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Abstract This paper presents an interesting four-dimensional chaotic system with different equilibria and
attractors. The proposed system has three quadratic nonlinearities and has no equilibrium, three equilibria
and infinite equilibria for different regions of system parameters. As the values of parameters change, the
system performs stable, periodic and chaotic states. Also it has period-doubling bifurcation which leads
to chaos and has Hopf bifurcation which makes the system loses stability. Moreover, the system generates
hidden chaotic attractor when it has no equilibria and generates coexisting chaotic attractors for different
initial values. The electronic circuit implementation of the system is given to illustrate the corresponding
dynamical properties of the system.

1 Introduction

Chaos refers to an interesting physical phenomenon fea-
tured by highly sensitivity to initial conditions. There is
a popular belief that it has a wide range of engineering
applications, including image encryption, secure com-
munication, weather forecast, path planning, etc. [1–4].
In the last few decades, a large number of important
achievements in chaos research have emerged attribute
to the discovery of famous Lorenz attractor [5]. Pecora
and Carrol proposed the concept of chaos synchroniza-
tion which is the basis of chaotic secure communication
[6]. Chen et al. established a simple and rigorous control
method for chaotification [7].

A dynamical system with chaotic solution is usu-
ally called chaotic system. One commonly used method
to judge the chaotic system is the Lyapunov exponent
spectrum. It suggests that a bounded system with pos-
itive largest Lyapunov exponent is chaotic. Basically so
many chaotic systems have been discovered in recent
years [8–12]. The equilibrium usually plays an impor-
tant influence on the dynamical properties of chaotic
system. Some chaotic systems were created and classi-
fied by considering their equilibria. Sprott et al. pro-
posed a class of chaotic systems with only one unstable
node and an attracting torus inspiring the coexistence
of chaos and limit cycle [13]. Jafari et al. produced sev-
enteen no-equilibrium chaotic flows with hidden attrac-
tors whose basins of attraction are far away the neigh-
borhoods of equilibria [14]. Yu et al. constructed multi-
wing chaotic attractors from Lorenz-type systems by
configuring multiple 2-index saddle foci [15]. Lai found
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an interesting chaotic system with infinite equilibria,
that can generate infinite coexisting chaotic attractors
from different initial conditions [16]. Wang and Chen
created a novel chaotic system with any number of
symmetric equilibria and ring attractor [17]. Molaie
et al. presented twenty-three chaotic flows with only
one stable equilibrium [18]. Mezatio et al. proposed
six-dimensional system with hyperchaos and coexisting
infinite hidden attractors [19]. Pham et al. presented
the dynamical analysis and circuit realization of no-
equilibrium system with hidden chaos and boostable
variable [20]. Nazarimehr et al. investigated the circuit
design and entropy of three-dimensional chaotic flow
with one unstable equilibrium and symmetric coexist-
ing attractors [21]. Tuna et al. considered the complex
dynamics, FPGA realization and random number gen-
erator analysis of hyperjerk multiscroll oscillators with
megastability [22]. Singh et al. proposed a new class
of four-dimensional hyperchaotic and chaotic systems
with surfaces of equilibria and coexisting attractors [23].
Recently, the studies of hidden attractors and coexist-
ing attractors have attracted a lot of attention. The
no-equilibrium system is found to be able to generate
hidden attractors, and the system with multiple equi-
libria is easy to produce coexisting attractors. Thereby
some chaotic systems with hidden attractors or coexist-
ing attractors were established by focusing on the study
of their equilibria [24–26].

In all known chaotic systems, there are few exam-
ples of chaotic systems which have both hidden attrac-
tors and coexisting attractors. So this paper will con-
struct a new chaotic system whose equilibria are deter-
mined by the parameters. The proposed system has
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Fig. 1 Bifurcation diagram and LEs of system (1) versus the parameter a ∈ [5, 10]
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Fig. 2 Hidden periodic and chaotic attractors of system (1): a a = 5; b a = 7; c a = 8; d a = 10
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Fig. 3 Bifurcation diagrams and LEs of system (1) versus the parameter a ∈ [7, 12] from initial values (1, 1, 1, 1) (red
color), (−1,−1, 1,−1) (blue color)

the following features: (i) it generates from an exist-
ing three-dimensional chaotic system by simple linear
feedback control; (ii) it is a dissipative system with
three quadratic nonlinearities; (iii) it has no equilib-
rium, three equilibria, infinite equilibrium for different
values of parameters; (iv) it has hidden attractors and
coexisting attractors; (v) it performs period-doubling
bifurcation and Hopf bifurcation. Dynamical behaviors
and circuit implementation of the system will be given.

2 The new system

The new system studied in this paper is given by the
following fourth-order ordinary differential equations:

⎧
⎪⎨

⎪⎩

ẋ = −ay + yz + m
ẏ = −x + y − w
ż = −bz + x2 + cy2

ẇ = py − kw,

(1)

where x, y, z, w denote the state variables, a, b, c, p,
k, m are real numbers. It is easy to verify that system
(1) is dissipative since its divergence is ∇V = ∂ẋ/∂x +
∂ẏ/∂y + ∂ż/∂z + ∂ẇ/∂w = 1 − b − k < 0 for b + k > 1.
It suggests that the orbits of system (1) will be tend
to an attractor of zero measure with the time increases
infinity. By assuming ẋ = ẏ = ż = ẇ = 0 and a > 0,
b > 0, c > 0, we obtain the equilibria of system (1) as
follows.

(i) For p �= 0, k = 0,m �= 0, system (1) has no equilib-
rium. All the attractors in system (1) are hidden
attractors.

(ii) For p �= 0, k �= 0,m = 0, system (1) has three equi-
libria O(0, 0, 0, 0), S1,2(±(k − p)q/k,±q, a,±pq/k),

where q = k
√

ab/

√

(k − p)2 + ck2. The eigenvalue

λ of equilibrium O meets the characteristic equa-
tion (λ+b)[λ3+(k−1)λ2+(p−a−k)λ−ak] = 0. We
can easily verify that this equation has at least one
root with positive real part. Thereby the equilib-
rium O is unstable. The eigenvalue μ of equilibria
S1,2 meets the following characteristic equation:

μ4 + s1μ
3 + s2μ

2 + s3μ + s4 = 0, (2)

where s1 = b + k − 1, s2 = bk + p − b − k − 2rq2,
s3 = bp − bk + 2cq2 − 2rq2(k − 1), s4 = 2(ck + rk −
pr)q2, r = (k − p)/k. The Routh–Hurwitz stability
criterion suggests that all the roots of Eq. (2) are
in the left half of the complex plane if and only if
si > 0(i = 1, 2, 3, 4), s1s2 > s3, s1s2s3 > s23 + s21s4.
Accordingly the equilibria S1,2 are stable as long
as these conditions are satisfied.

(iii) For p �= 0, k = 0,m = 0, system (1) has infi-
nite equilibria which can be described by the set
Ω = {(x̃, ỹ, z̃, w̃)

∣
∣ỹ = 0, z̃ = x̃2/b, w̃ = −x̃, x̃ ∈ R} .

The eigenvalues of these equilibria satisfy the char-
acteristic equation λ(λ+ b)(λ2 −λ+p+a− z̃) = 0.
Thus, we can conclude that all these equilibria are
unstable.

3 Dynamical analysis

The dynamical properties of system (1) are presented
in this section by numerical methods. The dynamical
evolution with respect to system parameters are stud-
ied using the bifurcation diagrams and Lyapunov expo-
nents (LEs). Simulation results show that system (1)
will perform different attractors for different values of
parameters. What is particularly surprising is that sys-
tem (1) has hidden attractors and coexisting attractors.

Let b = 8, c = 4, p = 1, k = 0, m = 5, then
system (1) has no equilibrium and all its attractors
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Fig. 4 Different attractors of system (1): a a = 8; b a = 9; c a = 10; d a = 10.5; e a = 11
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Fig. 5 Bifurcation diagram and LEs of system (1) versus the parameter b ∈ [8, 16]

are hidden attractors. Figure 1 presents the bifurca-
tion diagram and LEs of system (1) with respect to the
parameter a ∈ [5, 10]. It shows that system (1) pro-
duces chaos via period-doubling bifurcation with the
increase of a. Figure 2 gives the phase portraits of its
hidden periodic and chaotic attractors for parameter
values a = 5, 7, 8, 10 which can also illustrate the exis-
tence of period-doubling bifurcation.

Fix b = 8, c = 4, p = 4, k = 4, m = 0, and vary the
parameter a ∈ [7, 12], then we can generate the bifur-
cation diagrams and LEs of system (1) from initial val-
ues x0

+ = (1, 1, 1, 1) (red color), x0
− = (−1,−1, 1,−1)

(blue color) to show the appearance of its coexisting
attractors, as illustrated in Fig. 3. The overlapping red
and blue color branches in Fig. 3a imply that system
(1) yields the same attractor for these two initial val-
ues, while the separated branches imply the genera-
tion of different attractors. Figure 3a also shows the
process of period-doubling bifurcation of system (1).
With the increase of a, system (1) experiences sin-
gle periodic state → double periodic states → double
chaotic states → single chaotic state, which can be illus-
trated by plotting the phase portraits of system (1) for
a = 8, 9, 10, 10.5, 11 as shown in Fig. 4.

Let a = 10, c = 4, p = 5, k = 0, m = 0, then
we can generate the bifurcation diagrams and LEs of
system (1) versus the parameter b ∈ [8, 16] from ini-
tial value x0

+ = (1, 1, 1, 1), as illustrated in Fig. 5. It
is clear that system (1) is chaotic in the large area of
b ∈ [8, 16]. The chaotic attractor of system (1) with
b = 12 are given in Fig. 6. The LEs are numerically com-
puted as LE1 = 0.4365, LE2 = 0.0000, LE2 = −0.1771,
LE2 = −11.2594. Accordingly, the Lyapunov dimen-
sion is DLE = 3.0382 which is fractional.

Fix a = 10, b = 8, c = 4, k = 4, m = 0, then
we can plot the bifurcation diagrams and LEs of sys-
tem (1) versus p ∈ [2, 8] as shown in Fig. 7, where
the red and blue color branches in Fig. 7a are, respec-
tively, generated from initial values x0

+ = (1, 1, 1, 1),
x0
− = (−1,−1, 1,−1). Figure 7 gives three observa-

tions of system (1) with the variation of p: (i) it per-
forms chaotic, periodic and stable states; (ii) it has
period-doubling bifurcation and Hopf bifurcation; (iii)
it coexists different attractors in phase space. Figure
8 shows different states of system (1): (i) single chaos
with p = 3 in Fig. 8a; (ii) double limit cycles with
p = 4, 5 in Fig. 8b, c; (iii) single limit cycle with
p = 6 in Fig. 8d; (iv) double stable states with p = 7
in Fig. 8e. When p = 7, system (1) has two sta-
ble equilibria S1,2(∓36.9231, ± 49.2308, 10,±86.1538)
with the eigenvalues λ1,2 = −1.3165 ± 60.1188i, λ3,4 =
−4.1835±2.6387i, and Fig. 8e presents that system (1)
has double stable states for p = 7.

4 Circuit design

The circuit implementation of chaotic systems is of
important practical significance. It can turn the chaotic
signals into reality by transforming the theoretical
mathematical model of chaotic system into circuit
model, and prove the existence of chaos and other
dynamical behaviors of the system via hardware device.
An important prerequisite for all chaotic signals to be
applied is that they can be realized in practice. So
the circuit implementation of chaos is an indispensable
research content in chaos research. This section presents
the circuit implementation of system (1) for realizing its
chaotic attractor and coexisting attractors.

The circuit contains four output channels which cor-
respond to variables x, y, z, w of system (1), and we can
observe the phase portraits from the oscilloscope con-
nected with output channels. According to the mathe-
matical model of system (1), we can design the corre-
sponding circuit as shown in Fig. 9, where S1, S2, S3,
S4 are switches and U1, U2, U3, U4 are integrators. The
values of capacitors are fixed as C1 = C2 = C3 = C4 =
10nF. To realize the hidden chaotic attractor of system
(1) for a = 10, b = 8, c = 4, p = 1, k = 0, m = 5
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Fig. 6 The phase projection on x − z, time series of z and Poincaré maps on plane y = 0 of system (1) with b = 12
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Fig. 7 Bifurcation diagrams and LEs of system (1) versus the parameter p ∈ [8, 16]

123



Eur. Phys. J. Spec. Top. (2021) 230:1905–1914 1911

−30 −20 −10 0 10 20 30
10

20

30

40

50

60

70

x

z

(a)

−25 −20 −15 −10 −5 0 5 10 15 20 25
10

15

20

25

30

35

40

45

50

55

x

z

(b)

−20 −15 −10 −5 0 5 10 15 20
12

14

16

18

20

22

24

26

28

30

32

x

z

(c)

−15 −10 −5 0 5 10 15
13

13.5

14

14.5

15

15.5

x

z

(d)

−8 −6 −4 −2 0 2 4 6 8
0

5

10

15

x

z

(e)

Fig. 8 Different attractors of system (1): a p = 3; b p = 4; c p = 5; d p = 6; e p = 7
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Fig. 9 The circuit diagram of system (1)

(a) (b)

Fig. 10 Chaotic attractor of system (1) from the oscilloscope for a = 10, b = 8, c = 4, p = 1, k = 0, m = 5

shown in Fig. 1d and the coexisting chaotic attractors
of system (1) for a = 10.5, b = 8, c = 4, p = 4, k = 4,
m = 0 shown in Fig. 4d, we fix the values of elements
of Fig. 9 as follows:

R1a = 50 kΩ,R1b = 47.619 kΩ,R2 = 50 kΩ,
R3 = 12.5 kΩ,R4 = 5kΩ, R5 = 50 kΩ, R6 = 50 kΩ,
R7 = 6.25 kΩ, R8 = 20 kΩ, R9 = 500 kΩ, R10a = 50 kΩ,
R10b = 12.5 kΩ,R11 = 12.5 kΩ,
R12 = R13 = 10 kΩ,V = 0.5 V.

Switching the S1 to ‘a’, S2 to ‘c’, S3 to ‘e’, and breaking
the S4, we can observe the corresponding hidden chaotic

attractors from the oscilloscope, as shown in Fig. 10.
Switching the S1 to ‘b’, S2 to ‘d’, S3 to ‘f’, and closing
the S4, we can observe the corresponding coexisting
chaotic attractors from the oscilloscope, as shown in
Fig. 11, which has good accordance with the Fig. 4d.
Also, we can verify other dynamical behaviors of system
(1) by fixing other values of circuit elements.
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(a) (b)

Fig. 11 Coexisting chaotic attractors of system (1) from the oscilloscope for a = 10.5, b = 8, c = 4, p = 4, k = 4, m = 0

5 Conclusions

A new dissipative chaotic system was studied in this
paper. The system has no equilibrium, three equilibria
and infinite equilibria for different values of parame-
ters. The stabilities of the equilibria were discussed. The
dynamical behaviors (including the hidden attractors,
coexisting attractors, period-doubling bifurcation, etc.)
were numerically investigated. Interestingly, the system
has hidden chaotic attractors when it has no equilib-
rium and has a pair of symmetric point, or periodic,
or chaotic attractors for different initial values. Finally,
the circuit implementation gave a good observation on
the physically existence of the system. There are many
important research issues on chaotic systems with hid-
den attractors and coexisting attractors still need to be
investigated, including the formation mechanism anal-
ysis of hidden attractors and coexisting attractors, the
unified methods for constructing hidden attractors and
coexisting attractors, the new technologies for control
hidden attractors and coexisting attractors, the actual
engineering applications of hidden attractors and coex-
isting attractors, etc. On the one hand, we can continue
to consider the applications of chaotic systems with hid-
den attractors and coexisting attractors in some tradi-
tional application areas of chaos. On the other hand,
we can explore the new applications of hidden attrac-
tors and coexisting attractors of chaotic systems. There
is some evidence that chaotic systems with coexist-
ing attractors have better flexibility and plasticity in
engineering application. In the future, more valuable
research results will be achieved.

Data Availability Statement My manuscript has no
associated data or the data will not be deposited.
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