or clinical variables) [2] and individuals and songs
(or books, or films) [3]. There has been a growing inter-
est in bipartite networks given their relation to many
data analytic problems, such as community detection
[4] or text classification [5].

Recent advances in bipartite networks investigated
coarsening algorithms to address hard machine learning
problems, providing a broad spectrum of applications
that includes network visualization [6], trajectory min-
ing [7], optimization of high-expensive algorithms [8],
community detection [6] and dimensionality reduction
[8]. They build a hierarchy of reduced networks from
an initial bipartite network, yielding multiple levels of
detail, as presented in Fig. 1. Coarsening is well known
for generating multiscale networks and, most notably,
as a step of the well-known multilevel method [9].

a e-mail: alanvalejo@ufscar.br (corresponding author)
b e-mail: naldi@ufscar.br
c e-mail: zhao@usp.br

Despite the potential and applicability of coarsening
algorithms in bipartite networks, there is no compar-
ative analysis that submits these algorithms to strict
tests to evaluate their performance and robustness.
Such a guideline is needed as the algorithms’ per-
formance can vary substantially for different scenar-
ios. For instance, some algorithms can be sensitive
to the level of noise in the network (a disturbance
or error in the dataset and can negatively affect the
algorithm’s performance in terms of accuracy), may
not be recommended to deal with unbalanced com-
munities or sparse/dense networks. Furthermore, some
aspects, properties, and variants of the current algo-
rithms have not been explored in their original or com-
plementary studies. For instance, some of these algo-
rithms match pairs or groups of nodes based on a
specific similarity measure called a common neighbor.
However, other similarity measures can be used in these
algorithms, including Jaccard, Sorensen, Adamic Adar,
and Resource Allocation [10], whose results may vary in
different networks. Therefore, a conceptual analysis of
these algorithms, including a description of their direct
variations, remains unexplored and, therefore, open to
scientific investigation.

This review presents a comparative analysis of coars-
ening algorithms on bipartite networks. Specifically, it
is composed of three-fold contributions:
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(a) (b)

Fig. 1 Coarsening process in a bipartite network: In a
group of nodes are matched (or selected) following an
defined strategy; in b a coarsened bipartite network is build
collapsing selected nodes into a single super-node and any
link incident to matched nodes are collapsed into the so-
called super-links. Henceforth line thickness denotes the rel-
ative link-weight

Literature review We provide a conceptual and illus-
trative description of coarsening algorithms specif-
ically designed to deal with bipartite networks. In
addition to the key concepts, our discussion covers
new aspects and variants of the current algorithms
not yet been analyzed in the literature.
Applications We present illustrative examples of
how representative problems in bipartite networks
can be addressed using the coarsening algorithms.
We trust this is an essential reference material to
encourage novel usages of these methods.
Comparative analysis We performed a comparative
study of coarsening algorithms and their proposed
variants. The investigation is conducted on a rep-
resentative set of thousands of networks, covering
synthetic and real-world networks.

The remainder of the paper is organized as fol-
lows: in Sect. 2 we introduce some basic concepts,
formally describes the state-of-the-art algorithms, and
illustrates applications; empirical comparative analy-
sis of the algorithms are reported in Sect. 5; lastly, in
Sect. 6 we summarize our findings and discuss future
work.

2 Coarsening algorithm in bipartite
networks

An unipartite network is represented by G = (V, E , σ, ω),
wherein V and E defines the set of nodes and links,
respectively, and a link (v, u) = {(u, v) = (v, u) | u, v
∈ V}, i.e. an undirected network. The number of nodes
and links are denoted by n = |V| and m = |E|. A link
(u, v) and a node u may have an associated weight,
denoted by ω(u, v) : V × V → R

+ and σ(u) : V → R
+.

The network G = (V, E , σ, ω) is bipartite if V is parti-
tioned into two sub sets V1 and V2, such that V1∩V2 =
∅ and E ⊆ V1 × V2.

The h-hop neighborhood of u, denoted by Γh(u), is
the set of nodes whose distance from u is less than or
equal to h. E.g, Γ1(u) is the set of adjacent nodes to u;
Γ2(u) is the set of nodes 2-hops away from u, and so

forth. The degree of a node u, denoted by κ(u), is the
number of its incident edges, i.e. |Γ1(u)|.

A similarity measure (or index ) quantify common
characteristics between a pair of nodes (u, v), yield-
ing values (scores) in the range [0, 1] ⊂ R, from low-
est (0) to highest (1) similarity [11]. A fundamental
structural index is given by the number of common
neighbors, defined as CN(u, v) = |Λ(u, v)|, wherein
Λ(u, v) = Γ1(u) ∩ Γ1(v). A few of several well-known
proposed indices are shown in Table 1.

Coarsening algorithms are adopted as a strategy to
solve large-scale problems (or data-intensive machine
learning problems) through a multiscale analysis of the
original problem, involving a coarsening process that
builds a sequence of networks at different levels of scale.
These algorithms are also employed as a step of the well-
known multilevel method, whose aims at reducing the
computational cost of a target algorithm by applying it
to the coarsest representation [9]. It operates in three
phases:

Coarsening The original network G0 is iteratively
coarsened into a hierarchy of smaller networks
{G1,G2, . . . ,GH}, wherein GH is the coarsest one.
The process implies collapsing nodes and links into
single entities, referred to as super-node and super-
link.
Initial solution The target algorithm is applied
or evaluated in the coarsest representation GH, in
which the initial solution is created.
Uncoarsening The uncoarsening phase, known as
solution projection, transfers the solution available
at a current level to the next level in the hierarchy.
The solution obtained in the coarsest network GH is
successively projected through intermediate bipar-
tite networks {GH−1,GH−2, . . . ,G1} up to the initial
network G0.

Notably, the coarsening is the key component of the
multilevel method since it is problem-independent, in
contrast to the other two phases designed according to
the target task [9]. Therefore, several algorithms have
been developed, and some strategies able to handle
bipartite networks have gained notoriety recently.

One of the first, proposed in [4,12], called OPM (one-
mode projection-based matching algorithm), textcol-
orreddecomposes the bipartite network G into two uni-
partite networks, one for each layer, i.e., G1 and G2. In
this decomposition, called one-mode projection, nodes
of the same type are connected if they share at least
one common neighbor in the original bipartite repre-
sentation, and the link-weight is defined by the number
of neighbors (CN index) shared between them.

Hence, one-mode projection is a good view of infor-
mation for bipartite networks. Since most algorithms
and measures in network analysis consider unipartite
networks, it is often practical to analyze a bipartite net-
work on its one-mode projections. Therefore, it notably
increases the range of analysis options since classic and
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Table 1 Similarity measures between a pair (u, v)

Weighted Common Neighbors (WCN)
∑

z∈Λ(u,v)
ω(u,z)+ω(v,z)/log(1+κ(z))

Jaccard (JAC) |Γ1(u)∩Γ1(v)|/|Γ1(u)∪Γ1(v)|
Adamic Adar (AA)

∑
z∈Λ(u,v)

1/log κ(z)

Hub Promoted (HP) |Γ1(u)∩Γ1(v)|/min{|Γ1(u)|,|Γ1(v)|}
Resource Allocation (RA)

∑
z∈Λ(u,v)

1/κ(z)

Preferential Attachment (PA) κ(u) × κ(u)

already established algorithms in the literature can be
applied to bipartite networks. As an example, it is pos-
sible to apply to bipartite networks the well-known, and
popular algorithm Heavy-Edge Matching (HEM) [13],
in which a random node u is matched with the adja-
cent node v, if edge (u, v) has maximum weight overall
adjacent edges to u.

Figure 2 illustrates the OPM execution using CN
index and Fig. 2a shows the original bipartite network.
Fig. 2b depicts the one-mode projections of each layer
and the matching M = {{u1, u2}, {u3, u4}, {u6, u7},
{u8, u9}} obtained with the HEM algorithm to G1 and
G2. Then, M is transferred to the original bipartite net-
work and, finally, the algorithm creates the coarsened
bipartite network, shown in Fig. 2c.

Employing one-mode projections has been the cor-
rect choice for most scenarios. However, some problems
are derived from the network transformation, e.g., the
connectivity may be artificially inflated with the intro-
duction of fully connected sub-graphs, and some latent
features can be lost [14,15]. An alternative is to directly
perform the coarsening process on the bipartite struc-
ture, since it captures the system’s behavior. Moreover,
avoiding the one-mode projection results in computa-
tional savings.

From this perspective, [8] introduced two novel algo-
rithms, called RGMb (Random greedy matching) and
GMb (Greedy matching). They consider a two-hop

neighborhood restriction, implying that nodes can only
be matched with other nodes in their two-hop neighbor-
hood set. Thereupon, this restriction reduces the local
search space and the computational cost of finding a
match.

In the RGMb, a node picked randomly u is matched
with its unmatched two-hop neighbor v with maximal
CN(u,v). Figure 3 illustrates RGMb. In an initial iter-
ation, depicted in Fig. 3a, a selected node u1 is allowed
to match non-adjacent nodes u2 or u4, which belong to
the two-hop neighborhood of u1. Let us assume the pair
{u1, u2} is matched. In the next iteration, in Fig. 3b,
a selected node u3 could match nodes u2 or u4. Since
u2 has been matched, the remaining choice is to match
pair u3 and u4. In the final iteration, the only choice
left for the selected node u6 is u7, Fig. 3c. Finally, the
coarsened bipartite network is built, Fig. 3d.

Alternatively, the GMb strategy randomly selects a
node u and then chooses the best possible match from
a list of its two-hop neighborhood sorted in decreas-
ing order of index CN(u,v). Note that RGMb does
not ensure an optimal choice overall possible match-
ing, in contrast with GMb, which is more robust and
can yield better results, albeit slower than its random
search counterpart.

Although OPM, RGMb, and GMb have been proved
helpful in several scenarios [4,8,12], strategies based on
collapsing node pairs are inherently limited. Matches

u1 u2 u3 u4

u5 u6 u7 u8 u9

(a)

u1

u2 u3

u4

u5 u6

u7 u8

u9

(b)

u1 {u2,u3} u4

u5 {u6,u7} {u8,u9}
(c)

Fig. 2 OPM coarsening resulting from its two one-mode projections with the HEM algorithm: a shows the orginal bipartite
network; b depicts the one-mode projections of each layer; and c illustrates the coarsend network

u1 u2 u3 u4

u5 u6 u7

(a)

u1 u2 u3 u4

u5 u6 u7

(b)

u1 u2 u3 u4

u5 u6 u7

(c)

{u1,u2} {u3,u4}

u5 {u6,u7}
(d)

Fig. 3 RGMb algorithm based on two-hop neighborhoods: a shows the original bipartite network; b and c depict the
matching; and d illustrates the coarsened network
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u1 u2 u3 u4 u5 u6

u7 u8 u9 u10

(a)

u1 u2 u3 u4 u5 u6

u7 u8 u9 u10

(b)

Fig. 4 In a, matching pair {u3, u4} is a poor choice, as the
resulting super-vertex will have predecessor vertices from
distinct communities or cliques. In contrast, in b, group of
nodes are matched together using MLPb coarsening algo-
rithm, which avoids low-quality matches

at the early levels are more accurate than in-deep
levels, i.e., they may introduce inconsistencies to the
model that will be propagated to upper coarsening
levels, which degrades the matching quality towards
the final iterations. As a result, nodes from distinct
communities may be matched, deteriorating the orig-
inal topological structure. This problem is shown in
Fig. 4a, which considers a network with two commu-
nities. Whereas suitable matching choices have been
made in earlier iterations (to match pairs {u1, u2} or
{u5, u6}), the only choice in the final iteration is to
match the pair {u3, u4}. This choice will degrade the
community structure at the next coarsening level since
it yields a super-node that includes nodes from distinct
communities.

To suppress the presented drawback, [6] introduced a
coarsening strategy based on a well-known Label Prop-
agation Algorithm (LPA) [16] called MLPb (Multilevel
label propagation for bipartite networks). It propagates
node labels throughout the bipartite network, and a sin-
gle label remains within a group of matched nodes that
will collapse into a single super-node, allowing more
than two nodes to collapse at once, as illustrated in
Fig. 4b. Specifically, a unique label is assigned to each
node, updated with the most frequent label in its two-
hop neighborhood at each iteration. Like its predeces-
sors, the MLPb inherits the label propagation based on
the CN index.

3 Discussion

The aforementioned algorithms share an essential
premise that relies on the local and structural CN
index to compute nodes’ similarity. Although these
algorithms have been validated in different scenarios,
the original studies do not analyze different similarity
measures and their aftereffect in the coarsened repre-
sentations.

According to [17], each index covers a specific net-
work structural behavior. To cite a few: JAC index
prevents hub nodes, i.e, the highest-degree nodes are
often called hubs. to have a high score with other nodes;
AA index implies that a lower-connected neighbor is
more important than a hub; HP index assigns higher
scores to nodes adjacent to hubs; RA index punishes
the higher degree nodes more heavily; PA index is based

on the growth of the network in the sense of new nodes
emerging.

Different similarity measures are presented in [18,19].
There, OPM defines link-weights in the projections by
several indices, such as JAC, HP, RA, or PA, and can
derive a specific connectivity pattern. Consequently,
selecting the best can be a critical issue, as illustrated in
Fig. 5, in contrast to the example depicted in Fig. 2. In
this case, the same network is assessed with the OPM
using the HP index to build the one-mode projections.
Figure 5a illustrates the original networks, 5b shows the
corresponding one-mode projection of each layer and
the matching M = {{u2, u3}, {u6, u7}, {u9, u8}} and 5c
depicts the coarsened bipartite network. The HP index
reduces unmatched nodes since lower-degree nodes are
matched first, whereas the CN index first matches hub
nodes. Therefore, this OPM variant builds projections
with different connectivity patterns and leads to a new
coarsened representation.

Similarly, Fig. 6a and b report the RGMb in the same
network using PA and JAC index, respectively. Note
that PA prefers to connect high-degree nodes, like the
pair {u2, u3}, whereas the JAC is based on the inter-
section over union, which makes hubs fail to influence
all nodes.

4 Applications

In general, coarsening algorithms have been successfully
used to optimize bipartite networks. In this case, the
original network is successively coarsened until attain-
ing a sufficiently small network, and, consequently,
employing a computationally expensive algorithm over
the result becomes feasible. However, coarsening algo-
rithms can also be used directly on several machine
learning problems; some are described in this section.

4.1 Community detection

Community detection established itself as a benchmark
problem for the coarsening algorithms. It aims to split
the network into disjoint groups of nodes densely con-
nected between them, called communities, and sparsely
connected to the other groups [20]. These structures
are essential and frequently found in many real-world
networks.

There are two types of community in bipartite net-
works: one-to-one correspondence, where there is the
same number of communities in each layer, and the
communities are correspondents between layers; many-
to-many correspondence, with a different number of
communities in the layers and the communities are
independents between layers.

Employing a coarsening strategy directly as a com-
munity detection algorithm is straightforward [6] and
refers to many-to-many correspondence. Figure 7 illus-
trates this process. The original networks are coars-
ened, 7b and c, then each super-node in the coarsest
network is mapped as a community, 7d. The mapping
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u1 u2 u3 u4

u5 u6 u7 u8 u9

(a)

u1

u2 u3

u4

u5 u6

u7 u8

u9

(b)

{u1,u2} {u3,u4}

u5 {u6,u7} {u8,u9}
(c)

Fig. 5 OPM coarsening resulting from its two one-mode projections using HP index and then the HEM coarsening algo-
rithm: a shows the orginal bipartite network; b depicts the matching; c and d illutrates the coarsened network

hub
u1 u2 u3 u4 u5

u6 u7 u8 u9 u10 u11

hub
u3

(a)

hub
u1 u2 u3 u4 u5

u6 u7 u8 u9 u10 u11

hub
u3

(b)

Fig. 6 RGMb algorithm using different indices to compute
the similarity between vertices. In a the matching M =
{(u2, u3), (u4, u5)} is chosen using the PA index; whereas b
depicts the the matching M = {(u1, u2), (u3, u4)} selected
using the JAC index

is successively projected back through the hierarchy so
that nodes ∈ GH inherit the communities assigned to
its successor super-nodes ∈ GH+1, as illustrated in 7e
and f.

4.2 Dimensionality reduction

Dimensionality usually refers to the number of
attributes (or features) in a dataset. Machine learn-
ing tasks are often preceded by a dimension reduction
step that leads the data to a low-dimensional space
that retains some meaningful structural properties of its
original form. A coarsening strategy for this application
models the data matrix as a bipartite network, in which
objects (rows) and attributes (columns) are associated
with the two layers V1 and V2 and non-zero matrix
entries denote the link weights. Afterward, the coars-
ening process is applied in the attribute layer, reducing
the data’s dimensionality while preserving the object
layer.

Formally, a matrix Xr×s is modeled from a bipartite
network, wherein r = |V1

0 |, s = |V2
0 | and ω(u, v) = Xu,v

if Xu,v �= 0. The aim is to create a lower-dimensional
matrix X ′

r′×s′ with r′|V1
H|, s′ = |V2

H|, as illustrated by
Fig. 8. The original matrix, its corresponding bipar-
tite network, X0 and G0 and the matching M =
{{u1, u2}, {u3, s4}} is depicted in Fig. 8a. The coars-
ened network G1 and its low-dimensional matrix repre-
sentation is shown in Fig. 8b.

An example is presented through two well-known
datasets: Iris with four attributes, 150 objects, and
three classes related to species of iris (Setosa, Versi-
colour, and Virginica) and Wine with 13 attributes, 178
objects, and three classes that denotes three types of
wines. We reduce the number of both datasets’ features
to two dimensions and compare the multilevel strategy

(MS) with the Principal Component Analysis (PCA)
method. Figure 9a and b show the result of PCA and
MS evaluated in Iris dataset, respectively. Figure 9c
and d show the result of PCA and MS evaluated in
Wine dataset, respectively. In both datasets, the results
obtained by the MS are close to those obtained by the
PCA. See [8] for an in-deep empirical analysis.

4.3 Combinatorial optimization problems on graphs

The multilevel method reveals the potential to sup-
port the solution of a range of combinatorial optimiza-
tion problems defined on graphs, like traveling salesman
problems, graph drawing, graph coloring, and match-
ing, as reported in [21]. For instance, graph coloring
is a fundamental problem in graph theory, widely used
to solve scheduling problems, wherein access to shared
resources must be synchronized. The goal is to assign
different colors to adjacent nodes, ensuring a minimum
number of colors.

One instance of this problem is to check whether a
graph is bipartite or not. Such an assumption is true if
it is possible to coloring the graph using only two colors.
Breadth-First Search (BFS) and backtracking are the
standard approaches. Alternatively, a coarsening-based
solution imposes that nodes can match others only in
their two-hop neighborhood set. If the resultant coars-
est network is a 2-colorable graph, it is bipartite. If there
is a self-loops in an arbitrary coarsening level, it implies
that the graph is not bipartite. Figure 10 illustrates this
strategy.

4.4 Visualization

Network visualization deals with creating visual rep-
resentations of networked data that support the user-
driven exploratory investigation. However, this task
faces severe limitations when a large-scale network is
evaluated: a large-scale network associated with a small
screen can affect the readability of the connectivity
and topological patterns, which implies overlapping the
graphical elements. Furthermore, the high cost to com-
pute the network layout may prevent real-time render-
ing [22,23].

Coarsening algorithms can potentially mitigate the
presented limitations enabling the user to interact with
the visualization in multiple levels of detail. This pro-
cess is achieved as follows: the network is successively
coarsened until attaining a sufficiently small representa-
tion; a layout algorithm is employed to draw the coars-

123



2806 Eur. Phys. J. Spec. Top. (2021) 230:2801–2811

est network; the user interacts with the initial visual
representation, as illustrated in 11. The multiscale hier-
archy allows an interactive process supported by on-
demand local (or global) expansion at different levels
of detail.

Figure 11a shows a dense network with seven unbal-
anced communities, |V1| = 10, 000 and |V2| = 6, 000,
overlapping and noise. All layouts were computed with
the Fruchterman-Reingold force-directed [24]. The high
ratio of inter-community links in the network hinders
the separation of communities on the screen, implying
blurred community boundaries. Furthermore, the high
number of graphical elements (nodes and links) in a
small screen hamper the distinction of vertex types and
links intra/inter communities. For example, figures b–d
illustrate three levels of reduction. The network topol-
ogy is more evident in the coarsened representations,
i.e., they allow to observe the presence of seven com-
munities and their boundaries clearly. Moreover, the
reduced network preserves the design of the original
network.

5 A comparative analysis

We conducted three experimental studies to assess the
presented coarsening algorithms:

1. We analyzed the performance of the coarsening
algorithms using different indices.

2. We compared the accuracy and runtime of different
coarsening strategies.

3. We evaluated the coarsening algorithms in real-
world networks.

In this study, the following measures were considered:
normalized mutual information (NMI) [25], Murata’s
Modularity [26] and runtime (in s). A Nemenyi post-
hoc test [27] was applied to the results to detect statis-
tical differences in the performances of the algorithms.
We used a black line to connect algorithms with no
significant performance difference to visualize the test
results. Synthetic networks were obtained employing
a network generation tool called BNOC, proposed in
[28]. Real-world bipartite networks used are available
at KONECT (the Koblenz Network Collection) [29].
We selected the largest connected component of each of
these networks. Experiments were executed on a Linux
machine with a 6-core processor with 2.60 GHz and
16 GB main memory. We report the average values
obtained from ten executions for all algorithms in each
network.

5.1 Analysis of similarity measures

We evaluated the performance of the algorithms OPM
and RGMb using different indices regarding two syn-
thetic network settings, specifically, noise level and the
number of communities. NMI was used to obtain the
accuracy of the algorithms.

A set of 1000 synthetic bipartite networks with dis-
tinct noise level was made with the following charac-
teristics: |V| = 2, 000 with |V1| = |V2|, noise within the
range [0.0, 0.5] and 20 communities for each layer. Fig-
ure 12a depicts the NMI values for the OPM variants as

(a) G0 (b) G1 (c) G2

C1 C2

C3 C4

(d) G2

C1 C2

C3 C4

(e) G1

C1 C2

C3 C4

(f) G0

Fig. 7 Coarsening algorithm as a step of the multilevel method to community detection in bipartite networks; a shows the
original bipartite network; b, c d and e depict the coarsening process; and f illustrates the final solution, i.e. the community
structure

⎡
⎢⎢⎢⎢⎢⎣

u1 u2 u3 u4

u5 4 4 0 0
u6 3 3 0 0
u7 0 1 1 0
u8 0 0 4 4
u9 0 0 3 3

⎤
⎥⎥⎥⎥⎥⎦

u1 u2 u3 u4

u5 u6 u7 u8 u9

(a) X0 and G0

⎡
⎢⎢⎢⎢⎢⎣

{u1, u2} {u3, u4}
u5 8 8
u6 6 6
u7 1 1
u8 0 0
u9 0 0

⎤
⎥⎥⎥⎥⎥⎦

{u1,u2} {u3,u4}

u5 u6 u7 u8 u9

(b) X1 and G1

Fig. 8 Multilevel dimensionality reduction in a bipartite network: a report the original matrix and its bipartite represen-
tation and b summarizes the coarsened network and the low-dimensional matrix
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(a) Iris/PCA (b) Iris/MS (c) Wine/PCA (d) Wine/MS
Fig. 9 Results of the MS and PCA method in the Iris dataset, (a, b), and wine, (c, d) datasets. Each color represent a
class

(a) G0 (b) G1 (c) G2 (d) G3

Fig. 10 Check whether an graph is bipartite or not using a multilevel strategy

(a) (b) (c) (d)

Fig. 11 Coarsening hierarchy generated from a bipartite network with |V| = 16, 000 nodes, seven unbalanced communities
and extensive noise and overlapping: a shows the orginal bipartite network; and b, c, d and e illustrates the coarsening
hiearchy

a function of the amount of noise. The noise level is the
proportion of edges wrongly inserted, i.e., 0.5 means
that half of the edges are not what they should be.
OPMpa revealed the worst accuracy among all varia-
tions. Regarding the other variants, OPMwcn obtained
the best NMI values with a low level of noise; how-
ever, it obtains the worst results after 0.3 noise level.
Interestingly, OPMhp variation obtained the best per-
formances after 0.3 noise level. A Nemenyi post-hoc test
is shown in Fig. 12c. The critical value for comparing
the mean-ranking of two different algorithms at 95 per-
centile is 0.04. Both OPMwcn and OPMhp were ranked
first followed by the group OPMjac, OPMcn, OPMra

and OPMaa with no statistically significant difference.
Additionally, we generated a set of 1000 synthetic

bipartite networks with a variety of numbers of com-
munities, as follows: |V| = 2, 000 with |V1| = |V2|, com-
munities within the range [1, 500] and 0.3 of the noise
level. Figure 12b depicts the NMI values for the RGMb
variants as a function of the number of communities.
The results are similar to those obtained for the pre-
vious set regarding the OPMwcn that starts with the
best accuracy. However, its performance decrease with

an increase in the number of communities. A Nemenyi
post-hoc test is shown in Fig. 12d. The critical value
for comparing the mean-ranking of two different algo-
rithms in the 95 percentile is 0.04. OPMjac was ranked
first and OPMpa in last.

Figure 12c and d depict the Nemenyi post-hoc test
over the results in Fig. 12a and b. The critical value in
the 95 percentile is 0.12 and 0.09, respectively. OPMhp

and RGMbjac were best ranked in the first and second
diagram.

5.2 Comparative analysis on synthetic networks

We compared the runtime and accuracy of coarsen-
ing strategies for different synthetic network settings.
OPM was set with WCN index. A set of 1000 syn-
thetic networks with distinct noise levels was gener-
ated as follows: |V| = 2, 000 with |V1| = |V2|, noise
within the range [0.0, 1.0] and 20 communities for each
layer. Figure 13a depicts the NMI values for the algo-
rithms as a function of the amount of noise. MLPb
obtained high NMI values with low noise; however, the
accuracy decreases quickly after the 0.22 noise level.
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Fig. 12 Performance of seven OPM and RGMb variants in 2000 synthetic networks: a, b illustrates NMI results as a
function of noise and number of communities, respectively. c, d depict the Nemenyi post-hoc test applied to the results
shown in a and b, respectively
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Fig. 13 Performance of the evaluated algorithms in 2000 synthetic networks: a, b illustrate NMI results as a function of
noise and number of communities, respectively. c, d Depict the Nemenyi post-hoc test applied to the results shown in a
and b, respectively

Therefore, MLPb revealed sensibility to a high-noise
level. Although GMb, RGMb, and OPM algorithms
obtained the lowest NMI values, mainly within the
range [0.0, 0.4], their performances decrease slowly com-
pared with MLPb.

A set of 1000 synthetic networks with a different
number of communities was generated, as follows: |V| =
2, 000 with |V1| = |V2|, communities within the range
[1, 500] and 0.3 of the noise level. Figure 13b depicts the
NMI values for the evaluated algorithm as a function of
the number of communities. GMb, RGMb, and OPM
presented a high sensibility to a low number of commu-

nities, specifically, within the range [1, 100]. In contrast,
MLPb obtained high NMI values in the same range.
Within the range, [200, 500] all algorithms obtained
NMI values close to each other.

Figure 13c and d depict the Nemenyi post-hoc test
applied to the results in Fig. 13a and b. The critical
values at the 95 percentile are 0.06 and 0.05, respec-
tively. MLPb and GMb were best ranked in the first
and second diagram.

We assessed the scalability of the algorithms in terms
of the absolute and relative total time spent. First, we
built a set of 1000 synthetic networks with a variety
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Fig. 14 Runtime as a function of the number of links (a–c) and nodes (d–f) for five coarsening algorithms to build the
coarsest representation in 2000 synthetic networks: the pairs (b–e) and c–f shows the absolute and relative total time
respectively

of link-densities within the range [0.01, 0.99], wherein
0.01 indicates very sparse networks and 0.99 indicates
very dense networks with m ≈ n2; |V| = 5000 with
|V1| = |V2| and 20 communities at each layer. Fig-
ure 14 shows how each algorithm contributed to the
total time, in both absolute values, Fig. 14a and b, and
relative values, Fig. 14c (percentages shown on top of
the bars). The total time spent running the experiments
was 419, 857.968 s.

Moreover, a set of 1000 synthetic bipartite networks
was created, varying the number of nodes within the
range [1, 000, 40, 000] and communities as a percentage
of the number of nodes, i.e., |V| ∗ 0.01. Figure 14 shows
how each algorithm contributed to the total time, in
both absolute values, Fig. 14d and e, and relative val-
ues, Fig. 14f (percentages shown on top of the bars).
The total time spent running the experiments was
128, 151.711 s or nearly 35 h. RGMb was the fastest
in both cases and ran 18–35 times faster than the other
algorithms. GMb and OPMhem were the most compu-
tationally expensive algorithms.

5.3 Comparative analysis on real-world networks

In order to verify if the results over synthetic data
hold for real-world application, we considered six addi-
tional bipartite networks, which properties are detailed
in Table 2(a). Murata’s modularity was used to obtain
the algorithms’ accuracy by reducing the networks to
10%, 30%, 50%, 80%, and 95% of their original sizes.

For 10% of network reduction, summarized in Table
2(b), GMb and OPMwcn yielded the best values in six
out of seven networks, losing for MLPb on Movielens
solely. Considering 30%, 50%, 80%, and 95% of network
reduction, summarized in Table 2(c)–(f), MLPb yielded
the best values in almost all networks, leaving GMb and
OPMwcn in second place with the best values for one.

To assess the results’ statistical significance, the
Nemenyi post-hoc test was applied and presented in
Fig. 15. The critical at the 95 percentile is 0.38. MLPb
was best ranked and performed statistically better than
the other algorithms.

6 Conclusion

This review integrates the current knowledge of coars-
ening strategies specifically designed to deal with bipar-
tite networks, a subject that was not deeply reviewed in
previous studies. As an initial contribution, we present
an overview (formal and illustrative) of coarsening algo-
rithms. We also introduced a discussion covering the use
of different similarity measures and their aftereffect in
the coarsened representations.

Then, we presented illustrative examples on the use
of coarsening algorithms in representative problems
defined in bipartite networks, specifically, community
detection, dimensionality reduction, visualization, and
classical graph problems. Moreover, we conducted an
empirical analysis of a representative set of thousands of
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Table 2 Modularity scores of the algorithms: (b), (c), (d), (e) and (f) present modularity scores of the algorithms consid-
ering 10%, 30%, 50%, 80% and 95% of network reduction

(a) (b)
Dataset |V1| |V2| |E| Dataset MLPb GMb RGMb OPMwcn

Ucforum 248 610 1,249 Ucforum 0.122 0.133 0.115 0.133
MCrime 754 509 1,377 Moreno 0.499 0.525 0.497 0.525
N-reactome 8,788 15,433 41,087 N-reactome 0.344 0.364 0.332 0.364
Condmat 13,861 19,466 53,628 Condmat 0.368 0.411 0.358 0.411
Movielens 3,919 2,378 8,868 Movielens 0.244 0.240 0.231 0.240
Dbpedia 54,909 19,866 98,895 Dbpedia 0.425 0.451 0.412 0.451

(c) (d)
Dataset MLPb GMb RGMb OPMwcn Dataset MLPb GMb RGMb OPMwcn

Ucforum 0.182 0.135 0.120 0.135 Ucforum 0.266 0.145 0.119 0.145
Moreno 0.565 0.556 0.541 0.556 Moreno 0.618 0.630 0.583 0.630
N-reactome 0.435 0.431 0.391 0.431 N-reactome 0.521 0.467 0.427 0.467
Condmat 0.462 0.454 0.409 0.454 condmat 0.557 0.530 0.454 0.530
Movielens 0.279 0.242 0.233 0.242 movielens 0.318 0.248 0.234 0.248
Dbpedia 0.507 0.475 0.449 0.475 dbpedia 0.584 0.517 0.48 0.517

(e) (f)
Dataset MLPb GMb RGMb OPMwcn Dataset MLPb GMb RGMb OPMwcn

Ucforum 0.404 0.129 0.109 0.129 Ucforum 0.481 0.184 0.092 0.172
Moreno 0.731 0.773 0.663 0.773 Moreno 0.627 0.756 0.707 0.699
N-reactome 0.571 0.496 0.437 0.496 N-reactome 0.623 0.506 0.393 0.506
Condmat 0.701 0.611 0.536 0.611 Condmat 0.600 0.619 0.533 0.619
Movielens 0.404 0.254 0.22 0.254 Movielens 0.458 0.283 0.179 0.283
Dbpedia 0.690 0.542 0.524 0.542 Dbpedia 0.581 0.531 0.503 0.531

The highest values are in bold

Fig. 15 Nemenyi post-hoc test summarizes the overall
results depicted in Table 2

networks. Considering the study on similarity measures,
the results allow us to conclude that WCN index is more
accurate in general terms, except for more complex net-
work settings, where JAC and HP indices are indicated.
The comparative analysis between different coarsening
algorithms analysis suggests that MLPb yielded more
accurate and stable results and requires considerably
lower execution time. However, in complex scenarios,
e.g., the zoomed-in plots focusing on networks with high
noise and number of community, GMb, and OPMwcn

algorithms showed better results. Furthermore, RGMb
was the fastest, whereas GMb and OPMhem were the
most expensive algorithms.

Coarsening algorithms are commonly approached
from parallel, distributed or GPU-based paradigms con-
sidering unipartite networks [30,31]; nonetheless, these
paradigms have not yet been explored in bipartite net-
works, with research potential.

Along these lines, we trust the present work is an
essential and unified reference material to encourage
novel adoptions of the surveyed methods, inspire inno-
vative lines of investigation, and pave further develop-
ment of cutting-edge applications.
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