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Abstract This article addresses the problem of an efficient description of the transient electron transport
in (primarily small open) quantum systems out of equilibrium. It provides an overview and critical review
of the use of causal Ansatzes with the accent on derivation of (quantum) transport equations from the
standard Kadanoff–Baym (KB) equations for the non-equilibrium Green’s functions (NEGF). The family of
causal Ansatzes originates from the well-known Generalized Kadanoff–Baym Ansatz (GKBA). The Ansatz
technique has been fairly successful in practice. Recently, the scope of the method has been extended
towards more “difficult” cases and its success can be assessed more precisely. This general picture is
demonstrated and analyzed in detail for a variant of the generic molecular island model, an Anderson
impurity linked between two bulk metallic leads by tunneling junctions. First, the KB equations are reduced
to a non-Markovian generalized master equation (GME) by means of a general causal Ansatz. Further
reduction to a Markovian master equation is achieved by partly relaxing the strictly causal character of the
theory. For the model narrowed down to ferromagnetic leads, the transient currents are spin polarized and
the tunneling functions have a complex spectral structure. This has prompted deriving explicit conditions
for the use of an Ansatz. To extend the applicability range of the GME, approximate vertex corrections
to the Ansatz were introduced and used with success. Finally, the relation of the GME description to
possible non-equilibrium generalizations of the fluctuation–dissipation theorem is shown, extended beyond
the present model within the NEGF formalism and physically interpreted in terms of a simplified kinetic
theory of non-equilibrium electrons in open quantum systems.
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Abbreviations

GF Green functions
NEGF Non-equilibrium green functions

OPDM One-particle density matrix
FDT Fluctuation–dissipation theorem

NE FDT Non-equilibrium fluctuation–dissipation
theorem

IC Initial condition
KB Kadanoff–Baym
HF Hartree–Fock

Ansatzes

KBA Kadanoff–Baym Ansatz
GKBA Generalized Kadanoff–Baym Ansatz

FGKBA Free-particle (propagators) general-
ized Kadanoff–Baym Ansatz

QGKBA Quasiparticle (propagators) general-
ized Kadanoff–Baym Ansatz

RQGKBA Renormalized quasiparticle general-
ized Kadanoff–Baym Ansatz

XGKBA Causal Ansatz (GKBA-like) with prop-
agators GR

X and GA
X

CGKBA Corrected generalized Kadanoff–Baym
Ansatz

Equations

EOM Equations of motion
DE Dyson equation
RE Reconstruction equations

KBE Kadanoff–Baym equation
GKBE Generalized Kadanoff–Baym equation
PQKE Precursor quantum kinetic equation
PQTE Precursor quantum transport equa-

tion
QTE Quantum transport equation
QKE Quantum kinetic equation
QBE Quantum Boltzmann equation
GME Generalized master equation

ME Master equation

1 Introduction

This article deals with quantum transport theory of
many electron systems, mainly open quantum sys-
tems, when far from equilibrium dynamics and quick
changes of these systems are important. There are sev-
eral methods in use, which deal with non-equilibrium
dynamics, such as method of reduced density opera-
tors (MRDO) [1–7], time-dependent density-functional
theory (TDDFT) [8–17], dynamical mean-field theory
(DMFT) [18–25], Floquet formalism [26–28], density
matrix renormalization group (DMRG) [29–36] or real-
time quantum Monte Carlo (RTQMC) [37,38]. Each
of these methods has its own advantages as well as
problems and limitations. They compete with non-
equilibrium green function (NEGF) technique [1,2,39–
80], the method we will concentrate on.
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The article is partly of a review character. It addresses
some important problems from general many body
physics, non-equilibrium statistical physics and trans-
port theory [81–117] using the NEGF methods.

It first summarizes the experience regarding the use
of NEGF for the description of non-equilibrium single-
particle dynamics of various quantum systems. Sec-
ond, it demonstrates the usefulness of simplified NEGF
description for quantum transport theory. Specifically,
this article provides an overview and critical review of
the use of an Ansatz with the accent on derivation of
(quantum) transport equations.

NEGF, the Ansatz and transport equations

Well defined approximations of the full set of NEGF
equations permit to formulate quantum transport the-
ory using simpler quantum kinetic equations, either of
the Boltzmann type for quasiparticle distribution func-
tion [45,62,63,65,72], of the generalized master equa-
tion (GME) form [1,2,72,113] or even master equation
(ME) [112–116], for the single particle density matrix
instead of the full NEGF. The field is rather broad;
our approach will be to present our personal view and
place it among the recent parallel developments. The
main framework of this article are the foundations
of quantum transport theory deriving from the non-
equilibrium Green functions formalism introduced by
Schwinger [39–44], Kadanoff–Baym [45] and Keldysh
[50,51]. This formalism has been used to describe non-
equilibrium dynamics of quantum many-body, closed
or open, systems with various particles (such as elec-
trons, phonons, and photons) and interactions (e.g.,
electron–electron or electron–phonons) and requests to
describe rich physics, such as electron transport, heat
transfer, changes of boundary conditions, influence of
initial conditions or dissipation processes, involved. It
is nowadays used in many areas of physics: in condensed
matter physics including nanosystems, ultracold atoms,
strongly correlated electron and lattice systems, quan-
tum thermodynamics, quantum optics, plasma physics,
nuclear physics and even astrophysics. Overviews of the
recent use of the NEGF in various fields of physics
and contexts can be found in [118–124] and references
therein.

The general aim is to find a trustworthy but practi-
cable description of single-particle transport properties
of a given class of quantum systems. Since the full cal-
culation of the NEGF equations is rather demanding,
special effort has been devoted to simplification of the
theory right from the beginnings of the NEGF method.

The first successful attempt was the Kadanoff–Baym
Ansatz (KBA) used by Kadanoff and Baym (KB) in
their well-known book [45]. This Ansatz enabled them
to derive the quantum Boltzmann equation (QBE)
for the first time using a well controlled approxima-
tion based on the non-equilibrium generalization of the
fluctuation dissipation theorem (FDT) for the NEGF.
Later on, their Ansatz was used in many areas of
physics and even improved [47,48,65,72,125–134].

The range of validity of the KBA was limited, how-
ever, by the use of the quasiclassical approximation
and by the fact that KBA does not have the innate
causal structure of the NEGF. An improvement was
reached by the proposal of the generalized Kadanoff–
Baym Ansatz (GKBA—or sometimes in this text only
the Ansatz) [135], which is formulated directly in the
two-time representation and has the causal structure of
the NEGF [65,72]. The GKBA has been used success-
fully for the description of the non-equilibrium prop-
erties of various systems, often modified to a broader
class of the so-called causal Ansatzes. At the same time
these studies have shed a light on properties, advantages
and limits of the GKBA or its modifications [135–184].
Exact criteria of the Ansatz validity for various non-
equilibrium systems and situations remain unclear and
further investigations of this aspect are needed.

The introduction of the GKBA raised also a renewed
interest in the problem of the reconstruction of the one
particle two time correlation function from the density
matrix in general, as the GKBA is the leading term
of the exact reconstruction equations (RE) [2,63,65,
67,72,135,175]. These reconstruction equations enable
to view the Ansatz as a tool for developing a closed
transport equation for the One particle density matrix
(OPDM) ρ, and notably, its possible generalization by
including some corrections beyond the Ansatz, the first
term of RE.

The real obstacle on the way towards the use of
the reconstruction equations beyond their GKBA term
represents the complex structure of these additional
terms, two transport vertex corrections [65,67,72,175,
176,178]. One approximate correction relying on a pos-
sible quasiparticle behavior of the studied system, has
worked well in a number of cases [67,140–149,174,176].
In general, however, we need to approximate both ver-
tex corrections. The second one resisted so far any
approximate treatment. Recently we proposed and
made a piloting test of a “corrected” GKBA [180,181],
which covers both vertex corrections simultaneously.

When employed in computations, it leads to a signifi-
cant improvement, perhaps because the exact RE are a
necessary condition for the non-equilibrium Ward iden-
tity [67,177] to hold, while the simple Ansatz fails in
this respect [67,177].

Preliminary comment on the use of the Ansatz method

Historically, the use of the Ansatz technique went along
two main directions of effort:

� to develop efficient time saving procedures for
numerically solving the equations of motion (EOM) for
the NEGF (the Kadanoff–Baym equations) and to use
the resulting particle correlation function to calculate
the observables. This has been the majority direction.

� to derive, from the EOM for the NEGF, more
simple quantum transport (kinetic) equations (QTE),
i.e., closed equations which are subsequently solved for
the OPDM ρ. This is the approach we will concentrate
on in this text.
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� A third direction gradually branches off the
Ansatz-based theory of quantum transport equations.
It employs the reconstruction equations and other exact
relations to not only judge the validity range of the
Ansatzes, but also to go beyond them, aiming at a solid
base for constructing transport equations for single-
particle density, their improvements, and actually, to
an exact proof of existence summed up in the recon-
struction and fluctuation–dissipation theorems.

NEGF for open systems with initial conditions:
partitioning

The NEGF method applies to closed systems; this is
hidden in the real-time formalism, but clearly appar-
ent from the definition and properties of the under-
lying Schwinger-Keldysh loop [1,2,62,63,68,71,72,77].
The Keldysh loop, in particular, permits to develop a
perturbation theory based purely on functions of real
time at the cost of extending their definition range to
the whole time axis, starting at t = −∞. Such frame-
work is directly suited for many problems, like station-
ary non-equilibrium processes in extended systems.

It also serves as the most natural point of departure
for the study of a much wider range of processes, run-
ning in open systems on the one hand, and starting
as transient processes at a finite initial time from an
arbitrary initial condition on the other hand.

The open system is singled out of a broader closed
system as “the relevant subsystem”, while the environ-
ment is formed by its complement. Similarly, a process
starting at a selected initial time tI defines “our” tran-
sient process which thus comes out as a process embed-
ded in the host process, the latter running for all times
from the remote past. This twin choice should be for-
malized in the language of the NEGF. The universal
means for the class of problems treated in this paper is a
projection technique known as partitioning. It allows to
neatly separate the system from its surroundings with-
out suppressing their mutual coherences.

Partitioning in Hilbert space

First, we formalize the task of separation of the sys-
tem and its environment. The total system is associated
with a linear space and the two subsystems with sub-
spaces spanning the projectors P and Q, P +Q = 1. All
matrix algebra is then written in terms of block projec-
tions. This technique goes by the name of PQ partition-
ing. It was pioneered by Feshbach [185,186] for nuclear
resonances, later applied to polarons, Fano resonances
and an application to QED appears in some textbooks
[187]. In all this work, the partitioning concerned a Fock
space.

For electrons in nanoscopic systems consisting typ-
ically of a small relevant system attached to massive
electrical leads by junctions, the projection technique
has a different meaning. The one-electron Green’s func-
tion (GF) for the entire system is expanded in an orbital
basis separating the nanoscopic component from the

leads and the “relevant” part of the full GF is described
by the corresponding square matrix. Similarly for the
selfenergy and other single-particle operators. The par-
titioning then serves to express the effective selfenergy
of electrons within the relevant area in terms of various
blocks of the complete GF and the inverse GF, includ-
ing the Σ matrix. The resulting effective selfenergy then
contains blocks representing virtual excursions from the
relevant area into the environment and describes the
coherent link of the system with its surrounding. This
additional selfenergy, which mimics interactions, enters
the scheme even in the case of non-interacting electrons.

The outlined procedure follows the archetypal papers
by Löwdin [188–192] and forms an implicit basis of the
canonical (Jauho)–Meir–Wingreen theory [193,194].
Closely related is the Newns–Grimley model descrip-
tion of the atomic chemisorption on solid surfaces
[195,196].1

Partitioning in time

It may be preferable to treat the relevant process as
self-contained, rather than as an embedded part of the
host process. To this end, a formal device called time
partitioning was introduced in [178]. The idea is to view
the GF and the selfenergies as square matrices in their
two time arguments and partition these matrices into
blocks whose separating borders are specified by a cho-
sen initial time tI. One diagonal block of the Green’s
function corresponds to the future (the relevant block).
The other one encompasses the history whose decisive
role for the formation of the initial state at tI is medi-
ated to the future by the off-diagonal blocks of the self-
energy. The resulting formal expressions will be quoted
below.

Molecular bridge model

After we will analyze the above-mentioned aspects in
general, we will explore them on the particular exam-
ple of a molecular bridge model. This model, which can
represent well nanoscopic systems [197–199], enables us,
because of its simplicity, to compare the full NEGF cal-
culations with their simplified version based on trans-
port equations.

The interest in studies of short time electronic tran-
sients in nanoscopic systems of the molecular bridge
type is increasing and the NEGF are often the method
of choice for theoretical calculations [113,168,173,179,
193,194,197–214]. They are not really practicable for
longer “short” times and then enters their reduction to
quantum kinetic equations. The usual device for such
reduction is the GKBA decoupling or its clones. Unfor-
tunately, this only works for a limited range of param-
eters [179], as we will demonstrate. This creates a bot-

1 The commonly known partitioning dealing with the pro-
jection of the whole many body density matrix on the rele-
vant system, e.g., the Nakajima–Zwanzig approach [99,100],
is unrelated to the present discussion.
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tleneck for the computational effort and it is related to
the approximation of the reconstruction equations, too
crude in this case.

The example of the bridge model also demonstrates
that the simplification of the full NEGF formalism to
single-time transport equations for the density matrix
has its significance not only for easier and faster calcu-
lations, but also for better understanding of the physics
involved.

Outline

Following the Introduction, the article has four parts.
First, the basic scheme is introduced for the construc-
tion of simplified transport theory based on the use of
Ansatzes in the NEGF equations of motion in Sect. 2.
Second, we discuss the features and limitations of this
approach together with the related perturbation the-
ory and the reconstruction equations in Sect. 3. Recon-
struction equations and corrections to the Ansatz are
discussed in Sect. 4. The following Sect. 5 deals with the
theory of quantum transport equations and its relation
to the reconstruction and fluctuation–dissipation theo-
rems. Third, we introduce the problem of the inclusion
of correlated initial conditions into the NEGF formal-
ism in Sect. 6. The following Sect. 7 presents a discus-
sion of the conditions under which the NEGF equations
can be reduced to simplified quantum transport equa-
tions in this general case. Fourth, in Sect. 8 we turn our
attention to open systems. The use of the Ansatz-based
approach to the transport equations for the case of open
systems is documented on the molecular bridge models
which represent well the general features of open sys-
tems, but, at the same time, their simplicity permits
to demonstrate in detail the important aspects of the
Ansatz-based transport theory and make a comparison
with the full NEGF approach. Final discussion follows.

2 Ansatz as a doorway to the quantum
transport theory

In this section, we will briefly recapitulate the NEGF
formalism for closed systems (and the Keldysh initial
condition) and the approach, based on the Ansatz,
which enables us to simplify the NEGF equations of
motion to a Quantum Transport Equation (either of
QKE or GME type [65]) for the single-particle density
matrix ρ(t). We do not discuss here the quantum kinetic
equations for quasiparticle distribution functions of the
quantum Boltzmann equation type [47,48,65,72,125–
134].

2.1 Non-equilibrium Green’s functions and
equations of motion

We use, following Keldysh [50,57], the standard 2 × 2
matrix of real-time NEGF to represent the contour-
ordered NEGF employing the Langreth–Wilkins matrix

[55,56,62,65,72,175] with three components, the less-
correlation function G< and two (equivalent) propaga-
tors, GA(1, 2) = [GR(2, 1)]†:

G(1,2) =
∥
∥
∥
∥

GR(1, 2) G<(1, 2)
0 GA(1, 2)

∥
∥
∥
∥

(1)

and similarly for the selfenergy and other quantities.
Here, we introduce cumulative variables 1 ≡ x1, t1, etc.

The basic original scheme of Kadanoff and Baym
(KB) employs the equations of motion (EOM) for G<

and G> and their conjugates, all having the structure
analogous to

(

i
∂

∂t1
− h(1)

)

G<(1, 2) −
∫

dx3 VHF(1, 3+)G<(3, 2)

=

t1∫

−∞
d3

[

Σ>(1, 3) − Σ<(1, 3)
]

G<(3, 2)

−
t2∫

−∞
d3Σ<(1, 3)

[

G>(3, 2) − G<(3, 2)
]

, (2)

As apparent from the above equation to complete the
set determining both functions G<, G>, we need to
know a prescription for the selfenergies Σ<,>.

In this text, we prefer to work with the (Keldysh-
) Langreth–Wilkins (LW) form of the EOM, an often
used alternative to the KB arrangement. To convert the
KB equations (KBE) to the LW ones, it is enough to
employ the spectral identities

F S(1, 2) ≡ i(F R(1, 2) − F A(1, 2))=i(F >(1, 2)−F <(1, 2)),

(3)

where FS is the spectral function corresponding either
to F = G or F = Σ, we get both, the LW Dyson
equation (DE) for G< and the plain DE for GR:

(

i
∂

∂t1
− h(1)

)

G<(1, 2) −
∫

dx3 VHF(1, 3+)G<(3, 2)

=

t1∫

−∞
d3ΣR(1, 3)G<(3, 2)−

t2∫

−∞
d3Σ<(1, 3)GA(3, 2),

(4)
(

i
∂

∂t1
− h(1)

)

GR(1, 2) −
∫

dx3 VHF(1, 3+)GR(3, 2)

=

t1∫

−∞
d3ΣR(1, 3)GR(3, 2) + δ(1, 2). (5)

The matrix multiplication over the configuration space
is understood here and further on. Note that in the rest
of this text we will concentrate on the time structure of
equations, so we will mostly suppress space coordinates
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in equations and only time arguments will be written
explicitly.

The motivation for rewriting the KBE to the LW
form is twofold: first, this form has the advantage that it
has an explicit causal structure, important for a proper
insertion of the Ansatz. Second, it separates as much
as possible the spectral properties and the dynamics
(evolution amplitude) described by retarded functions
from the statistical information contained in the corre-
lation functions. In fact, the Dyson equations (DE) for
the retarded (and, consequently, advanced) functions
are explicitly independent of the DE for the correla-
tion function. Of course, all components of the NEGF
are internally interconnected through the selfenergy
Σ = Σ[G], which in turn is typically a self-consistent
functional of the Green’s function.

Of the two companion Eqs. (4) and (5), the equation
for the double-time G<(t, t′) is by far more demanding
from the computational point of view, and here enters
the Ansatz permitting to replace this EOM for G<(t, t′)
(an exact transport equation) by a simpler quantum
transport equation (QTE), which we call sometimes
also quantum kinetic equation (QKE), for the single-
time quantity ρ(t). Note, as was already mentioned, in
the case of open systems it is common to call the QKE
for OPDM ρ(t) generalized master equation (GME).

2.2 The Ansatz fits into the formal scheme of the
NEGF

The Ansatz (the Generalized Kadanoff–Baym Ansatz—
GKBA) [62,63,65,70,72,135] we will be concerned with
eliminates the particle correlation function in favor of
its “time diagonal”, the one-particle density matrix
(OPDM) ρ(t) = iG<(t, t), and of the propagators:

G<(t1, t2) = −GR(t1, t2)ρ(t2) + ρ(t1)GA(t1, t2) (6)

All quantities entering (6) are matrices in configuration
variables and the multiplication means here an equal
time matrix product.

This Ansatz grew up from the KB Ansatz (KBA)
[45], but it differs in two essential aspects:

� It has the same correct causal structure as the
NEGF themselves. In contrast, the KBA Ansatz does
not possess the causal property:2.

G<(t1, t2) = f

(
t1 + t2

2

)
[−GR(t1, t2) + GA(t1, t2)

]

,

(7)

2 We can see from the time arguments of KBA that this
Ansatz exhibits anticausal features. This corresponds to
the construction of the scattering integrals (completed col-
lisions) in the true Boltzmann equation for a quasiparticle
distribution function [65]

� The factorization (6) contains directly the single-
particle density matrix ρ, not a distribution function
f .3

This factorization also satisfies the particle-hole sym-
metry and it has the correct equal time limit. The order
of propagators and the density matrix corresponds to a
matrix multiplication and so a diagonal representation
of Green’s functions is not necessary.

In addition, this Ansatz has the following character-
istics which are promising from the point of view of
building up a transport theory based on this factoriza-
tion, which is not limited to a quasi-classical descrip-
tion represented by the quantum Boltzmann equation
(QBE):

� The Ansatz is at the formal level quite gen-
eral, since, contrary to KBA, any assumptions about
small deviations from equilibrium, slowly varying dis-
turbances or quasiparticle behavior are not a prerequi-
site.

� It is exact for excitations far from equilibrium in
the limit of non-interacting particles.

� It has the correct asymptotic behavior for |t1 −
t2| � τ�, where τ� is an important characteristic time
defined by

τ� = max{τQ, τc}, (11)

3 The above symbolic forms of the KBA and GKBA seem to
be nearly equivalent in an equilibrium state—homogeneous
in time. In fact, the relation between the KBA proper and
the GKBA is far more complicated. To see it, let us go to the
Wigner representation using variables (ω, k, r, t). Kadanoff
and Baym suggested that the form of the exact equilibrium
Green’s function fluctuation–dissipation theorem (FDT), cf.
para. 5.3.1 below,

G<(k, ω, r, t)
equil.≡ G<(k, ω) = i fFD(ω) × A(k, ω), (8)

is approximately valid also in near equilibrium situations. In
addition they also assumed the quasiparticle behavior of the
system and they used the spectral function centered around
the quasiparticle energy. Correspondingly, they suggested to
use for the derivation of quantum transport equations the
couple of the following approximate relations:

G<(k, ω, r, t) = i f(ω, k, r, t) × A(ω, k, r, t), (9)
A(ω, k, r, t) = δ(ω − ε(k, r, t))

where ε(k, r, t) is the quasiparticle energy. This provides the
possibility to express the energy argument of f via quasi-
particle energy ε(k, r, t) and to arrive at the KBA proper:

G<(k, ω, r, t) = i f(k, r, t) × δ(ω − ε(k, r, t)) (10)

Thus, the KBA is based on the use of the quasiparticle
distribution function f , which, in general, is not equal to
the single particle density matrix ρ used in the GKBA.
Therefore, in general the KBA and the GKBA do not coin-
cide. They also do not represent exact identities even in
equilibrium. For details about the Wigner representation
and the differences between the KBA and the GKBA, see
[65,126,134,179].
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with τc the collision duration time and τQ the quasi-
particle formation time. Typically, τ� is assumed to be
shorter than other characteristic times, like the quasi-
particle life-time or the energy relaxation time.

� It coincides with the KBA in the true Boltzmann
limit.

Thus it is reasonable to look at possibilities which the
Ansatz offers for building up effective quantum trans-
port theories for various quantum systems.

Let us comment on the meaning of the word the
Ansatz and the abbreviation GKBA: depending on the
context we will use them in two slightly different ways:
(1) The GKBA in the narrow meaning of the word,
implies that the propagators, which are used in the
Ansatz, are the exact ones, (2) The Ansatz (GKBA) in
a general meaning: in this case it denotes only the form
of the causal factorization (6), while various approxi-
mate propagators are used.

2.3 Ansatz-based quantum transport theory

Building the transport theory upon this Ansatz factor-
ization, we decide not to follow the Boltzmann–Landau
theory and its improvements. 4 We will thus not dis-
cuss those kinetic equations which determine a single
(quasi)particle distribution function instead of the one-
particle density matrix (OPDM) ρ—for the differences
between the OPDM and single distribution function,
see [65,72].

Without going into the details of the use of the
Ansatz given in the following sections, it may be said
that the basic idea is to introduce it into the NEGF
equations of motion (EOM). As for the transport equa-
tions for ρ, we can conveniently get them in two steps.

First step By subtraction from the differential Dyson
equation (4) its conjugate, we obtain the so-called gen-
eralized Kadanoff–Baym equation (GKBE). It will be
convenient at this point to introduce the mean-field
Green’s function by the obvious definition

t1∫

−∞

d3G−1
0 (1, 3)G0(3, 2) =

t1∫

−∞

d3G0(1, 3)G−1
0 (3, 2) = δ(1, 2)

(12)

G−1
0 (1, 3) = i

∂

∂t1
δ(1, 3) − h(1, 3) − VHF(1, 3),

h0(1, 3) = h(1, 3) + VHF(1, 3),

h(1, 3) = h(1)(x1, x3; t1)δ(t1 − t3),

4 Thus, we leave the idea of anticausal Ansatzes [45,126,
139] and adopt different approach motivated by the causal
structure of NEGF, so we will discuss causal approxima-
tions leading to effective transport theories. By this step
we will leave aside equations for quasiparticle distribution
function. This approach was the original approach designed
already by KB, which was, however, limited to the quasi-
classical approximation, moderate changes in time and long
time asymptotics. We will construct transport equations of
the single particle density matrix which covers also fast and
abrupt dynamical processes

VHF(1, 3) = vHF(x1, x3; t1)δ(t1 − t3) (13)

Symbolically,

G−1
0 G0 = G0G

−1
0 = 1 (14)

In the same symbolical shorthand, the generalized
Kadanoff–Baym equation (GKBE) reads

G−1
0 G< − G<G−1

0 = ΣRG< − G<ΣA

−GRΣ< + Σ<GA. (15)

Its time diagonal represents the desired precursor quan-
tum transport equation (PQTE) equation for ρ:

∂

∂t
ρ(t) + i [ h0(t), ρ(t) ]− = (ΣRG< − G<ΣA)t1=t=t2

−(GRΣ< − Σ<GA)t1=t=t2 .

(16)

Note that the name of this equation is not firmly
established, sometimes it can be called also precur-
sor quantum kinetic equation (PQKE) for obvious rea-
sons. Its structure is already closely related to transport
(kinetic) equations; the r.h.s represent the generalized
collision integrals. This is not a true closed equation
for ρ yet. To obtain it, we make the Second step by
invoking the Ansatz. For the sake of this preliminary
discussion, we substitute for G< from (6). The result is
the quantum transport equation (QTE) for ρ.

∂ρ

∂t
+ i[h0, ρ]− Σ< = Σ<[ρ |GR, GA]

= −
t∫

−∞

dt̄(GR(t, t̄)Σ<(t̄, t) − Σ<(t, t̄)GA(t̄, t))

+

t∫

−∞

dt̄(ΣR(t, t̄)ρ(t̄)GA(t̄, t) + GR(t, t̄)ρ(t̄)ΣA(t̄, t)) .

(17)

On the left, we see the quantum mechanical drift
term. We note that this drift term differs from the cor-
responding term in the Quantum Boltzmann equation
(for quasiparticle distribution function) since it does
not contain the quasiparticle energy renormalization;
Eq. (17) is a closed equation for the OPDM ρ. The
right hand side contains the collision integrals, which
differ in their nature: the first integral describes the
back scattering processes, the second integral is propor-
tional to ρ and thus it represents the forward scatter-
ing integrals. The propagators entering these scattering
integrals are responsible for the memory effect. They
have to be determined simultaneously with the density
matrix, thus we have to solve a coupled system of Eqs.
(17) and (5) replacing now the original system (5) and
(4) as its substantial simplification. That is all we need
for closed systems treated in the Keldysh style (or the
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equivalent imaginary stretch): we obtained the set of
two coupled equations which replace approximately the
NEGF equations. We have to find the retarded func-
tions, but this is simpler than to calculate the corre-
lation functions. Even so, it would but rarely be pos-
sible to employ it as it stands. For extended or finite
closed systems, the selfenergies entering the equations
have to be determined self-consistently, as they depend
on the Green’s functions. This dependence may be too
complex for computational purposes. Also finding the
propagators stepwise together with the density matrix
may be not practicable. This may call for modifications
of the original Ansatz, Eq. (6).

2.3.1 A historical case study

To illustrate the procedure leading to an explicit form
of the Quantum Transport Equation (17), we select a
paper from the whole collection of works published by
H. Haug and colleagues in the nineties and devoted to
the then topical field of subpicosecond optical pulses
applied to semiconductors (summarized in [62]). One
of the problems considered was the buildup of screen-
ing in a model two band semiconductor illuminated by
a short optical pulse. It was solved in Ref. [143], a sam-
ple case of the use of GKBA. Here, we show some of
the salient steps of the solution, but we take them from
a precursor paper [142] devoted to a simpler system,
jellium out of equilibrium. The whole procedure is the
same as that outlined above, the only difference is that
the authors start from the KB equations and their scat-
tering integral is expressed in terms of the products of
G<, G> with Σ<, Σ>. The Ansatz can be applied to
the GF directly. As for the selfenergies, it is necessary to
develop the expression Σ< = Σ<[ρ |GR, GA] (see (17))
for the specific approximation used, in present case the
non-equilibrium RPA. All quantities are diagonal in the
momentum representation, the underlying diagrams are
the same as in equilibrium, we concentrate here on the
less quantities:

Σ<
k (t1, t2) = i

∑

q

G<
k−q(t1, t2)V

<
q (t1, t2) (18)

Here, V < is the screened interaction potential given by
the sum of bubble diagrams:

V = υ1 + υLV, (19)

υ is the bare Coulomb interaction potential, the RPA
polarization bubble L reads, by components

L<,>
k (t1, t2) = ∓i

∑

q

G<,>
k+q(t1, t2)G>,<

q (t2, t1) (20)

Lr,a
k (t1, t2) = ϑ(±(t1 − t2))

(

L>
k (t1, t2) − L>

k (t1, t2)
)

(21)

A bit of manipulation with Langreth–Wilkins rules
yields a more explicit expression for the screened poten-

tial reminiscent of the popular Keldysh expression
G< = GrΣ<Ga:

V <
k (t1, t2) =

t1∫

−∞

dt3

t2∫

−∞

dt4V
r

k (t1, t3)L
<
k (t3, t4)V

a
k (t4, t2)

(22)

All this is clearly prepared for the wholesale application
of the Ansatz, collecting all expressions into the Precur-
sor QTE, and obtaining the quantum kinetic equation
for the particle distribution ρ. As a small neat example,
the GKBA transforms the formula (21) as follows:

Lr
k(t1, t2)

GKBA−→ −i
∑

q

Gr
k+q(t1, t2)G

a
q (t2, t1)

(
ρq(t2) − ρk+q(t2)

)

(23)

Of course, the need for explicit expressions for the prop-
agator components Gr,a emerges, an uneasy problem
whose attempted solutions we report in Sect. 3.5. The
authors of [143] were the first to decide that some
approximate propagators may offer a satisfactory way
out. Their choice were the free (plane wave) propaga-
tors with an imaginary part of the energy artificially
added. The modified GKBA they appropriately called
the FGKBA, and became so the harbingers of the later
prevailing custom of modifying the GKBA to some
causal Ansatz, as discussed in Sect. 4.1. Perhaps it
should be mentioned that the calculations were in good
agreement with experiments studying plasmon forma-
tion in an excited e–h plasma.

2.4 Generalization of QTE towards open systems
with complex initial conditions

It will be useful to analyze these modifications of the
original Ansatz Eq. (6) within a formalism augmented
in two directions. The NEGF formalism employed so
far corresponds to the simplest case of the “canonical”
Keldysh theory devised for extended or finite closed
systems whose interactions were turned on adiabati-
cally from an infinitely remote past. The two necessary
extensions are as follows. On the one hand, to extend
the theory also to open systems, on the other hand,
to develop the theory for processes starting at a finite
initial time. Both these tasks have been treated exhaus-
tively within the exact NEGF formalism as briefly
reviewed below. The questions we shall concentrate
on are the modifications prompted by the use of the
Ansatz-based approximate theories.

Before we will deal with formal aspects of these two
formalism augmentation, we will briefly introduce clas-
sification of Ansatzes according to their use in various
physical situations.

2.5 Classification of GKBA Ansatzes: their use for
different systems

Whether the NEGF equations of motion (EOM) sim-
plified via the use of various GKBA factorization (6)
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will properly describe the dynamics of quantum systems
depends on several factors, which we well now shortly
mention and will discuss in more details for some spe-
cial cases later on.

First, we can look at Ansatzes (GKBA factorization)
from the point of view of systems, which dynamics we
want to describe:

� Infinite (bulk) systems where the systems are their
own reservoirs

� Finite, but open systems: in this case the behavior
of the system is influenced by reservoirs. Specifically,
we have in mind bulk leads attached to the system and
serving as reservoirs of particles and energy

� Finite, but closed systems
Second, in all these three cases, we need to consider

carefully the following three levels of the use of the
GKBA:

� How the quality of the Ansatz approximation
depends on the used propagator approximations

� To which extent the combination of used prescrip-
tion for Σ< fits together with the used propagators GR

and GA, so the spectral identity (3) works properly.
� To which extent an Ansatz is suitable when we use

it as an approximation of the reconstruction equations.
This means: how much the non-equilibrium Ward iden-
tity is fulfilled? What is the behavior of additional parts
(beyond the Ansatz) in the reconstruction equations?
We will deal with these equations in Sects. 3, 4, and 5.

The question, we will deal with, arises whether we
can name some general features of the Ansatz for all
these cases. When we want to understand the above-
mentioned aspects of the use of the Ansatz we have to
turn to perturbation schemes related to the Ansatz.

3 Ansatz and NEGF perturbation schemes

In this section, we will first try to shed light on rela-
tion of the Ansatz to the NEGF perturbation schemes
on a phenomenological level. This will lead us to the
estimate of its range of validity and possible improve-
ments. Later on, we will deal with the question of
the Ansatz validity domain on the more fundamental
level by introducing the so-called reconstruction equa-
tions (RE) [2,63,65,67,72,135,175], which contain the
Ansatz as a source term. As we will see, the RE are
formally just identities. The source term can lead us to
an idea that the reconstruction equations form a basis
for some perturbation scheme. However, strictly speak-
ing, this is not the case because we do not have a useful
small parameter and we cannot proceed selfconsistently
in a reasonable manner. We will discuss this aspect of
the RE in more detail in Sect. 4.

3.1 Consistency of Ansatz and selfenergy

As already discussed in the previous section, to simplify
NEGF equations we can use the Ansatz to close these
equations just for the single-particle density matrix. To
reach this aim we have to proceed in two steps:

� First, it is easy to formulate the Ansatz also for
G>.

� Second, apart from using the Ansatz directly for
G<.G>, we have to use it also in expressions for Σ since
in general selfenergy is the functional Σ[G<, G>].

By the second step we mix two different perturbation
schemes: one for the selfenergy and the other one based
on the Ansatz.

The natural question emerges under which circum-
stances (for which selfenergies and propagators used in
the Ansatz) these two perturbation schemes combined
together (of the selfenergy and the approximation by
the use of the Ansatz and the specific approximation
of propagators in it) provide a good description of the
system dynamics.

We can deal with the answer either already on the
level of the Ansatz alone or we can go further and
we can use for the investigation of the validity of the
Ansatz range also the reconstruction equations (RE)—
the exact equations which contain the Ansatz as the
first term as we will see in Sect. 3.3.

3.2 Ansatz: non-interacting particles

To begin with considerations how the Ansatz is related
to the NEGF perturbation scheme, it is useful to discuss
first the case of non-interacting particles in a closed
system. Thus, we will approach the Ansatz, following
[65,72,174], from the angle, where its predominantly
dynamic nature is stressed and linked with the so-called
semi-group character of the single-particle propagation.

To this end, we first consider independent particles,
for which GR,A = ∓ iS(1)ϑ± with S(1) the single-
particle evolution operator, and the following equation
is valid:

G<(t1, t2) = iGR(t1, t0)ρ(t0)GA(t0, t2). (24)

The propagators describe a unitary evolution which
obeys the multiplication rule (“semi-group property”)
shown here for GR:

GR(t1, t3) = iGR(t1, t2)GR(t2, t3) t1 > t2 > t3. (25)

Using this semi-group property in (24) we obtain, for
t1 > t2 > t0,

G<(t1, t2) = −GR(t1, t2)GR(t2, t0)ρ(t0)GA(t0, t2)

= −GR(t1, t2)ρ(t2). (26)

This is just the retarded half of the Ansatz. For the
converse order of times, the advanced part of the Ansatz
is obtained.

The Ansatz appears here as an exact identity based
on the semi-group property of free-particle propagators.

The fact that the Ansatz is exact in the case of free
particles, raises a hope that there is a perturbation
scheme based on the strength of the interaction as a
small parameter. To see whether this is doable let us try
to rewrite the NEGF equations of motion (EOM) to an
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exact form, which contains the Ansatz in the explicit
form.

3.3 Reconstruction equations

The equation of motion (EOM) can be also rewritten
in a form of an equation having, as it first term, expres-
sion which introduces as the first term the approxi-
mation of the correlation function G< by the Ansatz
(GKBA) [62,63,65,70,72,135]. To gain the exact corre-
lation function it is, however, necessary to add the two
vertex corrections to the Ansatz, so that

t > t′ t < t′
G<(t, t′) =

−GR(t, t′)ρ(t′)

+
t∫

t′
dt

t′
∫

−∞
d¯̄tGR(t, t)Σ<(t, ¯̄t)GA(¯̄t, t′)

+
t∫

t′
dt

t′
∫

−∞
d¯̄tGR(t, t)ΣR(t, ¯̄t)G<(¯̄t, t′)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

+ρ(t)GA(t, t′)

+
t′
∫

t

d¯̄t
t∫

−∞
dtGR(t, t)Σ<(t, ¯̄t)GA(¯̄t, t′)

+
t′
∫

t

d¯̄t
t∫

−∞
dtG<(t, t)ΣA(t, ¯̄t)GA(¯̄t, t′)

(27)

These are the so-called reconstruction equations (RE)
since they in principle enable us to reconstruct the
whole double-time correlation function from its time
diagonal elements ρ = G<(t, t), the one-particle density
matrix, by means of the propagators. For their deriva-
tion, see e.g., [65,72,135].

These inhomogeneous integral equations are not
closed, ρ is just an input. To close the scheme, the recon-
struction equations must be accompanied by an addi-
tional equation, quantum transport equation (QTE)
(17), for ρ, see the previous section. This set of equa-
tions is then formally fully equivalent to the Dyson
equations for GR, G<.

The free (absolute) term is the Ansatz, so it enters
the game explicitly. From the form of the correction
terms we can immediately see:

� the Ansatz is exact in the case of free particles in
closed systems,

� at the same time the range of validity of the Ansatz
approximation depends on the time structure of the
selfenergy.

The integral terms in (27) are the vertex corrections
to the Ansatz. Both these terms link the past and the
future events with respect to the instant t′ and describe
the coherence formed between these events. They both
contain the unknown correlation function G<: the first
one through the functional dependence Σ< = Σ<[G<],
the second one explicitly. It is thus obvious that the
use of the Ansatz is justified whenever these two vertex
corrections are negligible.

Two characteristic times control their behavior: the
collision duration time τc determining the time span
of Σ< and the quasiparticle formation time τQ related
to the time spread of ΣR. Correspondingly, these two
integral terms have a rather different character: the first
one is irreducible and represents the two particle cor-

relations which are not contained in the Ansatz. The
second term describes the single-particle (polaron like)
renormalization of the out channel.

It is thus apparent that the times τc and τQ play
the decisive role in the decision whether the vertex
corrections can be neglected. We will see later that
because of the different character of the two vertex cor-
rections they offer different possibilities how to improve
the Ansatz.

In principle, the iteration of the reconstruction equa-
tions could yield a corrected Ansatz. It is, however,
very difficult, if not impossible, to iterate these equa-

tions together to get improved transport equations,
beyond the first approximation given by the Ansatz.
They appear thus as unsuitable for a calculation of the
full correlation functions by iteration. We will return to
this question in the Sect. 5

There is another possibility, however, of using these
equations for deriving effective transport theory for the
single-particle density matrix, based on the Renormal-
ized Quasiparticle Generalized Kadanoff Baym Ansatz
(RQGKBA), as we will discuss in Sect. 4.

3.4 Two approaches how to use the Ansatz

Having the reconstruction equations, we can look at the
use of the Ansatz from two different perspectives since
there are two different ways how to use the reconstruc-
tion equations on the way towards effective description
of a system dynamics:

� First approach: to use the Ansatz itself (only the
first term of reconstruction equation (RE) (27)) either
to simplify NEGF calculations or to formulate simpli-
fied transport equations for the single-particle density
matrix; the final transport equations will differ accord-
ing to used retarded GF in the Ansatz.

� Second approach: to analyze the validity range of
the Ansatz looking at the whole RE: this means to fix
the GF, but, if necessary, to use not only the Ansatz
itself but also some approximation of the RE vertex
corrections (27).

The first approach uses the Ansatz as a means of
solving the EOM for correlation functions: this is the
most often used approach [118–124]. It is effective from
the point of view of simplification of practical calcula-
tions. In this case, various approximations of propaga-
tors are used in the Ansatz (GKBA) to obtain its vari-
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ants. By this step we are returning to the phenomeno-
logical level and so we just try which approximation
will work. This is a very similar situation to the var-
ious forms of the local density approximation (LDA)
of the density functional theory [9]. This corresponds
to the fact that regarding the dependence of Ansatz’s
approach on the systems up to now experience tell us
that it looks that the best estimation of the quality
of the Ansatz approximation work similarly like in the
description of equilibrium features: the Ansatz approx-
imation is good according to how numerical solution
works for a concrete system. Various people tried to use
different propagators [3,77,153,158–163] to find out the
validity ranges of related variants of the Ansatzes will
be discussed in the following subsection.

The second approach is going after more fundamen-
tal question: In this case we are going not only after the
Ansatz as a pure computational means, but we want to
use it also for the formulation of a consistent quantum
transport theory, to formulate closed transport equa-
tions for OPDM ρ.

3.5 Ansatz and various propagators: summary of
accumulated experience

The advantage of the use of the GKBA approach to
transport lies in the reduced computational complex-
ity of this scheme in comparison with the full NEGF
scheme. It is just desirable to know which many body
selfenergies are compatible with various approxima-
tions of the Green’s functions (propagators) in the
GKBA and provide reasonable description of the non-
equilibrium evolution. All such modifications of the
Ansatz have the basic property of belonging to the class
of causal Ansatzes. They differ by their success in prac-
tice.

The Ansatz with different approximations of its
propagators has been tested in various physical sit-
uations both for closed as well as open quantum
systems. Depending on the situation, good results
were obtained for the following propagators: (1) free-
particle propagators (FGKBA) [150–152], (2) various
quasiparticle propagators (QP-GKBA) [140–146,148],
(3) Hartree–Fock propagators (HF-GKBA) [153–157],
propagators, which even include some correlations
(correlated-GKBA) [3,183] apart from using “exact
propagators” (E-GKBA) which have been obtained by
simulations of the NEGF equations [164].

For the good description of systems dynamics it is
essential, apart from the quality of the used approxi-
mation of propagators in the Ansatz, the proper choice
of selfenergy, which enables both, the good description
of the dynamics and advantageous (not too demand-
ing) scheme for numerical calculation. For quite a long
time, the Ansatz was used mainly in combination with
the second Born approximation. Recently, however, the
HF-GKBA was successfully used together with the T-
matrix, GW and third order selfenergies. Very recently
the efficient scheme (the so-called G1–G2 scheme) for

simulations of NEGF using HF-GKBA was introduced
[156,157].

The numerical tests which have been comparing
various selfenergy approximations used in GKBA-like
approximations of non-equilibrium systems with the
full solution of the NEGF equations and even with other
techniques (such as DMRG) have been developed. All
these approaches shows that in many situations GKBA
approach provides reasonable results and the numerical
demands of the GKBA approach are lower. Main results
in this direction can be found in [76,77] and references
therein.

3.5.1 Ansatz and conservation laws

For the reliability check of all above-mentioned calcula-
tions, it is important to know whether the approxima-
tions used fulfill the conservation laws. The essential
criterion for NEGF EOM and selfenergy approxima-
tion to be a conserving was introduced by Kadanoff
and Baym [45,46,71,159,215,216].

By introducing the Ansatz in the EOM, the question
arises which selfenergies can be used in the combina-
tion with the propagators used in the Ansatz to still
get a conserving approximation. In other words, which
approximation of the propagators in the Ansatz is com-
patible with selfenergy to get the conserving approxi-
mation.

We will now briefly comment on the problem of
conservation laws; more details can be found mainly
in works of the groups of Bonitz and van Leuween
[3,71,77,153,157,163,217–219]. The essential problem
is, which propagators used in an Ansatz are compat-
ible with an energy conserving selfenergy approxima-
tion. The question is whether the selfenergy approxima-
tion remains conserving after the Ansatz is introduced
in it. There is the problem of the choice of the proper
spectral function used in the Ansatz [153,159,217] The
problem was partly solved using conserving selfenergy
approximation: in Ansatz propagators but not neces-
sarily the same selfenergy approximation in collision
integrals [217].

Recently conserving approximation schemes (based
on the use of the GKBA) have been developed for the
description of some complicated non-equilibrium situ-
ations. It was demonstrated that these schemes work
well and provide reasonable results for quite complex
systems, see [77,163] and references therein. In general,
the question of conserving approximations for propaga-
tors and selfenergies combined with the Ansatz is not
answered in a completely satisfactory way.

4 Reconstruction equations and corrections
to the Ansatz

Now we will turn our attention to the second possibility
of how to look at the perspective of the Ansatz in the
description of a system dynamics: To understand the

123



782 Eur. Phys. J. Spec. Top. (2021) 230:771–808

limitations of the Ansatz, its possible generalization,
and its relation to transport theories on a more funda-
mental level, it is natural to return to the analysis of
the full Reconstruction Equations (RE).

4.1 The Ansatz by itself: the first term of
reconstruction equations

Let us now first concentrate on the properties of the
Ansatz itself in the case of closed systems.

First, what really matters for its use is the causal
structure of the Ansatz, consistent with the causal
structure of the NEGF, the feature by which it differs
from the original KBA. Here, we will thus deal with the
class of the so-called causal Ansatzes. Following [72] we
will call them causal Ansatzes if they have the following
characteristics common with the GKBA (the Ansatz):

� causal structure.
� particle-hole symmetry.
� the correct equal time limit.
Second, we can immediately see from the reconstruc-

tion equations that the Ansatz is exact for the free
particles or for effectively free particles described by
Hartree–Fock (HF) mean field in the case of closed (or
bulk) systems for which NEGF were originally designed.

In the case of the HF mean field (in the case of closed
systems), the selfenergy has only the HF term, which
is time diagonal, therefore both vertex corrections in
the reconstruction equations are zero and the Ansatz is
thus exact.

The question arises what happens when interactions
are involved. In this case, we have to discuss the proper-
ties of the two vertex corrections in the reconstruction
equations. It is apparent that the importance of these
corrections depends on the time behavior of the self-
energies. As we have already seen, the two corrections
have a very different nature: one can be viewed as easily
treated by introducing some quasiparticle description,
the second, the irreducible one, is more difficult to treat.

It is obvious, however, from the above that the
Ansatz could be valid for systems where interactions
will lead to some free-particle-like behavior. Therefore,
people started (especially the group of H. Haug) to
check Ansatz on the phenomenological level using some
trial retarded GF [140–146,148]. Later on efforts in this
direction led to the formulation of the non-equilibrium
quasiparticles and quasiparticle causal Ansatz [65,67,
72,174,176], which will be discussed later.

It is necessary to point out here again that the Ansatz
behaves differently in the case of closed and open sys-
tems. As mentioned above already, in the case of open
systems, the additional selfenergy enters the scheme
(for an example, see Sect. 8) even if the whole system
and reservoirs are non-interacting. Therefore, the ver-
tex corrections are non-zero even in the non-interacting
case and the Ansatz is thus never exact in the case of
open systems.

The properties of the Ansatz can be summarized as
follows (separately for closed and open systems):

� Closed systems: the Ansatz is exact up to the mean
field.

� Open systems: due to the environment, the Ansatz
is not exact even in the mean-field approximation.

In addition there is, of course, still a difference
between systems without and with interactions. In the
case of interactions, the quality of related selfenergy
decides the quality of the approximation by the Ansatz.

We will now further discuss the validity of the Ansatz
from the point of view of approximation of the RE.

4.2 Reconstruction equations, Ansatz, perturbation
schemes and Ward identities

To proceed further with the analysis of possible approx-
imations of reconstruction Equations (RE), let us look
at the meaning of the Ansatz from the point of view of a
perturbation scheme. When we look at two vertex cor-
rections to the Ansatz in the reconstruction equations
(27) we can conclude that there is the twofold mean-
ing of the Ansatz as the first term of the perturbation
scheme:

� A small parameter is the strength of interaction—
the reason for this view is that the Ansatz is exact for
free particles, so corrections will depend on the strength
of interactions.

� A small parameter is some characteristic time—
this derives from the fact of the time structure of the
correction terms, which in turn are dependent on the
time structure of selfenergies.

The interplay of these two perturbation schemes
decides about the quality of the Approximation by the
Ansatz.

4.2.1 Reconstruction equations and selfenergy
approximations

The Ansatz is constructed in such a formal way that,
on itself, it seemingly does not depend on the selfen-
ergy. However, since Σ = Σ[G], when we introduce
the Ansatz into the selfenergy, we can ask how the
approximation of the RE by the Ansatz or its possi-
ble generalization is consistent with the selfenergy. This
brings us also to the question, how the single particle
and many particle level of the description (described in
the Dyson equation (DE) by selfenergy) is consistent in
non-equilibrium situations. Thus let us turn our atten-
tion towards the discussion of non-equilibrium Ward
identities as they were formulated in [177]. They are, as
we will see, closely related to the reconstruction equa-
tions.

4.2.2 Non-equilibrium Ward identity

The Ward identity plays an important role as a con-
sistency check of approximations on the one and two
particle levels. At the same time, it is necessary for the
conservation of the number of particles [60,71,220–225].

We will now introduce the non-equilibrium version of
the Ward identities as they were derived in [177]. The
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non-equilibrium Ward identity reads:

Δ(t, t′; t×) ≡ δ

δU(t×)
Σ(t, t′) = −iΣ(t, t′) · η(t, t′; t×)

η(t, t′; t×) = ϑ(t − t×)ϑ(t× − t′) − ϑ(t′ − t×)ϑ(t× − t)
(28)

This non-equilibrium generalization of the Ward iden-
tity provides a relation between the single-particle self-
energy Σ and the two particle transport vertex, so it is
important for an evaluation of the approximations used
in building up the NEGF quantum transport theory.

The Ward identity thus provides a more rigorous
framework for the task of weighing the reliability of var-
ious Ansatzes. It is obvious that the standard GKBA
literally taken will be suffering from taking the vertex
corrections insufficiently into account, since it does not
fulfill the Ward identities [177]. We will now shortly
comment on it.

The virtue of the Ward identity (28) valid for the spe-
cial case of spatially homogeneous fields is to reduce the
three-terminal vertex to the two-terminal selfenergy;
the three-point structure is imposed by the scalar func-
tion η(t, t′; t×). The functional derivative of G has the
same structure for homogeneous fields; the last equa-
tion thus reduces to [177]

G(t, t′)η(t, t′; t×) = iG(t, t×)G(t×, t′)η(t, t′; t×)

+
∫ ∫

dt̄d¯̄tG(t, t̄)Σ(t̄, ¯̄t)η(t̄, ¯̄t; t×)G(¯̄t, t′) (29)

This equation governing the matrix Green’s function
involves one-particle (two-point) quantities only.

The first term of (29) represents the sharp factor-
ization of the NEGF at an intermediate time tx into
two factors: propagation in the past and in the future.
We will call this factorization (for obvious reason) non-
equilibrium semi-group rule (NE SGR).

From the derivation of (29), it is clear that it serves
as a necessary condition for the Ward identity, and
hence, for the particle number conservation. It is valid
for the exact Green’s function as a tautology, but it
also holds for any self-consistent approximation of the
selfenergy. On the other hand a selfconsistent approxi-
mation together with (29) leads to the Ward identity.

There are two different uses of Eq. (29). The tradi-
tional way of using it is to check any particular physical
approximation for its internal consistency, for exam-
ple, to verify that all components of the selfenergy are
treated in a uniform manner.

There is, however, also the second use of Eq. (29),
which represents the important check of an effective
transport theory based on the use of the Ansatz. This
approach to quantum transport is based on a separation
of two “orthogonal” kinds of approximations:

� the underlying physical approximation for the
treatment of interactions, and

� the approximations of the Ansatz type simplifying
the dynamical aspects of the theory with the aim at a
quantum kinetic equation for the single-time OPDM ρ.

The identity (29) judges also this other class of approx-
imations. For this purpose, it is convenient to write the
identity (29) by components.

4.2.3 Ward identity and the Ansatz

Let us first introduce “extended reconstruction” equa-
tions (components of (29)) following [177]; one for the
retarded propagator, the other for the particle correla-
tion function. First, for t > t× > t′, we obtain from (29)
two equations:

GR(t, t′) = iGR(t, t×) · GR(t×,t′)

+

t∫

t×

dt̄

t×∫

t′

d¯̄tGR(t, t̄)ΣR(t̄, ¯̄t)GR(¯̄t, t′)

(30)

G<(t, t′) = iGR(t, t×) · G<(t×, t′)

+

t∫

t×

dt̄

t×∫

−∞
d¯̄tGR(t, t̄)ΣR(t̄, ¯̄t)G<(¯̄t, t′)

+

t∫

t×

dt̄

t×∫

−∞
d¯̄tGR(t, t̄)Σ<(t̄, ¯̄t)GA(¯̄t, t′)

(31)

The first term of Eq. (30) is the composition rule for
propagators (exact for free particles, Eq. (25)), in the
case of Eq. (31) its first term is a “mixed” composition
rule for the product GRG<.

Formally the time t× plays a role of a gliding time
(of initial condition) which divides the past from future
events and vertex corrections in both extended recon-
struction equations just describe a coherence between
the past and the future. As time flows t× can also
change.

Second, for the reverse order of times, t < t× < t′,
another two relations are valid. One is the analogue of
(30) for the advanced propagator GA. The other one, an
equation for G>, is symmetric to (31); we will refer to
them as to (30’) and (31’) without writing them down
explicitly. It should be noted that Eqs. (30) and (30’)
differ from the other pair (31) and (31’). While all are
obtained as the respective components of (29), the for-
mer two can also be derived directly from the Dyson
equations for GR,A.

These equations provide a more rigorous frame-
work for the task of weighing the reliability of various
Ansatzes.

We will now return to the original GKBA (6) and
its link with the Non-equilibrium Ward identity. Equa-
tions (31) and (31’) (components of (29)) can be consid-
ered “extended reconstruction” equations for the par-
ticle correlation function; the reconstruction equations
(27) (where the GKBA represents the free term) are
nothing but a limiting case obtained from (31) and (31’)
by merging the two earlier times, t× → t′ or t× → t
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in the respective limits. We can thus conclude that the
reconstruction equations are consistent with (28), while
the bare GKBA itself clearly is not. To obey the Ward
identities exactly, Green’s functions have to satisfy the
complete reconstruction equations. Any other causal
Ansatz should be constructed so as to approximate the
vertex corrections in the reconstruction equations, and
thus to minimize the inaccuracy of the related Ansatz-
based transport theory.

Using Eq. (31), however, we can see one of the
reasons, why the GKBA transport theory has been
so successful in describing dynamics of some quan-
tum systems. According to (30), G<

GKBA satisfies the
(schematically written) relation G<

GKBA = iGRG<
GKBA +∫∫

GRΣRG<
GKBA for any t×. This is just (31) without

the second vertex correction
∫∫

GRΣ<GA. This correc-
tion is zero, however, for t× > t′′ ≡ t′ + 2τQ + τc. For
the use of quantum transport equations, the long time
asymptotics t − t′ � τQ, τc, is decisive, and in this
time region G<

GKBA is exact except for the presumably
narrow interval t′′ > t× > t′.

4.3 Approximations for vertex corrections

Up to now, two ways were suggested, how to include
at least some approximation of the vertex corrections,
which are numerically tractable in a reasonable manner:
to use either the Quasiparticle Generalized Kadanoff–
Baym Ansatz (QGKBA) [65,67,72,174,176], or the
steady-state approximation (CGKBA) of RE [180,181].

4.3.1 Quasiparticle Ansatz

The introduction of the QGKBA was originally moti-
vated by an additional approximation for the propaga-
tors used in the GKBA. They have always been replaced
by a simplified form suppressing the short time forma-
tion process (decay of initial correlations). This expe-
rience resulted into the introduction of the QGKBA
[65,67,72,174,176].

G<(t1, t2) = −GR
QP(t1, t2)ρ(t2)+ρ(t1)GA

QP(t1, t2) (32)

This has led to a basic question, how to define quasi-
particles out of equilibrium. The motivation is to mimic
the free-particle behavior (when the Ansatz is exact)
and thus to define quasiparticles through an approxi-
mate semi-group property similar to the exact multi-
plication rule (25) for free particles. The quasiparticle
approach is justified in the case that the decay of cor-
relations is much faster than any other physical pro-
cess in the system [65,67,176]. A formal definition of
non-equilibrium quasiparticles based on a multiplica-
tive semi-group property

GR
QP(t, t′) = iGR

QP(t, t×) · GR
QP(t×, t′) t > t× > t′

(33)

was introduced in [176]. This multiplicative law is
(similarly like in the case of the GKBA) closely

linked with the Ansatz factorization, so the relation-
ship quasiparticle—Ansatz seems obvious, but the basic
proof is missing.

When the quasi-particle picture is used, the renor-
malized QCR can be satisfied almost exactly. If the
quasi-particle picture and the QGKBA is valid, the
polaron term of the reconstruction equations (RE)
(27) is suppressed. The irreducible vertex, however,
still remains untreated. Incorporation of this term
by a proper renormalization of quasi-particle propa-
gators accounting for particle interactions could be
made by possible renormalized quasiparticle gener-
alized Kadanoff–Baym Ansatz (RQGKBA) [67,176]
which will treat properly both vertex corrections.
Meanwhile, there is always the option of treating these
corrections in a phenomenological way. This has met
with practical success already [1,62,140–146,148]; of
course there is the problem of adjustable parameters
selected ad hoc.

4.3.2 Steady-state correction of RE

To formulate the steady-state correction to the RE, let
us assume a free relaxation of a non-equilibrium sys-
tem to a steady state out of equilibrium. In the steady
state, we are able to directly obtain the true G< in
the energy representation, and G<

GKBA as well. Here,
we introduce the subscript GKBA to distinguish the
approximate G<

GKBA from the exact G<. Then, we may
define

F∞(E) = G<(E) − G<
GKBA(E)

F∞(τ) = G<(τ) − G<
GKBA(τ) (34)

where the single-time F∞(τ) is the Fourier transform
of F∞(E). Similarly, we define

F(t, t′) = G<(t, t′) − G<
GKBA(t, t′) (35)

Clearly,

F(t, t′)
t→∞
t′→∞−→ F∞(t − t′) (36)

As the simple approximation for the vertex correc-
tions in the RE we propose here is to extend the asymp-
totic coincidence, Eq. (36), also to finite times and write

F(t, t′) ≈ F∞(t − t′) (37)

By this step we will approximate at the same time
both, quasiparticle and irreducible, vertices. Thus we
obtain another variant of the family of causal Ansatzes,
the so-called corrected GKBA (CGKBA)[180,181]:

G<(t, t′) ≈ G<
GKBA(t, t′) + FR

∞(t − t′), t > t′ (38)

We will comment on how this approximation works
in the case of a molecular bridge model in Sect. 8.
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5 Quantum transport theory

We will now return to the central task of this text:
construction of closed equations for one-particle den-
sity matrix (OPDM) ρ, simplified quantum transport
equations for various quantum systems (either kinetic
equations or generalized master equations) based on the
Ansatz approach. We will now summarize possibilities
how to proceed with the construction of effective trans-
port theories based on the use of reconstruction equa-
tions.

5.1 Reconstruction theorem

Let us first consider how to use the reconstruction equa-
tions (27) to reconstruct the full double-time correlation
function G<(t1, t2) from the propagators and a single-
time quantity ρ(t).

Looking at the reconstruction equations we can see
that the whole scheme of solving the equations of
motion for the NEGF can be expressed by the following
cyclic reconstruction scheme:

ρ

GKBE

−→

←−

G< RE
↑ ↓

GR,A DE
(39)

This scheme consists of the following steps of the iter-
ative process, which starts in the right hand panel:

� The propagators are readjusted to the newly input
OPDM ρ,

� then the correlation function G< is expressed in
terms of this OPDM and the propagators.

� All these quantities enter the left-hand panel and
they generate next iteration for ρ.

This process guarantees the self-consistency between
the propagators and the density matrix and thus it
results in a consistent form of the reconstruction equa-
tions for G<. This reformulation of the whole NEGF
equation system offers no practical advantage over a
direct solution of KB equations or the Dyson equations
for the NEGF.

This scheme, however, reveals a privileged role of ρ
and can be reformulated in the form

ρ � {GR, GA, G<} (40)

This is a bijective relationship between the full
double-time Green’s function and a single-time single-
particle density matrix. This has been called the recon-
struction theorem in [65,67,72,175].

5.2 Approximations of the reconstruction theorem

It is very difficult to carry out the complete reconstruc-
tion cycle in a real situation, and we need to approxi-
mate this cyclic scheme at some level. By keeping only
the first (free) term of the reconstruction equation (27),

we resort to the GKBA decoupling, which simplifies the
cycle (39) to the following scheme:

ρ

GME

−→ ΣR,A[ρ]

←− GKBA

GR,A

DE
(41)

Here, the correlation function G< is eliminated explic-
itly in favor of the propagators, and the cyclic process
becomes practicable. Its use is conditional on validity
of the GKBA. Clearly, this does not preclude the possi-
bility of some alternative Ansatzes leading to modified
schemes of the (41) type, perhaps with more favorable
properties or a wider validity range.

One of the possibilities is to use the steady-state
Ansatz (CGKBA) (38). The whole process of solving
the equations of motion for the NEGF then follows the
cyclic scheme:

ρ

CGME

−→ ΣR,A[ρ]

←− CGKBA
↖ F

GR,A

DE
(42)

It is no more difficult to solve the equation system
entering this cycle than to run the GKBA cycle (41)
proper. Namely, as indicated in the scheme, the approx-
imate vertex correction enters the cycle from outside
and is known beforehand.

We shall still return to the question of validity ranges
of various Ansatzes in the concluding remarks.

5.3 Fluctuation–dissipation theorems

We will now deal with the NEGF fluctuation–dissipation
theorem (FDT) [71,72,179]. The equilibrium version
of the NEGF FDT, which is, as we will see below,
in fact the identity connecting propagators with cor-
relation function, was a basic motivation already for
Kadanoff and Baym on their way to the KBA and quan-
tum Boltzmann equation [45]. They generalized this
identity to the non-equilibrium situation by introduc-
ing their KBA as an approximation, which led to the
successful derivation of the quantum Boltzmann equa-
tion from NEGF equations of motion. It thus became
obvious that the non-equilibrium version of the NEGF
FDT represents an important part of the formulation
of the quantum transport theory based on approxima-
tions of NEGF equations of motions. Ever since it has
played the vital role in the NEGF description of the
dynamics of non-equilibrium systems. It has been suc-
cessfully used not only for the formulation of various
approximations, but it has been also shown to be valid
for advanced approximations (as DMFT) used in com-
plex correlated systems [23,71,179,183].

Before going to non-equilibrium FDT, we will first
introduce the NEGF FDT in equilibrium.
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5.3.1 Fluctuation–dissipation theorems and Ansatzes in
equilibrium

Fluctuation–dissipation and fluctuation theorems are
known to mirror special properties of systems in ther-
mal equilibrium and stationary states. They have been
extensively used to describe equilibrium properties of
systems and their linear response. In addition, they
can indicate how systems thermalize and in which way
reach the steady states [23,65,71,88,89,95–98,100,102,
107,108,179].

In equilibrium, as in any stationary state, the sys-
tem is homogeneous in time, all NEGF depend thus
only on the difference of times and all functions can
be thus written in the spectral (energy) representation.
Therefore, we can rewrite the correlation function in
the form:

G<(1, 2) = G<(x1, t1, x2, t2)=G<(x1, t1−t2, x2, 0)
≡ G<(x1, x2; t = t1 − t2) (43)

G<(x1, x2;E) =
∫

dt exp(iEt)G<(x1, x2; t). (44)

If we introduce, following Eq. (3), the spectral func-
tion A(1, 2) = i (G>(1, 2) − G<(1, 2)), the equilibrium
correlation function satisfies the following identity:

G<(x1, x2;E) = ifFD(E)A(x1, x2;E) = fFD(E)

×[−GR(x1, x2;E) + GA(x1, x2;E)]
(45)

Here, fFD denotes Fermi–Dirac function. This identity,
which connects, in terms of GF, the fluctuation and
dissipation features of the system, is the well-known
Green’s function fluctuation–dissipation theorem. We
can immediately see that the identity (45), in its first
form, is resembled by the KBA factorization (7), and in
the second form, by the GKBA (6). As hinted already
in the footnote 3, the relation (45) is exactly the iden-
tity which motivated the introduction of the KBA,
which can thus be also viewed as a near equilibrium
approximate generalization of the NEGF fluctuation–
dissipation theorem essential for the derivation of quan-
tum transport equations for near to equilibrium sys-
tems. The GKBA represents further improvement of
the approximation of the FDT out of equilibrium. It
should be warned, however, that even in equilibrium
FDT alone is not sufficient for deriving an Ansatz. For
this, the additional requirement of sharp quasiparticle
resonances in the spectral density is necessary, because
only then the function of energy fFD(E) can be replaced
by a constant fFD(EQP) = ρQP as required by the
Ansatz factorizations. For the validity of an Ansatz is
thus the equilibrium state in itself not exceptional.

5.3.2 Non-equilibrium FDT and reconstruction equations

We will now connect the above-mentioned reconstruc-
tion procedures with a generalized NEGF non-equilibrium

(NE) fluctuation dissipation theorem (FDT) [179]. The
scheme (39) indicates in which sense the NE FDT
could be understood in general. This is, in fact, equiva-
lent to the Reconstruction Theorem: in the reconstruc-
tion cycle all ’less’ quantities should be eliminated by
expressing them in terms of the one-particle density
matrix (OPDM) ρ and the propagators. This reduc-
tion of the necessary independent information in prin-
ciple, play the role of the NE FDT. Without technical
means for achieving such reduction, the whole “the-
orem” would be of a little additional value since we
could just recall the reconstruction theorem. This sit-
uation just reminds us of the difference between the
Runge–Gross existence theorem of the time-dependent
density functional (TDDFT) [10] and the limits of the
practical use of the TDDFT scheme [17].

However, we can, following [179], use the FDT to for-
mulate precisely the statement representing an exten-
sion of the FDT out of equilibrium:

Non-equilibrium fluctuation–dissipation the-
orem
The information contained in the propagators
{GR, GA} and the OPDM ρ specifies the com-
plete NEGF {GR, GA G<} of a given system in the
parameter area and in the time range for which the
Ansatz factorization (6) holds.

We may express this result also by saying that under
favorable conditions, we may go from the full descrip-
tion in terms of two independent two-time correlation
functions to a shortened, one and a half (i.e., two-time
and single-time) description, which is on the level of an
effective transport theory based on a quantum trans-
port equation for OPDM ρ. In principle, under some
conditions, by iteration we could get an improved quan-
tum transport equation.

5.4 Tentative appraisal of the Ansatz

Before entering the problem how to incorporate com-
plex finite-time initial conditions into the Ansatz-based
NEGF treatment, a few lines recapitulating properties
of the Ansatz may be useful. No doubt the Ansatz has
been used to facilitate or even make possible a numer-
ical solution of a number of problems. As a rule, there
has been no independent way of assessing the results
except of comparing them with experimental data.5 It
remains nothing else but to check the properties of the
Ansatz in general, and for a specific problem. We have
to single out the original GKBA, in which all entering
quantities are strictly related to the true NEGF, and
for example, the spectral identity has a strict meaning.
It is then possible to verify even some fully quantitative
criteria. An interesting example is the study of spectral
moments for the Falicov–Kimball and Hubbard models
in a time-dependent electric field [19]. In applications,

5 That may be changed in the future, at least for certain
problems, for which a fast algorithm of a direct solution of
the KB equations was reported in Ref. [226].
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GKBA as such is usually modified to one of the causal
Ansatzes specified by the choice of model propagators,
as discussed at length above, and the testing of basic
properties is concerned with the internal consistency of
the model[76,77,157,163]. There is one universal and
basic requirement stated already when τ� was defined
by Eq. (11): τ�  all global and external characteris-
tic times. We shall see in Sect. 8 an example, how the
Ansatz completely fails, if this condition is not satisfied.
This still leaves a broad field of problems for which the
Ansatz route is suited.

6 NEGF and finite-time initial conditions

Up to now, we dealt with the case when initial condi-
tions did not play a decisive role in the description of the
system dynamics, so we could use the Keldysh approach
to the NEGF formalism. Complex initial condition (cor-
related initial state) can play an important role, e.g., in
the fast transients processes and it is thus inevitable
to include a correlated initial condition into the NEGF
method. There is a long history of the inclusion of the
correlated initial state into the NEGF method [227–
234].

In general, differential equations of motion for NEGF
have to be supplemented by initial conditions. This
includes the initial time tI and the (many-body) ini-
tial state. A particular, but often used, initial condi-
tion is an uncorrelated one. This permits to develop
a perturbation series for the NEGF for times t, t′ ≥ tI
to take account of the interactions. The correlated state
only develops gradually during an initial period of time,
an unrealistic feature. To overcome this, several strate-
gies have been used. In general, there are two comple-
mentary groups of approaches, we can call them syn-
chronous and diachronous [113,209]. In the synchronous
treatment, the initial condition is specified by the com-
plete knowledge of the correlation function G< at the
finite initial time tI. This means that all higher correla-
tion functions and related perturbation scheme to sim-
plify NEGF equations are involved. Diachronous treat-
ment on the other hand follows natural evolution of the
system and takes an initial state as an outcome of the
preparation period of evolution before the measurement
starts at some initial time tI and the initial condition is
represented by only single-particle quantities. This, of
course, assumes the knowledge of single-particle charac-
teristics for some time during the preparation evolution.
We will now mention some representatives of these two
classes of approaches specifically.

Keldysh: The simplest idea, following the original
Keldysh procedure, is to start from an uncorrelated
state at a time t0 → −∞ preceding thus tI, and
to turn the interactions on adiabatically. Then our
process will start from the resulting correlated state
at the original finite initial time tI.

Kadanoff–Baym: The widely used procedure expanding
on the seminal concept introduced by Kadanoff and

Baym is to augment the real-time Schwinger loop
delimited by tI by an imaginary stretch [tI, tI − iβ]
along which the systems develops Matsubara style
from the uncorrelated state to the correlated one.
The NEGF and the selfenergies are defined on the
extended loop and this transfers the correlations
also to real-time arguments. This approach has been
authoritatively worked out by Danielewicz [230] and
generalized by Wagner [45].

Kremp group: They have based their approach on adding
initial correlation contributions to selfenergy. This
approach, which has been developed and improved
over years, is based on the principle that initial
condition should be consistent with the approxima-
tion of the NEGF [158,159,164,232,235–237]. A full
treatment under the name of Generalized Wick The-
orem is given in [71,238].

Our approach: We came up to this problem from a
rather different angle and introduced the so-called
time partitioning method which enables to intro-
duce a correlated initial condition into the NEGF
equations in a natural way by first splitting time
line into the past, present and future times and sec-
ond, to propagate Green’s functions from infinite
past using Keldysh approach and to use the created
correlated state at a finite time (the present) as an
initial condition for future evolution [67,72,113,178,
209].

Despite of all these efforts, it has remained unclear
how to combine properly the GKBA-based approach to
transport for the case of initial correlated conditions.
In other words, there is a question, how the Ansatz can
be used on the whole Keldysh loop. This is, first of all,
also closely related to the following observation: when
system changes suddenly, Ansatz cannot be valid due
to the change of propagators: which propagator are we
supposed to use?

6.1 Ansatz and initial condition

The thoughts about how to include properly an initial
condition into the NEGF transport theory have been
followed by considerations how to use the Ansatz just
from the beginning of the non-equilibrium situation.
Recently, four different approaches have been suggested
for answering this persistent question:

Tuovinen et al: They decided to introduce the full many
body selfenergy into the NEGF transport equa-
tion, and then to use the GKBA Ansatz where
HF retarded Greens functions are used. They then
develop equilibrium correlated state and compare it
with the result provided by the use of the GKBA
[182].

Verdozzi et al: They use the GKB Ansatz to determine
an equilibrium correlated state without using the
procedure of an adiabatic switching-on of the corre-
lations for its preparation [183].
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Van Leuween et al: Using a standard procedure, they
first formulate NEGF transport equation for single-
time one-particle density matrix ρ which contain
two scattering integrals, one of which, the IC inte-
gral, contains information about initial condition.
They then show that this IC integral can be
expressed in terms of real-time NEGF and they
use the GKBA in this scattering integral [184].
Recently, they applied this technique combined with
partition-free approach to dynamics of molecular
junctions [173].

Bonitz et al: They first used the older idea to include
initial correlations into the selfenergy and thus to
formulate additional scattering integral which con-
tains finite initial condition time t0. They then intro-
duced the GKBA to this collisional integral accord-
ing to a standard GKBA scheme to transport equa-
tions [76,77,157].

6.2 Partitioning in time approach to initial
conditions

The partitioning in time was developed as a device for
handling a natural finite-time initial condition, that is
the correlated initial condition generated in the course
of a Keldysh process [67,113,178,209].

The time domain of a Keldysh process is divided into
two parts: the initial preparatory period lasting from
the distant past t0 → −∞ to a selected finite initial
time tI, and the following observation (measurement)
stage. The whole time line of the process is thus split
into the past and the future with respect to the cho-
sen finite initial time tI. Correspondingly, the double-
time quantities treated as matrices may be split into
partitions with a common corner point (tI, tI) of their
time domains: the past t ≤ tI, t′ ≤ tI, the future
t ≥ tI, t′ ≥ tI, and two off-diagonal blocks. Introducing
the corresponding projectors and applying the standard
projection technique to the integral equation of motion
(EOM) for the Green function, we obtain their trans-
form for the partitions. As an example, the Dyson equa-
tion for the GR propagator has the following future-past
block:

GR(t, t′) = iGR(t, tI) · GR(tI, t′)

+
t∫

tI

dt
tI∫

t′
d¯̄tGR(t, t̄)ΣR(t̄, ¯̄t)GR(¯̄t, t′) t ≥ tI ≥ t′

(46)

A few comments: The equation is a renormalized semi-
group multiplication rule for the full propagator. The
renormalization consists in smearing the multiplication
point over the actual integration range in the second
line. Since t ≥ ¯̄t ≥ tI ≥ t̄≥ t′, it follows that the spread
of the integrand cannot exceed a few τ� around tI, cf.
Eqs. (11) and (63) below and the discussion there. Typ-
ically, it is expected to be small.

This equation is a special case, for t× = tI, of Eq. (30),
which was obtained and used in an entirely different

context of the reconstruction equations, and t× was a
floating variable.

Our main concern is the relevant part of the whole
Keldysh process, the future partition starting at tI. It
may be considered a process embedded in the whole
host Keldysh process. By partitioning, it may be con-
verted into a self-contained “measurement process”
with the time domain coinciding with the future par-
tition of the host process. The Green’s function will
remain the same, while the EOM will be changed to
incorporate the correlated initial condition, reflecting
in turn the whole history contained in the past parti-
tion of the host process.

The resulting equations will now be conveniently pre-
sented by components of the NEGF.

First, the EOM for the propagators retain their form.
This is evident without the projector technique from
the Dyson Equation (DE) for GR,

GR(t, t′) = GR
0 (t, t′)+

t∫

t′

dt

t∫

t′

d¯̄t GR
0 (t, t̄)ΣR(t, ¯̄t)GR(¯̄t, t′)

(47)

Once t′ > tI, the same is true for all times entering
Eq. (47). Similar reasoning holds for GA. The selfener-
gies belong to the host process, of course, and typically
will transmit the influence of the past which soaks in
through their self-consistent dependence on the com-
plete NEGF.

The less-component of the Dyson equation (DE), in
contrast, has the form

G<
tI (t, t

′) =

t∫

tI

dt

t′
∫

tI

d¯̄t GRΞ<GA, t ≥ tI, t′ ≥ tI ,

(48)

which differs from the DE for the host process, usual
G< = GRΣ<GA in two respects, the lower integra-
tion limits are tI compared to t0 and the host selfen-
ergy Σ< is supplemented by additional terms respect-
ing the missing contribution of the history preceding tI,
in other words taking the correlated initial condition
into account:6

Ξ< = ◦Σ
<
◦ + ◦Σ

<
• + •Σ

<
◦ + •Σ

<
• . (49)

The four selfenergy terms have a varying degree of sin-
gularity at the initial time. The open circles indicate a
time variable fixed at tI, the filled ones a time variable
continuous in (tI,∞). From the rear, the •Σ

<
• term

resembles most closely the usual selfenergy, being com-
posed of two regular functions of t, t′, namely the host

6 the following decomposition of selfenergy is exactly of the
form first given by Danielewicz in [230]. ◦Σ<

• and •Σ<
◦ in

(49) are his famous Σc and Σc.
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selfenergy Σ< and an additional regular function:

•Σ
<
• = Σ<(t, t′) +

�

ΣtI
< (t, t′). (50)

The •Σ
<
◦ and ◦Σ

<
• contain one δ function:

•Σ
<
◦ (t, t′) = Λ<

o (t, tI)δ(t′ − t+I ),

◦Σ
<
• (t, t′) = oΛ

<(tI, t′)δ(t − t+I ), t+I = tI + 0 ,

(51)

Finally, there is the ◦Σ
<
◦ term,

◦Σ
<
◦ (t, t′) = iρ(tI)δ(t − t+I )δ(t′ − t+I ) (52)

which clearly has a special position. It reflects the ini-
tial correlations by the resultant one-particle density
matrix (OPDM) ρ only, but it would survive even in
the uncorrelated case, as will be demonstrated immedi-
ately.

Before that, we show on one example the actual struc-
ture of the selfenergy terms in (49). For Λ<

o (t, tI), we
have

Λ<
o (t, tI) = −i

tI∫

t0

dt
{
Σ<(t, t)GA(t, tI) + ΣR(t, t)G<(t, tI)

}
.

(53)

Clearly t ≤ tI, which means that t − tI = O(τ�), as
follows from Eq. (11). The same repeats for all other
terms of Ξ<. The time arguments t, t′ are either equal
to tI or do not depart from it by more than a quantity
on the order of τ�. The importance of this result will be
made apparent in further analysis. To remind, similar
behavior was found for Eq. (46), although the physi-
cal meaning was different. Altogether, these are various
manifestations of the Bogolyubov principle of the decay
of correlations.

6.2.1 Keldysh uncorrelated initial condition

It is illuminating to treat the finite-time uncorrelated
initial condition as a limiting case of the general pro-
cesses specified by Eqs. (48 and 49). All that means that
the uncorrelated selfenergy Ξ< has only two terms:

Ξ<
U (t, t′) = iρ(tI)δ(t − t+I )δ(t′ − t+I ) + Σ<(t, t′). (54)

In addition, we should set ρ(tI) = ρ0(tI), that is use the
unperturbed initial particle distribution. As concerns
Σ<(t, t′), it belongs to the host process, but the past
period of the process consists of keeping the system
unperturbed in the initial uncorrelated state, so that
Σ<(t, t′) in the past is zero. The particle function then

reads

G<
U(t, t′) =

t∫

tI

t′
∫

tI

dtd¯̄t GR(t, t)Ξ<
U (t, ¯̄t)GR(¯̄t, t′). (55)

The integral consists of two terms; the first one can be
given two different forms. Either the integrals of the δ
functions are performed:

G<
U(t, t′) = GR(t, tI)ρ0(tIGA(tI, t′)

+

t∫

tI

t′
∫

tI

dtd¯̄t GR(t, t)Σ<(t, ¯̄t)GA(¯̄t, t′).

(56)

The first term describes the coherent evolution and a
gradual decay of the initial condition. In the long time
limit (at the kinetic stage of evolution), this term will
die out and only the second term will survive.

The other form of Eq. (55) is better to be written in
the symbolic form. Using the Dyson equations for the
propagators and introducing

G<
0 (t, t′) = GR

0 (t, tI)ρ0(tI)GA(tI, t′), (57)

we get

G<
U = (1 + GRΣR)G<

0 (ΣAGA + 1) + GRΣ<GA. (58)

This is immediately recognized as the famous Keldysh
form of the particle (“less”) function for a finite-time
uncorrelated initial condition [50,62].

6.3 Reconstruction equations with initial conditions

Equations (47) and (48) can be transformed, similarly
as in the case of Dyson equation (DE) without corre-
lated initial conditions, to the reconstruction equations.
Initial conditions lead to the following modification of
the reconstruction equations [67,178]:

G<(t, t′) = −GR(t, t′)ρ(t′) t ≥ t′ ≥ tI

+

t∫

t′

dt

t′
∫

tI

d¯̄tGR(t, t)ΣR(t, ¯̄t)G<(¯̄t, t′)

+

t∫

t′

dt

t′
∫

tI

d¯̄tGR(t, t)Ξ<(t, ¯̄t)GA(¯̄t, t′) ,

G<(t, t′) = ρ(t′)GA(t, t′) + · · · t′ ≥ t ≥ tI (59)

As we can see immediately, the initial condition enters
explicitly only the vertex corrections, so that the form
of the Ansatz remains unchanged.

123



790 Eur. Phys. J. Spec. Top. (2021) 230:771–808

6.3.1 Ward identities

The Ward identity plays, similarly as in the case already
discussed, an important role as a consistency check of
approximations on the one and two particle levels also
in the case when complex initial conditions are involved.
At the same time, it is necessary for the conservation of
the particle number. The Ward identity can be derived
also for the correlated initial conditions and it has for-
mally the same structure as in the case without initial
conditions [67].

7 Initial conditions and transport equations

The starting point on the way from the double-time
NGF to single time transport equations is the general-
ized Kadanoff–Baym Equation. We have already intro-
duced the GKBE for the special case of Keldysh initial
conditions (15). Before we discuss transport equations
proper, we need to consider the influence of the initial
condition on the generalized Kadanoff–Baym equation
(GKBE) and the precursor quantum transport equation
(PQTE).

7.1 GKBE with initial conditions and PQTE

Similarly as we derived GKBE (15) in the special case
of Keldysh initial conditions, we can derive its general-
ization:

G−1
0 G< − G<G−1

0 = ΣRG< − G<ΣA

−GRΞ< + Ξ<GA. (60)

This differential equation, the GKBE with initial con-
ditions, already has a structure closely related to trans-
port equations. The four terms on the r.h.s. represent
the generalized collision terms. This equation, how-
ever, differs from a common transport equation in two
aspects: (1) it has the double-time structure and (2) it
includes the initial conditions via the selfenergy Ξ<.

To discuss the effect of initial conditions, we need
to rewrite GKBE into the form with collision integral
terms explicitly corresponding to the host process and
to the initial correlation terms. Thus, using (49) and
(50), we will split the selfenergy Ξ< into the selfenergy
Σ< of the host process and the remainder Θ<

Θ<
tP = ◦Σ

<
◦ + ◦Σ

<
• + •Σ

<
◦ +

�

ΣtP
< ,

�

ΣtP
< (t, t′) = •Σ

<
• − Σ<.

Using this decomposition, we can rewrite Eq. (60) into
the following form:

G−1
0 G< − G<G−1

0 = ΣRG< − G<ΣA

−GRΣ< + Σ<GA

−GRΘ<
tP + Θ<

tPGA. (61)

Having the GKBE (61), we can immediately get the
precursor transport equation (PQTE), which is the gen-
eralization of (16) (for the Keldysh initial condition) to
the correlated finite-time initial conditions

∂ρ

∂t
+ i [ h0(t), ρ ]− = (ΣRG< − G<ΣA)t1=t=t2

−(GRΣ< − Σ<GA)t1=t=t2

−(GRΘ<
tP + Θ<

tPGA)t1=t=t2 .

(62)

We will now proceed on the way to derive a closed sim-
plified transport equation for the one-particle density
matrix (OPDM) ρ.

7.2 Time structure of selfenergy and PQTE

Our aim is to derive the common transport equations.
This means equations which describe the stage of the
system evolution when initial correlations do not play
an important role. The natural question is what are the
conditions which enable us to neglect the selfenergy Θ<

in (62) (the last two generalized collision terms in this
equation) and this equation will thus turn to the PQTE
(16) already discussed.

To proceed further to this aim, it is natural to make
two assumptions:

� We assume to describe evolution for times when the
system is already in a steady-state condition: external
disturbances do not change or change smoothly and we
follow the system for times which are separated enough
from the time tlast of the last abrupt external perturba-
tion. This enables us to recall the following assumption
about the time behavior of the selfenergy.

� There exists a time τ�, such that

Σ�(t, t′) ≈ 0 for |t − t′| > τ�, � = R, A, > . (63)

This second assumption is a natural one since it cap-
tures in a simple manner the essential feature of a typ-
ical selfenergy to be concentrated along the time diag-
onal, as already hinted in Sect. 2.2, where a physically
motivated definition of τ� was given by Eq. (11).

Let us now notice what are the consequences of these
assumptions for Eq. (62). First, in the collision terms,
which contain Σ, the time integration range is restricted
by the condition (63) to a finite interval (t−τ�, t), which
is the memory depth of the system. Thus, a typical term
of these first and second collision terms in (61) , ΣRG<,
reads

{ΣRG<}(t, t) =

t∫

t−∞

dtΣR(t, t)G<(t, t)

τ�

→
t∫

t−τ�

dtΣR(t, t)G<(t, t). (64)
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For t > tLast+3τ�, the selfenergy in (64) extends already
over the steady/smooth change time span, and while
the turbulent past may be reflected in the values of
G<, it will in no case show in the form of the Precursor
equation (61).

Second, the quick loss of the disturbance memory also
means that the last two generalized collision terms of
Eq. (62) which take the initial conditions into account
explicitly through the selfenergy Θ<, become zero as
the running time t exceeds tLast + 2τ�.

To conclude the analysis, it is enough to wait for just
2τ� past tLast, and the PQTE becomes free of any IC
terms:

∂ρ

∂t
+ i [ h0(t), ρ ]− = (ΣRG< − G<ΣA)t1=t=t2

−(GRΣ< − Σ<GA)t1=t=t2 , t1, t2 > tLast + 2τ�,

(65)

so that it is formally equivalent to the PQTE (16)
derived in Sect. 2.3.

The essential step on the way from the PQTE to an
effective closed transport equation of the GME form for
ρ is the choice of a proper Ansatz.

7.3 Ansatz variants and transport equations

The resulting transport equation depends on the Ansatz
for factorization of G< which approximates reconstruc-
tion equations. We will consider and discuss properties
of only two kinds of Ansatzes, both of them belonging
to the class of the causal Ansatzes:
� The so-called XGKB Ansatzes:

G<(t, t′) = −GR
X(t, t′)ρ(t′)

t > t′
+ ρ(t)GA

X(t, t′) .
t < t′

(66)

� Steady-state XCKBA Ansatzes:

G<(t, t′) = −GR
X(t, t′)ρ(t′) + FR

∞(t − t′)
t > t′

+ρ(t)GA
X(t, t′) + FA

∞(t − t′),
t < t′

(67)

where X stands for the corresponding propagators GR
X ,

GA
X .
Each of these Ansatzes is specified by a particu-

lar choice of the propagators GR
X , GR

X as indicated by
their labels. Various choices include, e.g., free propa-
gators GR,A

0 , several variants of quasiparticle propaga-
tors GR,A

Q or the true, fully renormalized propagators
GR,A

G . As already discussed, free propagators GR,A
0 and

related FGKBA were used in many cases, and espe-
cially in the case of bulk systems also in deriving the
Boltzmann equations. They are also convenient for get-
ting Master equations in the second order weak cou-
pling theory which is equivalent to the Fermi Golden
rule. There are also cases when the Quasiparticle Gen-
eralized Kadanoff–Baym Ansatz (QGKBA), in which

the propagators are represented by the unrenormalized
pole part of the true propagators, works well. The vari-
ants of the CGKBA have been successfully tested in the
case of the molecular bridge models as we will discuss
in the following section.

After we discussed possible Ansatzes, we can now
derive a desired transport equation.

7.4 Derivation of transport equations

To derive a single-time transport equation, i.e., a closed
equation for OPDM ρ (kinetic equation or GME), from
the two time NEGF structure, we have to proceed in
three steps:

First step: On the way to GME we start from the
precursor quantum transport equation (PQTE) (65),
which we can symbolically write in the following form

∂ρ

∂t
− drift = Φ[GR, GA, G<, Σ<], (68)

where drift = i [ h0(t), ρ ]− and Σ< = Σ<[GR, GA, G<].
Second step: A physical approximation is selected,

that is, the selfenergy is composed of the coupling to
reservoirs, the interactions are expressed self-
consistently in terms of the GF, etc.

Third step: The l.h.s. of (68) already has the quan-
tum transport equation form. The r.h.s., however, still
contains a number of double-time quantities, which
have to be eliminated. In this final step, one of causal
Ansatzes (either XGKBA (66) or its steady-state vari-
ant (67))

G< = G<[ρ |GR, GA] (69)

is used to eliminate G< in favor of its time diagonal ρ.
When introduced into the PQTE (68), this leads

finally to the quantum transport equation represented
by a closed GME for ρ:

∂ρ

∂t
− drift = Φ[ρ(τ); τ < t |GR, GA], (70)

The memory kernel at the r.h.s. can be interpreted to be
the generalized collision term. The role of the propaga-
tors is essential: The memory determining the transport
equation (70) is completely specified by the propaga-
tors used in the Ansatz. We can thus clearly see that
the quality with which the above GME describes the
dynamics of the consider systems depends on suitably
selected propagators.

7.5 Towards master equations (from non-Markovian
to Markovian evolution)

During the gradual relaxation, the system evolution
may reach the stage when the change of the density
matrix over the memory depth of the GME is minute,
and it becomes possible to describe the evolution of ρ
by a master equation (ME), adequate for the long time
asymptotics.
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To derive such master equation, it is enough to start
from the already established GME and make the appro-
priate approximations. For the first insight, the sym-
bolic Eq. (70) is suited. The density matrix enters the
r.h.s. in a causal manner, that is back in time from the
present t. Taking into account a limited memory depth
on the order of τ�, assumed throughout this paper, we
may suppose that ρ(τ) changes only little. The simplest
approximation then is to replace it by ρ(t):

∂ρ

∂t
− drift = Φ[ρ(τ); τ < t |GR, GA]

� A.A.

A.A.−→ ∂ρ

∂t
− drift = Φ[ρ(t); τ < t |GR, GA] t − τ = O(τ�)

(71)

By this approximation, the GME is reduced to a dif-
ferential equation for ρ(t). The approximation applies
to ρ(t) as it enters the functional Φ both explicitly, and
also through other components, like through Σ<, cf.
Eq. (69). The whole r.h.s. of (71) then corresponds to
a stationary state of the system frozen at the time t.
This is an adiabatic approximation, as indicated at the
arrows.

An equation having the form of a quantum master
equation can be obtained from GME of a more specific
form; here we use the simplest Eq. (17) derived by an
elementary use of GKBA and we further assume that
the selfenergies are fixed, not self-consistently depen-
dent on the density matrix. Then, for a system with
discrete states labeled by Greek letters, α, β . . ., the
approximation (71) yields

∂ραβ

∂t
+ i(Eα − Eβ)ραβ = Cαβ −

∑

ι,κ

Aαβ; ικ ρικ (72)

Cαβ(t) =

t∫

−∞

dt̄
{〈α|Σ<(t, t̄)GA(t̄, t)|β〉

−〈α|GR(t, t̄)Σ<(t̄, t)|β〉} ,

Aαβ; ικ(t) =

t∫

−∞

dt̄
{〈α|ΣR(t, t̄)|ι〉〈κ|GA(t̄, t)|β〉

−〈α|GR(t, t̄)|ι〉〈κ|ΣA(t̄, t)|β〉} . (73)

The last EOM has the structure of a master equation
with the superoperator A representing the transition
rate matrix. Because it involves not only the rates for
occupation numbers, but also for the coherences, i.e.,
the off-diagonal matrix elements of ρ, it is a quantum
master equation. The C matrix provides the coupling
to the environment—the particle reservoirs. With our
assumptions, C and A are time independent, so that the
process described by Eq. (72) possesses the Markovian
property.

Various improvements and extensions of the pre-
sented way to master equations suggest themselves.

First, the extrapolation procedure for ρ(t) into the past
can be refined. This is quite desirable, as it extends
the validity range of the resulting Master Equation and
improves the fit to the source GME, as will be shown
and analyzed in detail in Sect. 8.3.1 on the example of a
molecular bridge. Second, the time dependence brought
about by an external disturbance, like an oscillating
electric field, should be considered, in order to broaden
the scope of the Master Equation approach, and at the
same time, to put it under a more demanding test. This,
within our technique, has to be done starting from a
field dependent GME again. Generally speaking, our
method of deriving the master equations is a “cheap”
one, as they form the last link in the chain Many-body
system → NEGF → GME → ME. The critical step in
this sequence is the transition from the Green’s func-
tions to the GME, which depends on the validity of
a GKBA-like causal Ansatz and its proper implemen-
tation. The subsequent step to the master equation
consists in sampling the memory of the GME at each
instant t and lumping the needed information forward
in a time-local form entering the ME. It is remarkable
that both these steps have as a feasibility condition the
requirement that the characteristic time of the inter-
nal dynamics, τ�, is the shortest of all characteristic
times, that is, τ�  τ , and τ�  τEXT. The first con-
dition was already introduced in connection with the
definition (11), the second one concerns the external
disturbances and τEXT may typically be the period of
external field oscillations. It is apparent that the tran-
sition GME → ME is gradual and is specific for each
particular problem.

The problem of master equations is still open for
research, as witnessed by recent publications, even of
instructional nature [116], and it would be desirable to
compare our results with some other approach. In this
context, we would like to single out the paper [115].
Its principal aim, simulation of a fermionic reservoir on
a quantum computer, goes far beyond just deriving a
master equation, but the first half of the paper solves
this problem for a particular system formed by electrons
on a 1D tight binding chain whose nodes are individu-
ally connected to fermionic baths. The authors derive
the master equation in both the Redfield and Lindblad
forms, and find the respective solutions in an external
homogeneous oscillating and dc field with a remark-
able success. This could have been judged exactly, as
the model is unique, being soluble in terms of NEGF
[114]. This opens up a special chance, to follow through
our approach for this system, get GME and ME and
make comparisons, both concerning the technique and
the results available.

In conclusion of this discussion, we overstep the self-
imposed limitation of this paper and briefly present a
recent manuscript [25] devoted to the quantum Boltz-
mann equation. The basic point of the authors is that
the QBE can be derived for systems with well separated
time scales, internal and external. In the Wigner rep-
resentation of the NEGF, their assumption means that
for all GF components it holds that |∂tG/G| < 1/δt
and |∂ωG/G| < 1/δω. Here, δt and δω are characteris-
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tic quantities, in terms of which the time scale separa-
tion is justified if δt � 1/δω. This is identical with our
conditions for the master equation, τ, τEXT � τ�. The
authors proceed to show that it is then meaningful to
introduce the distribution function, for a homogeneous
system as Fk(t, ω) = G<

k (t, ω)/Ak(t, ω) with usual def-
initions of G< and A. For this quantity, the quantum
Boltzmann equation can be derived. The resulting scat-
tering integral is suited both for a perturbative and a
nonperturbative treatment.

8 Molecular bridge model

We will now discuss how we can use the NEGF
approach and the Ansatz to develop an effective
simplified transport theory for open nanoscale non-
equilibrium electronic systems. There have been many
studies of non-equilibrium electronic molecular junction
systems, since the importance of these systems has been
increasing from the point of view of theory, experiment
and nanoscale devices. They have enabled to improve
our understanding of ultrafast dynamics of small open
electronic systems and devices based on them, when the
full time description is necessary to describe properly
not only well possible long time steady-state asymp-
totics (after system relaxes), but also initial ultrafast
phenomena (often related to switch on and switch
off processes) and their dependence on the variety of
parameters of these systems and their environment
[113,172,173,193,194,197–199,203–214]. To this end,
simplified models are extremely useful for studying gen-
eral features of these complex non-equilibrium systems
to develop a proper simplified picture of their behavior
in time.

There are two approaches how to describe open
nanoscopic systems:

� Partition-free approach: the initial state is con-
tacted (describing the system and baths together) and
in a thermal equilibrium [202].

� Partitioned approach: the initial state is created by
a sudden or adiabatic switching of contacts between the
system and its surrounding as it was originally designed
in [200,201]. We will further follow this approach.

In this section, we will be interested in dynamics
of a molecular island (a single-level tunneling center)
between two current leads, which are connected to the
central island each by its own (left and right) tunneling
junctions:

left lead bridge island right lead
j

L
j

R

Both leads are modeled as infinite baths of electrons,
which are inert with respect to island’s processes and
are in equilibrium.

This molecular bridge model serves well as a sim-
ple prototype of open nanoscopic systems. Thanks to
the links of the molecular island to the electrodes, this
model mimicks quite well some features of behavior of

many body systems and it is reasonable to treat the
non-equilibrium dynamics of this model by the NEGF
method, which is natural for the description of non-
equilibrium many body systems. The simplicity of the
model provides a possibility to test various approxima-
tions for the equations of motion of correlation func-
tions and for the use of various Ansatzes by comparing
them with the full numerical solution. In particular, this
model can be used conveniently as a testing ground for
Ansatz based transport theories and for the clarifica-
tion of the domains of their validity. Its simplicity also
enables to avoid the commonly used wide band limit
(WBL) approximation.

We start with treating the simplest free-particle
model without any interactions, just to show the effect
of the environment on transport properties.

In the second part, we will deal with the magnetic
molecular bridge: the interaction of spin states will
introduce additional dynamics and limitations on the
use of various approximations.

For the sake of simplicity, we mainly employ here
a simple finite time initial condition (non-correlated
initial state) of the Keldysh type. This permits to
concentrate on the essential features of the molecu-
lar bridge model representing open systems, and the
Ansatz-based transport theory. This model, however,
can conveniently be used also for the studies of relax-
ation dynamics from a natural non-equilibrium corre-
lated initial state [67,113,209,210,212], which is pre-
pared by the partitioning in time method discussed in
Section 6.2.

8.1 Free-particle single-level model

The one-electron Hamiltonian for the bridge model is
taken in its simplest possible form:

H(t) = H0 + H′(t)
H0 = H0L + H0B + H0R (74)

H′(t) = α
L
(t)V

L
+ α

R
(t)V

R
(75)

The three individual Hamiltonians of the structure
parts, left lead H0L, island H0B, and right lead H0R,
are time independent. The couplings between the leads
and the island are specified by time independent oper-
ator amplitudes VL, R coupling the leads to the central
island orbital. All time dependence in the model is con-
centrated into two scalar functions αL, R(t) controlling
the couplings strength and/or their switch on/off state.
For all components of the single-level bridge Hamilto-
nian, we have the following expressions:

H0L =
∑




|�〉ε
〈�|, ε
 = ε̂
 + ΔL,

H0R =
∑

r

|r〉εr〈r|, εr = ε̂r + ΔR,

H0B = |b〉εb〈b|. (76)
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Here, |b〉 is the single electron orbital at the island,
the decay states {|a〉} are further divided between
two complementing orthogonal subspaces of the two
leads: {|a〉} = {|�〉} ⊕ {|r〉}, ε̂
 and ε̂r are the ’bare’
one-electron level in unbiased leads and the level
shifts ΔL, ΔR, correspond to the independently float-
ing grounding of both leads considered as extended elec-
tron reservoirs. Couplings to leads are described by

VL =
∑




|�〉v
〈b| + H. c.

VR =
∑

r

|r〉vr〈b| + H. c. (77)

where the coupling constants v
 and vr are introduced.

8.2 NEGF for the island: partitioning in Hilbert
space

Now, we formulate NEGF equations of motions for the
island dynamics using the partitioning in Hilbert space.
We proceed in three steps:

First, we can easily write free-particle NEGF of the
whole system:

GR(t, t′) = −iS(t, t′)ϑ(t − t′),

GA(t, t′) = iS(t, t′)ϑ(t′ − t) (78)

G<(t, t′) = iS(t, tI)�IS(tI, t′). (79)

Here, S denotes the one-electron evolution operator.
Density matrix

�(t) = S(t, tI)�IS†(t, tI) (80)
i∂tS(t, t′) = H(t)S(t, t′), S(t, t) = 1op (81)

represents a formal solution of the time development
of the bridge specified by the one-electron Hamiltonian
H(t), and by the initial one-electron density matrix �I

(initial OEDM at tI).
Second, we introduce the projection operators

P = |b〉〈b| (82)
Q =

∑

a
|a〉〈a| (83)

1op = P + Q, PQ = 0. (84)

We will than get G�, the NEGF of the island, by the P
projection of the NEGF (79) of the whole system:

G� → PG�P
= |b〉〈b|G�|b〉〈b| ≡ PG�

G� = 〈b|G�|b〉, � = R, A, <
(85)

Third, we will project also the equation of motions for
the NEGF of the whole system. By this procedure and
by shifting the initial time to infinity, tI ≡ t−∞ → −∞.

we will receive the standard integral forms of NEGF
Equation of Motions (EOM)—Dyson equations:

GR = GR
0 + GR

0 ΣRGR, G< = GRΣ<GA (86)

ΣR = 〈b|H′QGR
0 QH′|b〉, ΣA = 〈b|H′QGA

0 QH′|b〉,
Σ< = 〈b|H′QG<

0 QH′|b〉. (87)

G<
0 (t, t′) = iGR

0 (t, t−∞)�−∞GA
0 (t−∞, t′). (88)

The selfenergies are given (using (74) and (75)) by the
following explicit expressions:

Σ�(t, t′) = Σ�
L
(t, t′) + Σ�

R
(t, t′),

Σ�
Y
(t, t′) = α

Y
(t)σ�

Y
(τ)α

Y
(t′),

σR,A
Y

(τ) = ∓i
∫

dE

2π
ΔY (E)e−iEτϑ(±τ),

σ<
Y

(τ) = i
∫

dE

2π
ΔY (E)fY (E)e−iEτ

τ = t − t′, � = R, A, < Y = L, R
(89)

� The whole system is a free-particle system, the
island plays a role of an open system. The selfenergy is
only the result of the projection, it does not describe
any many particle interactions. However, as already
pointed out this selfenergy mimicks quite well the pres-
ence of real interactions.

� All components of selfenergy for the free bridge
model have the form reflecting the presence of two
leads. Each fully connected junction is thus associated
with a spectral function Δ

Y
, which, together with the

quasi-equilibrium Fermi function f
Y
, specifies the Y

selfenergy triplet.

8.2.1 Possibilities of the model for studies of dynamics,
initial conditions

The simplicity of the model offers possibilities to study
basic features of non-equilibrium dynamics of open sys-
tem outside of the steady-state regime. It can be used
in two ways:

1. To solve the full NEGF equations to study the
response to switching the junctions on and off from
very early times after the initial time to long times.
For the purpose of studying the correlated ini-
tial conditions the Hilbert space partitioning can
be combined with the time partitioning method
[113,178,209]. The island connected suddenly to the
leads represents the case of uncorrelated initial con-
ditions, multiple switching of connections between
leads and the island creates correlated initial condi-
tions. The details of the extended period dynamics
of the model and the discussion of various versions of
initial conditions formalisms can be found in [113].

2. To study the range of validity of the Ansatz-based
transport theory—in this case, we use the Ansatz to
generate approximate transport equations for the

123



Eur. Phys. J. Spec. Top. (2021) 230:771–808 795

bridge model following the scheme already intro-
duced (see the previous section). In the following,
we will concentrate on this second task.

8.3 GME for the free bridge model

We will now return to precursor quantum transport
equation (PQTE) (65) and will introduce transport
equation (GME), based on this equation and the use
of causal Ansatzes (66), for the bridge model. Thanks
to the simplicity of the model, the structure of PQTE
simplifies:

First, for this one level model without interactions,
operators entering the PQTE reduce to scalar func-
tions. The Hermitian conjugation then reduces to

GA(t1, t2)=
{

GR(t2, t1)
}∗

, G<(t1, t2)=− {
G<(t2, t1)

}∗
.

(90)

In addition, the drift term on the left hand side of the
PQTE vanishes, as the commutator in (65) is zero.

Second, the model is not self-consistent, therefore, all
parts of the selfenergy (propagators as well as correla-
tion functions) depend only on the properties of leads,
not on ρ, see also (130), therefore, are not subject to
approximations.

Third, we will limit the discussion only to the
simplest possible case of free evolution (relaxation)
of the system from the trivial (non-correlated) non-
equilibrium state, which is created in a very simple way:
the island completely disconnected from the leads up
to a finite time t0 is suddenly connected to both leads
simultaneously at the initial time t0, in correspondence
with the Keldysh initial condition.

We obtain the GME for the bridge model by intro-
ducing a causal Ansatz into the PQTE and using the
simplifications listed above:

∂ρ

∂t
= −

t∫

−∞
dtΣR(t, t)GA

X (t, t) · ρ(t) +

t∫

−∞
dtGR

X (t, t)ΣA(t, t) · ρ(t)

−
t∫

−∞
dtΣ<(t, t)GA(t, t) −

t∫

−∞
dtGR(t, t)Σ<(t, t) (91)

This equation is not fully consistent: the propagators
entering the forward scattering integrals are G�

X, as they
originate from the Ansatz, while the other two integrals
not influenced by the Ansatz contain the true propaga-
tors G�. With the exception of the original GKBA, it
it necessary to make the additional approximation of
replacing the exact G� by G�

X not to violate the spec-
tral identity. The final version of the transport equation
results.

Using the symmetries (90), it can further be rewritten
in two ways using convenient definitions of μ and λ:

∂ρ

∂t
= −

t∫

−∞
dt 2� [

ΣR(t, t)GA
X (t, t)

]

︸ ︷︷ ︸

≡

·ρ(t)

−
t∫

−∞
dt 2� [

Σ<(t, t)GA
X (t, t)

]

︸ ︷︷ ︸

≡

∂ρ

∂t
= −

t∫

−∞
dt μX(t, t) · ρ(t) −

t∫

−∞
dt λX(t, t) (92)

8.3.1 Reduction of the GME (92) to the Master Equation

Now, we return to the program of Sect. 7.5 and work
out the reduction GME → ME, outlined there, for the
toy model of this section in more detail. The Master
Equation corresponding to the model GME (92) should
have the form

∂ρ(t)
∂t

= −a · ρ(t) + c (93)

with a and c constants to be optimized for an agreement
with the GME. This equation coincides with (72) for the
special case of one-dimensional A and C. The deriva-
tion of (72) was limited to GKBA and used the crudest
approximation of ρ(t) = ρ(t) in the source GME, Eq.
(17). Here, we disregard both these limitations.

As the first step, the saturation value of ρ for t → +∞
will be determined. Setting ∂tρ = 0 in (93), we get the
identity

ρ∞ =
c

a
(94)

which is a strict identity for any choice of a and c. The
reference value of ρ∞follows from the GME (92) by the
same condition ∂tρ = 0 as

ρ∞ =
c̆X

ăX

(95)

where X refers to the XGKBA Ansatz used and

ăX = +

t∫

−∞
dt μX(t, t), c̆X = −

t∫

−∞
dt λX(t, t) (96)

Since the lower integration limits do in fact not extend
beyond several τ�, we may employ the spectral repre-
sentation (cf. (89), with all α set equal to 1)

GA
X (t′ − t) = +i

∫
dE

2π
ÃX(E)e+iEsϑ(s) ≡ +iAX(−s)ϑ(s)

ΣR(t − t′) = −i
∫

dE

2π
Δ(E)e−iEsϑ(s) ≡ −iΓ (+s)ϑ(s)
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Σ<(t − t′) = +i
∫

dE

2π
Δ<(E)e−iEs, s = t − t′ (97)

to Fourier transform the integrals with the result

ăX =
∫

dE

2π
Δ(E)ÃX(E) (98)

c̆X =
∫

dE

2π
Δ<(E)ÃX(E) (99)

The solution of the ME (93) has the expected Marko-
vian style; for t > t, it has the form

ρ(t) = (ρ(t) − ρ∞) e−atrial(t−t)+ρ∞, ρ∞ =
ctrial

atrial

(100)

Our task is to extrapolate this solution to the past,
introduce it into the GME and adjust the quantities atrial

and ctrial in an optimized fashion. This anticausal extrap-
olation into the past is a characteristic feature in jus-
tification of time local transport equations. It requires
a close attention. We proceed in three steps. The first
attempt reproduces the procedure of Sect. 7.5.

ρ(t) = ρ(t) in the GME (93) (101)

The GME reduces to the ME

∂tρ(t) = −0aXρ(t) + 0cX (102)

where
0aX = ăX, 0cX = c̆X, (103)

This approximation is suitable in the weak scattering
limit,

0aX · τ�  1 (104)

It is then justified to select the FGKBA employing the
free propagators as the underlying Ansatz. The corre-
sponding spectral density is

Ã0(E) = 2πδ(E − Eb) (105)

and the ME becomes

∂tρ(t) = −0a0ρ(t) + 0c0 (106)

with the FGKBA coefficients (98) and (99) given by

0a0 = ă0 = Δ(Eb), 0c0 = c̆0 = Δ<(Eb), (107)

Comparing ΣR as given by Eq. (97) and by the explicit
partitioning expression quoted in (87), we obtain

Δ(E) = 2π〈b|H′Qδ(E − H0)QH′|b〉 (108)

so that (107) for ă0 means

0a0 = Golden Rule transition rate (109)

in parallel with the standard (Pauli) ME.
A less stringent weak scattering requirement applies

in the linear approximation for ρ(t) in the GME (93):

ρ(t) = ρ(t) + (t − t)∂tρ(t) t > t > t − O(τ�) (110)

The resulting ME is

∂tρ(t) = −1aXρ(t) + 1cX (111)

where

1aX =
ăX

1 − ă′
X

, 1cX =
c̆X

1 − ă′
X

, (112)

ăX and c̆X are given by (96), while

ă′
X = −

t∫

−∞
dt (t − t)2� [

ΣR(t, t)GA
X (t, t)

]

. (113)

In the spectral representation we obtain:

ă′
X = 2

∫
dĒ
2π

d

dĒ
�Σ(Ē + i0)ÃX(Ē) (114)

It is illuminating to resort once more to FGKBA and set
(105) for Ã. This A spectral density is not broadened,
so that the basic features of the renormalized decay rate
emerge: the first equation of (112) may be written as

1a0 =
2|�Σ(Ēb + i0)|

1 − 2� ∂
∂z Σ(Ēb + i0)

(115)

This is reminiscent of the expression for a quasiparticle
energy (presently—renormalized resonant island level).
There is a substantial difference, however. The selfen-
ergy is doubled at both places, compared with quasi-
particles.

Finally, we proceed directly from the ME with
unknown coefficients. The master equation correspond-
ing to the model GME (92) should have the form

∂ρ(t)
∂t

= −atrial · ρ(t) + ctrial (116)

with coefficients which will be determined by introduc-
ing its formal solution (100) for ρ(t) into the GME:

∂ρ

∂t
= −

t∫

−∞
dt μX(t − t)e−atrial(t−t) × (ρ(t) − ρ∞)

−
t∫

−∞
dt μX(t − t) × ρ∞ −

t∫

−∞
dt λX(t − t)

(117)
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Using (96) and setting the self-consistence condition
that atrial is a root of the equation

atrial =

t∫

−∞
dt μX(t − t)e−atrial(t−t) (118)

we can rewrite (117) to

∂ρ

∂t
= −atrial × (ρ(t) − ρ∞)

−ăX × ρ∞ + c̆X (119)

The second line equals to zero by (95) and we get

ctrial = −atrial · ρ∞ = −atrial · c̆X

ăX

(120)

in agreement with the general relation (94). This com-
pletes the construction of the optimized Master equa-
tion. It remains to solve the integral equation (118) for
atrial. With writing z for the unknown, the equation may
be rearranged to

z =
∞∫

−∞
ds μX(s)eis(−iz)

z = μ̃X(−iz)
(121)

The integration limits could have been extended to ±∞
because of the retarded character of the μX(t) func-
tion. Instead of the unwieldy integral equation involv-
ing μ, we have to deal with its Fourier transform μ̃. The
framed equation is formal, however, because μ̃ can be
continued from the real axis to the upper half plane,
whereas our sought root lies at the negative imaginary
half-axis. It is necessary to continue μ̃ analytically to
the unphysical sheet in the lower half plane. This may
be facilitated by the existence of τ�. The 0aX, 0cX and
1aX, 1cX approximations are seen in this context as the
zeroth order and the first order solutions of (121) by
Taylor expansion of μ̃X around zero of energies.

The GME (92) and the ME (116) are, in the present
simplest case, both inhomogeneous equations strictly
linear in ρ and have ρ∞ as a particular solution, so
that it is possible to write their solution starting from
an initial condition ρS at tS as

ρ(t) = GJ(t−tS)(ρS−ρ∞)+ρ∞, t > tS, J = G, M
(122)

The labels J=G,M signify GME, ME and GJ(t − t′)
denote the standard Greenians of the corresponding
homogeneous equations. Their Fourier transforms read,
in the complex energy plane,

G̃G(z) =
i

E + i μ̃X(E)
, G̃M(z) =

i
E + i atrial

(123)

The Greenian of the Master equation has a simple pole
at −i atrial, in agreement with Eq. (100). For the GME,
it is enough to set E = −iz to observe that the pole
of its Greenian is given by the above equation (121),
that is, its position is also −i atrial. The pole residuals
are different, however, for both G̃J, namely for G̃G we
obtain

G̃G(E) =
iZ

E + iatrial

+ Regular part,

Z =
1

1 + i
dμ̃X(−iatrial)

dE

(124)

The renormalization constant Z may be shown to be
real. The resulting asymptotic behavior of the two solu-
tions (122) is thus

GME ρG(t) = Z (ρS − ρ∞) e−atrial(t−ts) + ρ∞
ME ρM(t) = (ρS − ρ∞) e−atrial(t−ts) + ρ∞

t � tS

(125)

This remarkable result offers the following explanation:
the solution of the GME represents the true ρ, presently
the occupation number ρG of the island level. The solu-
tion of the ME fitted to the GME is missing the renor-
malization constant Z; its dynamics, on the other hand,
is in agreement with the GME. The “ρ” is the satura-
tion fraction ρM of the pole, that is to say, the quasipar-
ticle occupation number, if we borrow the terminology
from the quantum Boltzmann equation which is known
to describe the quasiparticle distribution function.

8.4 Model with Hubbard interaction on the island:
Hamiltonian and NEGF

We now add to the above model the Hubbard type
interaction to the island, which is thus represented by
an Anderson molecule with a local electron-electron
interaction and a Hubbard U > 0 as a model parame-
ter. The Hamiltonian of this model reads:

Ĥ(t) = Ĥ0 + Ĥ ′(t), Ĥ0(t) = Ĥ0L + Ĥ0B + Ĥ0R

Ĥ0B(t) = εb(n̂b↑ + n̂b↓) + Un̂b↑n̂b↓,

Ĥ ′(t) = αL(t)WL + αR(t)WR (126)

The selfenergy has the form
∥
∥
∥
∥

ΣR
σ Σ<

σ

0 ΣA
σ

∥
∥
∥
∥
(t,t′)

=
∥
∥
∥
∥

ΣHFσ + ΣR
Tσ Σ<

σ

0 ΣHFσ + ΣA
Tσ

∥
∥
∥
∥
(t,t′)

(127)

The time-local Hartree–Fock selfenergies,

ΣHFσ(t, t′) = Unσ(t)δ(t − t′) (128)

are determined self-consistently in terms of the full
Green’s function, as the occupation numbers nσ are
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spin diagonal elements of the one-particle density
matrix ρ(t) = −iG<(t, t) and are thus given by

nσ(t) = −iG<
σ (t, t). (129)

On the other hand, the selfenergies ΣR,A
Tσ , Σ<

σ are, in the
mean-field approximation, entirely given in terms of the
coupling Ĥ ′ between the island and the leads. As before,
leads are inert reservoirs and they thus prevent any self-
consistence. It is this rigidity of the pre-determined self-
energies which makes the molecular bridge model spe-
cific. As Ĥ ′(t) = αL(t)WL + αR(t)WR, see Eq. (126),
Similarly to the case of free-particle model, each of
the selfenergy components ΣR,A,<

σ can be expressed
through the electrode contributions and the full set of
selfenergies reads:

ΣR,A
Tσ (t, t′) = ΣR,A

Lσ (t, t′) + ΣR,A
Rσ (t, t′),

ΣR,A
Y σ (t, t′) = α

Y
(t)Σ̃R,A

Y σ (τ)α
Y
(t′)

Σ̃R,A
Y σ (τ) = ∓i

∫
dE

2π
ΔY σ(E − VY )e−iEτϑ(±τ)

Σ<
σ (t, t′) = Σ<

Lσ(t, t′) + Σ<
Rσ(t, t′),

Σ<
Y σ(t, t′) = α

Y
(t)Σ̃<

Y σ(τ)α
Y
(t′)

Σ̃<
Y σ(τ) = i

∫
dE

2π
ΔY σ(E − VY )fY (E − VY )e−iEτ

τ = t − t′, Y = L, R σ = ↑, ↓ (130)

Each fully connected junction Y is thus associated
with two spectral (tunneling) functions ΔY σ, which,
together with the quasi-equilibrium Fermi function fY ,
specify the Y selfenergy triplet. It remains to specify
the tunneling functions ΔY σ. we model the tunneling
functions by

ΔY σ(E) = λ · SDOSY σ(E). (131)

SDOS, the lead surface density of states, defines the
spectral dependence, while λ measures the junction
strength.

8.4.1 Specification of the model for calculations

We take the electrodes as symmetrical, so that the
shape of both Δ functions is identical. The whole setup
is shown in Fig. 1. It corresponds to VR,L = ±0.6 eV,
the temperature fixed at 300 K, and U = 0.0 eV.
The bias will be kept throughout, while the Coulomb
energy will serve as a parameter. The tunneling func-
tions shown are a simplified fit to the ab initio calcu-
lations and their sum for each spin orientation gives
the selfenergy. The resulting profiles of the stationary
one electron spectral densities of the island level can be
found from the spectral identity

Ãσ(E) = i(G̃R
σ (E)−G̃A

σ (E)) = −2ImG̃R
σ (E) = 2ImG̃A

σ (E)
(132)

Fig. 1 Sketch of the electronic structure of our bridge
model. To the left and to the right, the leads are repre-
sented by the respective tunneling functions (up spin in gray
color, down spin in green). The leads are given a symmet-
rical bias V , as given by the shifts of the quasi-Fermi lev-
els μL, R = ±V/2 with respect to the bare electron level εb

(heavy black central line) of the island center. The tunneling
functions float together with μL, R. The red profiles in the
center are the steady-state spectral densities Ãσ(E). The
parameters are kept at standard values: bias V = 1.2 eV,
coupling constant λ = 1. The Coulomb U used in computa-
tions is variable, U = 0.6 eV in most calculations, the other
values include U = 0.0 eV (in this figure) and U = 1.0 eV

and they are shown in the central panel of Fig. 1.

8.5 Model with Hubbard interaction: GME

The way from NEGF to a transport equation follows the
already introduced procedure and is the same as in the
previous case of the free model. The unknowns are the
occupation numbers n↑(t), n↓(t). Written conveniently:

∂tnσ = −2

t∫

t0

dt Re(ΣR
σ (t, t)G<

σ (t, t))

−2

t∫

t0

dt Re(Σ<
σ (t, t)GA

σ (t, t)), (133)

This precursor equation can be converted to a closed
equation for the occupation numbers by an Ansatz type
factorization and selfconsistently for propagators. The
decouplings simplify to scalar relations here in compar-
ison with a general case for density matrix.

We will discuss two types of factorization:
� First, the GKBA

G<
σ (t, t′) = −GR

σ (t, t′)nσ(t′) + nσ(t)GA
σ (t, t′) (134)

123



Eur. Phys. J. Spec. Top. (2021) 230:771–808 799

The resulting approximate equation has the form of
a true GME:

∂tnσ = −2

t∫

t0

dt Re(ΣR
σ (t, t)GA

σ (t, t)) · nσ(t)

−2

t∫

t0

dt Re(Σ<
σ (t, t)GA

σ (t, t)), (135)

It consists of just two scalar equations for two unknown
nσ.

� Second, the steady-state corrections, the CGKBA

G<
σ (t, t′) = −GR

σ (t, t′)nσ(t′) + FR
∞σ(t − t′)

+nσ(t)GA
σ (t, t′) + FA

∞σ(t − t′),
(136)

The resulting corrected GME has a form similar to
(135),

∂tnσ = −2

t∫

t0

dt Re
{

ΣR
σ (t, t )GA

σ (t, t)nσ(t )
}

−2

t∫

t0

dt Re
{

Σ<
σ (t, t )GA

σ (t, t)

+ΣR
σ (t, t )FA

∞σ(t − t)
}

(137)

The forward scattering term is the same as in (135), the
vertex correction formally merges into the back scatter-
ing.

The aim will be to compare calculations based on
the use of the full set of the NEGF equations with the
results obtained from the above transport equations to
see not only the advantages but also the limits of the
simplified equations used. We will discuss results for
the evolution of occupation numbers and magnetic cur-
rents. First, the magnetic currents have to be defined.

8.5.1 Lead magnetic currents

We will define magnetic currents through the two junc-
tions as a difference between the currents with opposite
spins:

JM
Y = JY ↑ − JY ↓, (138)

The JY σ partial currents are formally defined as the
rate of loss of the total occupation NσL, NσR of the
leads. They may be expressed in terms of the island
NEGF:

JY σ(t) = −∂tNY σ(t) = −
t∫

t0

ΣR
Y σG<

σ −
t∫

t0

Σ<
Y σGA

σ

−
t∫

t0

G<
σ ΣA

Y σ −
t∫

t0

GR
σ Σ<

Y σ. (139)

All junction currents are defined to flow into the
island. The charges and the spins in the whole system
are conserved

NLσ + nσ + NRσ = const (140)

This implies the continuity equations for each spin,
for the total charge density and the magnetization:

∂tnσ = JLσ + JRσ, ∂tn = JL + JR, (141)

IM (t) = JM
L + JM

R , IM (t) ≡ ∂tm. (142)

where we introduced the total occupancy n(t) and the
spin magnetization m(t),

n = n↑ + n↓, m = n↑ − n↓ (143)

and defined the magnetic influx IM , a property of the
island center characterizing the magnetic transient: it
is the rate of variation of the local magnetization, it is
equal to zero in the stationary state and its evolution
equations are suitable for the reduction to a quantum
transport equation.

8.6 Discussion of GME based on the GKBA and
steady-state corrections

First, we will now briefly summarize the results obtained
by an exact solution of NEGF as compared with the
results provided by the GME based on GKBA and with
the criteria of the GKBA validity approach. Second, we
will discuss results based on the GME which include the
steady-state corrections.

8.6.1 Steady-state asymptotics and criteria for the
Ansatz validity

We will now deal with the steady-state model (long time
asymptotics, t =→ ∞), which provides exact expres-
sions for the studied observables (occupation numbers
and magnetic currents) and compare them with the
approximate expressions when the GKBA is used. Only
the final expressions are given, for their derivation, see
[179].

nσ(∞) ≡ ñσ =
∫

dE
2π Ãσ(E)

Δ̃<
σ (E)

Δ̃σ(E)
, (144)

ngkba
σ (∞) ≡ ñgkba

σ =

∫
dE
2π Ãgkba

σ (E)Δ̃<
σ (E)

∫
dE
2π Ãgkba

σ (E)Δ̃σ(E)
(145)
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We can bring these two expressions to a comparable
form using the Mean value theorem:

ñσ =
1

Δ̃σ(Ea
σ)

∫
dE
2π Ãσ(E)Δ̃<

σ (E), (146)

ñgkba
σ =

∫
dE
2π Ãgkba

σ (E)Δ̃<
σ (E)

Δ̃σ(Eb
σ) × 1

1 =
∫

dE
2π Ãgkba

σ (E)

(147)

where the superscript GKBA denotes the use of the
GKBA for the calculation. Written in this form, these
expressions give criteria for validity of the Ansatz [179].

A sufficient condition for the Ansatz to be valid is
thus the condition that

� [CON] the tunneling functions Δ̃σ do not vary
appreciably within the energy region to which the spec-
tral density Ãσ is concentrated.

This can be fulfilled in two complementary ways, so
that the condition [CON] splits into two:

� [CON 1] the tunneling is weak—so that the spec-
tral density has a sharp narrow resonance;

� [CON 2] the tunneling function is flat (constant in
the limit)—this latter case is the well-known wide band
limit (WBL).

These two limits favorable for GKBA are of a differ-
ent nature. In the first case, the tunneling strength, i.e.,
the magnitude of the tunneling function is decisive, in
the other one, it is the energy dependence, i.e., the ana-
lytical structure of the tunneling function, which plays
the dominant role.

In a similar way, we can obtain corresponding expres-
sions for the magnetic currents:

J̃Y,σ =
ie
�

∫
dε

2π
Δσ(ε − VY )

×
(

−Δ̃<
σ (ε)

Δ̃(ε)
+ fFD,Y (ε − VY )

)

Ãσ(ε) (148)

J̃gkba
Y,σ =

ie
�

∫
dε

2π
Δσ(ε − VY )

×
(

−
∫

dε
2π Δ̃<

σ (ε)Ãgkba
σ (ε)

∫
dε
2π Δ̃(ε)Ãgkba

σ (ε)
+ fFD,Y (ε − VY )

)

×Ãgkba
σ (ε) (149)

It suffices to make use of the mean value theorem for
integrals to show that the two expressions will nearly
coincide once the condition [C] in either form will be
fulfilled.

8.6.2 GME based on steady-state corrections

In the region where, according to the above-mentioned
conditions, the GKBA-based GME fails to provide a
satisfactory description of non-equilibrium observables,
we can try to use the corrected Ansatz based on the
steady-state corrections of the reconstruction equation,
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Fig. 2 Comparison of the standard tunneling function
(Fig. 1) with a modified one, with d peaks suppressed.
The standard tunneling functions shown in dark tone in
the background are reduced with an overall λ = 0.5 and the
suppression coefficient for the d states κ = 0.2. Yellow (spin
up) | red (spin down). Vertical black thin line is the position
of chemical potential

GME (135). This is the case of the standard tunnel-
ing function at Fig. 1. However, the corrected steady-
state GME (137), which includes at least simple correc-
tions to the GKBA by including partly both vertex cor-
rections of the reconstruction equations, provides good
description of the dynamics and it reproduces well the
NEGF calculations, for more detail [179–181].

When we use the standard tunneling function, see
Fig. 1, the conditions CON 1 and CON 2 are not
fulfilled and the GKBA-based GME fails to describe
longer time non- equilibrium dynamics properly. To
reach the range of the validity of the GKBA (to ful-
fill the conditions) it is enough to modify the tunnel-
ing conditions mildly, first, to decrease the tunneling
function by reducing the λ factor(to weaken tunneling
junctions) in equation (131), and second, to suppress
the influence of d-states. The modified tunneling func-
tions, are shown in Fig. 2 in yellow and red colors. These
tunneling functions are still far from the true WBL, yet
they are sufficient for the GME to work properly.

8.7 Summary of the molecular bridge dynamics

The broad variability of parameters of the simple molec-
ular model can be used to elucidate general features
of dynamics of open systems from its initial transient
stage, characterized by the decay of initial correlations,
to its kinetic stage in the late period of its dynam-
ics. We can conveniently compare the full NEGF solu-
tion of the model dynamics with the simplified descrip-
tion based on the Ansatz-based transport equations and
study their validity range.

Based on these studies, it is possible to conclude that
we can simplify the full NEGF description following
natural changes in dynamics of observables during three
different stages of non-equilibrium system evolution:
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� Initial transient dynamics, which starts at a finite
initial time by an abrupt or adiabatic change of the
boundary condition (switch off or on of the leads). The
following fast transient processes from non-equilibrium,
generally correlated, initial state can be in most cases
only described by the full set of NEGF.

� Later on, after the decay of initial correlations, the
system tends to slower changes, which can be charac-
terized as a kinetic stage. This period of evolution can
well be described by a simplified transport theory based
on the use of some form of the Ansatz. As we have seen,
there are various choices of the Ansatz (how to recon-
struct the full correlation function from the OPDM ρ)
and correspondingly of the GME.

� Finally, the last stage (long time asymptotics)
of the non-equilibrium evolution can be captured by
equations without memory in its scattering integrals,
by Markovian ME. There can be several levels of sim-
plification of the GME to ME, but it is important to
point out that the features of the resulting ME depend
on the version of the Ansatz used to get the GME.

In this text, we concentrated mainly on the discussion
of the use of the Ansatz to derive the GME, but the
molecular bridge model permits to study also the role
of the correlated initial conditions, including multiple
switching processes, where coherence processes play an
important role, and the earliest stage of evolution, as
documented in [67,113,209,210,212].

9 Discussion: effective transport theory

In this article, we have summarized the present views
on the construction of the quantum transport theory
based on the NEGF approach. The paper deals with
aspects and open questions which are important on the
way to an effective and reliable description of quantum
systems evolution from a non-equilibrium initial state
at a finite time through fast transient processes to long
time steady state asymptotics. While not unique, the
Ansatz method, to our opinion, dominates the field.

The NEGF description based on equations of motion
for two-time correlation functions is, in general, too
complicated to be practicable for most of the far from
equilibrium quantum systems and a simplified descrip-
tion is desirable whenever physics allows it. Many
research groups have developed computational means
to solve either the full NEGF equations of motion, or
their simplified versions using variants and extensions
of the Ansatz, for ever more complex systems. This very
useful approach prevails in contemporary literature, as
we have described.

Our emphasis was on the alternative route, which
employs the Ansatz technique to transform the Kadanoff–
Baym equations into quantum transport equations.
This route is also productive, and in addition, it
provides valuable insights into the physics of non-
equilibrium systems and involved processes, sometimes
quite directly, without big computational efforts. A
promising progress has also been achieved along this

direction of research, concerning both the precision of
the approximations involved and the range of applica-
bility of the quantum transport equations of the GME
type. This, in fact, stimulated us to prepare this report.

The aim, to create this way a unified transport the-
ory, which uses reliable simplifications for various peri-
ods of system evolution, is, however, far from being
attained. In conclusion, we list several open issues which
may have an important role in the effort to develop an
effective transport theory, and which provide hints what
need to be further investigated:

The Ansatz like factorization and transport
equations

Various forms of factorization of the correlation func-
tions can be used to get transport equations. We have
limited the scope of the article to causal Ansatzes as
the means of factorization, since they are more appro-
priate for truly quantum transport regimes. The quality
of resulting equations (the validity range of the Ansatz)
then depends on the particular Ansatz used. But there
is a broader question, namely this GKBA-related causal
approach vs. the anticausal form of factorization asso-
ciated with the original KBA. The former approach
leads to particle description (with equations for the
One-particle Density Matrix (OPDM) ρ), the latter one
to the quasiparticle description (with the quasiparticle
distribution function). This double language is suited
for extended interacting systems. It is less clear what it
means for nanoscopic systems with discrete energy lev-
els. We have seen, however, that this dichotomy causal
and particle vs. anticausal and quasiparticle emerged
quite naturally in deriving the master equation for our
test model of a molecular bridge. This is a possible point
of departure.

Various phases of non-equilibrium evolution

For a typical transient process, whether it evolves spon-
taneously from a prepared initial state, or was initiated
by an external perturbation, like in a pump-and-probe
experiment, it is customary to distinguish the early
period, denoted by Bogolyubov as the decay of corre-
lations, followed by a kinetic stage and finally by the
long time relaxed state merging into equilibrium. This
time structure takes place, if the system possesses char-
acteristic times, the “collision duration time” τ� and
the relaxation time τ , satisfying the condition τ�  τ .
The τ� coincides with the time of the “correlations
decay”, but its smallness also guarantees the validity of
the GME regime throughout the kinetic stage. While
the relaxation time has a straightforward relationship
to the strength of the interactions or of the coupling
to external sources, the definition of τ� is somewhat
elusive. The interplay between the magnitude and the
spectral features of the selfenergy appears to be deci-
sive. That was one of the main points of our analy-
sis of the molecular bridge model and it remains to be
another still open problem.
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Returning to the task of solving the equation of
motions of the transient process, we have to use the full
NEGF description for the fast early stage of the tran-
sient and there is no simple procedure to link it seam-
lessly with the GME to be solved in the kinetic stage.
This difficulty is better resolved in the approach using
the Ansatz to speed up the solution of the Kadanoff–
Baym equations, and it poses another open question for
the GME technique: to create interpolation schemes,
which cover the whole evolution properly and consti-
tute a unified effective transport theory.

Reconstruction equations and their vertex
corrections

The reconstruction equations provide us with the
Reconstruction and fluctuation–dissipation theorems,
which represent the existence theorems for quantum
transport equations. In fact, reconstruction equations
(RE) are the only exact statements which incorporate
the Ansatz firmly into the NEGF structure. In princi-
ple, we could thus use an iteration of the RE to get
an improved transport equation. The complexity of the
vertex structures makes this not practicable. We can
then either limit ourselves to the first term of these
equations modified to various causal clones of the GKB
Ansatz to construct the transport equations, or we can
try to include some approximations of the vertex correc-
tions on the way to transport equations as represented
by the quasiparticle Ansatz and the steady-state Ansatz
in the main text. Improvements upon such construc-
tions would be the best promise for the future progress.
Their reliability can be checked by the degree of their
conformity with the related non-equilibrium Ward iden-
tities. Further investigations of what RE can offer for
the transport theory will be extremely useful.
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130. V. Špička, P. Lipavský, K. Morawetz, Quasi-particle
transport equation with collision delay: II. Microscopic
theory. Phys. Rev. B 55, 5095 (1997)
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132. V. Špička, P. Lipavský, K. Morawetz, Nonlocal cor-
rections to the Boltzmann equation for dense Fermi
systems. Phys. Lett. A 240, 160 (1998)

133. J. Koide, Quantum kinetic equation in the closed-time-
path formalism. Phys. Rev. E 62, 5953 (2000)
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